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Abstract

If viruses or other pathogens infect a single host, the outcome of infection may depend on

the initial basic reproduction number R0, the expected number of host cells infected by a sin-

gle infected cell. This article shows that sometimes, phylogenetic models can estimate the

initial R0, using only sequences sampled from the pathogenic population during its exponen-

tial growth or shortly thereafter. When evaluated by simulations mimicking the bursting viral

reproduction of HIV and simultaneous sampling of HIV gp120 sequences during early vire-

mia, the estimated R0 displayed useful accuracies in achievable experimental designs. Esti-

mates of R0 have several potential applications to investigators interested in the progress of

infection in single hosts, including: (1) timing a pathogen’s movement through different

microenvironments; (2) timing the change points in a pathogen’s mode of spread (e.g., tim-

ing the change from cell-free spread to cell-to-cell spread, or vice versa, in an HIV infection);

(3) quantifying the impact different initial microenvironments have on pathogens (e.g., in

mucosal challenge with HIV, quantifying the impact that the presence or absence of muco-

sal infection has on R0); (4) quantifying subtle changes in infectability in therapeutic trials

(either human or animal), even when therapies do not produce total sterilizing immunity; and

(5) providing a variable predictive of the clinical efficacy of prophylactic therapies.

Introduction

When viruses or other pathogens infect a single host, the basic reproduction number R0 is the

expected number of cells infected by a single infected cell [1]. The initial R0 is a fundamental

determinant of whether an infecting viral population will establish itself in the host. On one

hand, if R0 < 1, the viral invaders reproduce below replacement and will go extinct. On the

other hand, if R0 is slightly greater than 1, an initial virus has a small positive probability of

amplifying into a systemic infection, and if R0 is large, infection is all but inevitable.

The initial basic reproduction number R0 is therefore a continuous variable with direct bio-

logical pertinence to infection. As such, it may have many underappreciated applications. As a

general example, consider therapeutic trials. More specifically, consider as a motivating
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application pre-clinical tests of HIV therapies like vaccines in animal models. In this context,

the macaque model is popular, because simian immunodeficiency virus can cause a disease

progression resembling AIDS in humans [2]. Historically, macaque trials often used a single

high-dose intravenous or mucosal inoculation to ensure almost certain infection of unpro-

tected animals [3]. The consequent assessment of therapeutic efficacy depends primarily on

binary categorical data, i.e., whether or not infection occurred in treated animals [4,5]. New

experimental designs, notably repeated low-dose challenges, have improved statistical power

in animal trials [3,6], but do not remove the intrinsic statistical limitations of binary data. The

ability to estimate a continuous variable like the initial R0 in HIV infection would in principle

permit a statistically more powerful analysis of therapeutic efficacies.

The initial R0 is likely a primary determinant of whether systemic infection occurs, and ini-

tial microenvironments with relatively few target cells probably impede systemic infection by

HIV. Consider, e.g., that the number of per-act transmissions per 10,000 exposures varies con-

siderably by route of infection [7]. For sexual exposure, the number ranges from less than 4 to

138; for needle-sharing, it is about 63. In contrast, for vertical transmission between mother

and child, the number is 2260; for blood transfusion, it is 9250. Thus, the initial microenviron-

ment may starkly limit the reproduction of HIV until the virus escapes into systemic circula-

tion, where target cells are plentiful.

Unfortunately, practical thresholds for HIV detection make the initial R0 inaccessible to

direct measurement, because on average, viremia is delayed until about 10 days after exposure

to HIV [8,9]. Modern techniques for measuring the abundance of HIV [10] have yielded esti-

mates, e.g., R0� 6 [11] or R0� 8 [12]. These estimates of R0 pertain to viremia, however, when

there are at least 20 viruses/ml (the current lower limit of detectability) and thus about 105

viruses in the total blood volume of 5L [13]. By the time HIV is detectable in blood samples

and R0 can be measured directly, infection has long since established itself.

The viral dosage may vary considerably between the modes of transmission above, and in

sexual or mother-to-child transmission of HIV, e.g., the genetic diversity at early stages of

infection usually reflects the number of viruses founding the infection [14–16]. In fact, how-

ever, about 80% of all HIV infections arise from a single founding viral sequence [17–19].

Moreover, the design of repeated low-dose challenge animal trials is likely to cause infections

with a single founding virus. Thus, because of its practical importance, the case of a single

founder virus is a convenient starting point for mathematical analysis, and the rest of this arti-

cle assumes a single founder.

Although most of this article is self-contained, it continues a scientific program started in

[20]. Direct measurement of R0 early in infection may be impractical, but Fig 1 in [20] showed

that the initial R0 displays its footprint in HIV sequences sampled in early viremia, during

exponential expansion of the viral population. To describe the essence of Fig 1 in [20], if only

two daughters of the founder successfully contribute descendants to the viremia, and one

daughter has a novel mutation away from the founder, about half the sequences sampled in

viremia have the mutation. In contrast, if the founder has many daughters successfully contrib-

uting descendants to the viremia, far fewer than half the sequences sampled in viremia are

likely to have any given mutation.

The structure of this article is as follows: the theory section applies standard statistical pro-

cedures to yield a robust method for estimating R0 from sequence data. The Methods section

then describes the simulation of a continuous-time branching process whose parameters are

pertinent to sampling sequences of the HIV gp120 gene. The process is the “Gamma model” of

[20], a special Bellman-Harris process [21] that idealizes HIV reproduction. The Results sec-

tion displays the accuracy of our estimator in recovering R0 in the idealized simulation and

the Discussion section examines some consequences of the theory. Finally, the Supporting
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Information compares our estimator to other (inferior) statistical techniques that we applied

to recover R0 from the same idealized simulation.

All approximations in this article are uncontrolled, i.e., we cannot provide bounds on the

error that the approximations cause. Usually without comment, therefore, we rely on simula-

tions of the Gamma model to assess their accuracy. Parameter regimes not pertinent to HIV

reproduction and the sampling of gp120 sequences require separate assessment and are

beyond the immediate practical purview of this article.

Finally, as motivation, in the context of the Gamma model, our estimator compares favor-

ably with state-of-the-art methods. It has an exceptionally simple analytic form, e.g., yielding a

negligible computation time in comparison to exact Bayesian calculations. Moreover, under

methods analogous to ours, the coalescent process yields the same estimator as continuous-

time branching process models of population growth. Under the Gamma model for HIV

reproduction, however, the estimator has a singularity, making it useless for quantitation if

R0� e� 2.7.

Theory

The following set-up assumes that a single founder virus has infected a single host (e.g., a single

HIV infects a human). The set-up is mostly self-contained, drawing only on a few critical

approximations presented elsewhere with some mathematical foundations [20]. First, before

modeling viral ancestry, we examine the sampling of the viral sequences.

With “≔” denoting a definition, define (m) ≔ {1, 2, . . ., m}. Fix an alphabet Λ, e.g., the

unambiguous nucleotide alphabet Λ = {a, c, g, t}. In practice, sequence analysis must invoke a

strategy for handling anomalous characters in an alignment (e.g., ambiguous nucleotides or

gap characters). Sometimes, anomalous characters are infrequent, so that as an acceptable

approximation, the analysis can treat them as ordinary characters by enlarging its alphabet.

Sometimes, the analysis simply omits columns containing them. Without further comment,

the following assumes that the practical analysis has adopted an unspecified strategy for han-

dling anomalous characters.

Consider a set S• ≔ (Sm: m 2 (M)) consisting of M sequences. The sequences are sampled

simultaneously from the descendants of a single founder sequence F. Align the sequences S•,

so that the sequences S• form an alignment matrix S•,• ≔ {Sm,n: m 2 (M), n 2 (N)} of N col-

umns. Given an unspecified strategy for processing sequences S• into S•,•, the analysis here

simply starts with the alignment matrix S•,•. Implicitly, F aligns with S•,•, so the letter Fn inF

is ancestral to each letter Sm,n in the matrix column n 2 (N) (where Sm,n is from the sequence

Sm). In practice, F is often unknown, a complication we handle shortly.

The Iverson bracket for indicator random variates is a standard notation [22]: let [A] = 1 if

the statement A is true, and [A] = 0 otherwise. Let MnðLÞ≔
PM

m¼1
½Sm;n ¼ L� (n 2 (N)) count

the instances of letter L 2 Λ in column n of S•,•. Given the strategy for handling anomalous

characters, M = S(L2Λ)Mn(L).

The difference Dn≔ Dn(F) ≔M −Mn(Fn) counts letters in column n that have

mutated away from the founder F; let D ≔ D(F) ≔ (Dn(F): n 2 (N)). Given D, let

Zm≔ ZmðFÞ≔
PN

n¼1
½DnðFÞ ¼ m� count the alignment columns n 2 (N) where m letters differ

from the founder letter Fn, and define the site frequency spectrum (SFS) as η≔ η(F) ≔
(ηm(F): m 2(M)). Typically, F is unknown, so η is not observable.

To develop a statistical model for η, let εn be the probability of a mutation per base per gen-

eration in column n of the alignment. As in the infinite-sites model [23], we neglect the

extremely rare possibility that two or more mutations occur in the ancestry of a single letter

Sm,n. Let m ¼
PN

n¼1
εn be the expected number of novel mutations per generation in the
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sequences. Despite its biological importance, the effects of preferential selection on sequence

data are practically imperceptible during the first six months of HIV infection (see the first

paragraph in the Materials and Methods of [19] and Fig 1 in [24]). Assume therefore that (εn:

n 2 (N)) are all small, and that novel mutations are all independent. To a good approximation,

in every daughter the counts of novel mutations are independent Poisson variates with fixed

mean μ.

For linguistic convenience, let every virus be both her own ancestor and her own descen-

dant. Let Am count the non-founder viral ancestors with m descendants in the sample, and

define as in [20] the ancestral sample frequency spectrum (AFS), A ≔ (Am: m 2(M)). (Each

sampled sequence contributes to A1, e.g., because by convention, each sampled sequence is its

only descendant in the sample). Under an infinite-sites model, every novel mutation occurs in

a different column of the alignment. Every alignment column with m mutations therefore cor-

responds to a novel mutation in an ancestor with m descendants in the sample [25]. Given A,

the coordinates of η are independent Poisson variates, with ηm having mean μAm (see, e.g.,

Theorem 1 in [20]). Accordingly, the relationship is written as η=d Poission(μA), where “=d”

indicates equality of distributions.

Eq (17) in [20] used the law of total variance to write

s2ðZmÞ ¼ E½s2ðZmjAÞ� þ s
2ðE½ZmjA�Þ ¼ E½mAm� þ s

2ðmAmÞ ¼ mEAm þ m
2s2ðAmÞ: ð1Þ

Now, we restrict the discourse to the Gamma model for HIV gp120 (as detailed in the

Methods section, which need not be read yet). Simulations of the Gamma model showed

[20] that for μ = 0.0551 (the value for HIV gp120), the typical magnitude of the ratio

m2s2ðAmÞ=ðmEAmÞ from Eq (1) was at most about 18%. For μ = 0.0551 in the Gamma model,

therefore, the mutational variance mEAm makes the dominant contribution to σ2(ηm). The

form of Eq (1) shows that the dominance remains robust to varying μ (particularly decreasing

it), as long as the ratio m2s2ðAmÞ=ðmEAmÞ remains small (say, less than 50%, occurring about

μ� 0.0551 × (0.50/0.18)� 0.153).

Let am≔EAm and a ≔ (am: m 2 (M)). Given the distributional equality η=d Poission(μA),

our observations on Eq (1) therefore suggest that the distributional approximation η�d Pois-

sion(μa) pertains, as follows. In the present context (the distribution of η under μ = 0.0551 in

the Gamma model), the variation of A contributes little to the variance of ηm: effectively, as

noted by other authors [1,19,24], A behaves as though it were the constant am ¼ EAm when

contributing to random fluctuations in ηm. In effect, the approximation Am� am treats Eq (1)

as an expansion in μ around μ = 0 and drops terms quadratic in μ to retain the approximation

s2ðZmÞ � mEAm. As a linear approximation, it should improve as μ decreases and worsen as μ
increases.

To avoid distracting subscripts in the following equations, let r≔ R0 denote the basic repro-

duction number R0 from the Introduction. For some practical purposes, HIV reproduces

almost in lockstep, with synchronous generations (see the Delta model of [20], a Galton-Wat-

son branching process [26]). Let G count the generations of HIV after host infection. To sum-

marize the previous paragraph,

pðηjG; r;MÞ �
YM

m¼1

e� mam
ðmamÞ

Zm

Zm!
: ð2Þ

In any ancestry with G synchronous generations, MG ¼
XM

m¼1
mAm. (Proof: count the

ancestors in each of the generations g = 1, 2, . . ., G, accounting for the multiplicity m of their

sampled descendants. The total count is equivalent to counting each of the M samples G

The basic reproduction number of a pathogen in a single host
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times). Take expectations to derive

MG ¼
XM

m¼1

mam: ð3Þ

Reference [20] showed that for the Gamma model,

aðDÞm ≔ aðDÞm ðrÞ≔
M

m

 !
X1

g¼1

ðr� gÞm� 1
ð1 � r� gÞM� m ¼

X1

g¼1

rg
M

m

 !

ðr� gÞmð1 � r� gÞM� m ð4Þ

accurately approximated am ¼ EAm (m = 2, 3 . . ., M). The heuristic behind the approximation

follows. To a good approximation, HIV has synchronous generations g = 1, 2, . . ., G. On aver-

age, generation g contains rg individuals. Each viral sequence in the sample therefore has an

approximate probability r−g of descending from any particular individual ℊ in generation g.

Thus, the probability that ℊ has m descendants in a sample of size M is approximately the

binomial probability on the right of Eq (4). Sum the binomial probability over the individuals

ℊ in generation g (on average, rg in number) and then over all generations g = 1, 2, . . ., G. Let

G tend to infinity to derive Eq (4).

Eqs (3) and (4) therefore show that if in the Gamma model a1 � aðDÞ1 , then limG!1(MG −
a1) is approximately the (finite) quantity

aðDÞ
�
≔ aðDÞ

�
ðrÞ≔

XM

m¼2

maðDÞm : ð5Þ

In statistical notations, “•” often suggests a sum, as in aðDÞ
�

.

The variable η in Eq (2) depends on the unknown founder sequence F. To relate η to an

observable, define ~Mn≔maxL2LMnðLÞ, the maximum count of any single letter in column n.

Loosely, ~Dn≔M � ~Mn then counts minority letters in column n. Unlike Dn, the observable

~Dn has no dependency on the founder sequence F. Let bxc≔maxfi 2 Z : i � xg denote the

floor function, with ~M≔ bM=2c. Define the folded SFS ~η≔ ð~Zm : m 2 ð ~MÞÞ [27], with

~Zm≔
XN

n¼1

½~Dn ¼ m� ¼
XN

n¼1

ð½Dn ¼ m� þ ½Dn ¼ M � m�Þ ¼ Zm þ ZM� m ð6Þ

for m = 1, 2, . . ., b(M − 1)/2c), where the second equality holds for an infinite-sites model

(which we have assumed). If M is odd, bðM � 1Þ=2c ¼ bM=2c ¼ ~M , so the definition of ~η is

complete. If M is even, the pattern of pairs ηm + ηM−m displayed in Eq (6) fails for m ¼ ~M ,

because Z ~M cannot be paired with a distinct ZM� ~M . If M is even, therefore, define ~Z ~M ≔ Z ~M for

m ¼ ~M . Loosely, in all cases, ~Zm counts columns n where the number of minority letters equals

mðm 2 ð ~MÞÞ.
The folded AFS ~A≔ ð~Am : m 2 ð ~MÞÞ inherits the pattern for ~η established in Eq (6):

~Am≔Am þ AM� m for m = 1, 2, . . ., b(M − 1)/2c; if M is even, ~A ~M ≔A ~M . Henceforth and with-

out comment, the same pattern generates folded quantities (denoted by over-tildes) from

unfolded quantities, e.g., ~a≔E~A. The folded SFS ~η inherits an approximate Poisson
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distribution from the SFS η:

pð~ηjG; r;MÞ �
Y~M

m¼1

e� m~am
ðm~amÞ

~Zm

~Zm!
: ð7Þ

Because

lim
G!1
ðMG � ~a1Þ ¼ lim

G!1
ðMG � a1 � aM� 1Þ � aðDÞ

�
� aðDÞM� 1; ð8Þ

the pattern suggests imposing the definition

~aðDÞ
�
≔ aðDÞ

�
� aðDÞM� 1: ð9Þ

Eq (7) applied to the observable ~η yields a maximum likelihood estimate (MLE) ðĜ; r̂Þ. The

asymptotic properties of an MLE make r̂ a reasonable benchmark for other statistical estimates

of r. Recall Eqs (8) and (9) relating ~a1 and MG, and take natural logarithms in Eq (7) to derive

the (approximate) log-likelihood

ln LðG; rÞ≔ ln pð~ηjG; r;MÞ � � mðMG � ~a�Þ þ ~Z1ln ðMG � ~a�Þ þ
X~M

m¼2

ð� m~am þ ~Zmln ~amÞ; ð10Þ

where “�” indicates an equality of functions, possibly ignoring an irrelevant additive term

depending only on data (e.g., a term equaling a function of ~η).

As a useful approximation, the following treats G as a continuous variate. Now, for any

value of r (and not just r ¼ r̂),

maxG ln LðG; rÞ ¼ maxG½� mðMG � ~a�Þ þ ~Z1 ln ðMG � ~a�Þ� þ
X~M

m¼2

ð� m~am þ ~Zm ln ~amÞ

¼ � ~Z1 þ ~Z1ln ð~Z1=mÞ þ
X~M

m¼2

ð� m~am þ ~Zm ln ~amÞ

; ð11Þ

where the second equality holds if the maximum is an internal maximum, so the argument Ĝ
is determined by setting the derivative with respect to G equal to 0 (i.e., if Ĝ satisfies

mðMĜ � ~a�Þ ¼ ~Z1). An MLE r̂ then maximizes the profile log-likelihood, defined as

ln LðrÞ≔maxG ln LðG; rÞ �
X~M

m¼2

½� m~amðrÞ þ ~Zm ln ~amðrÞ�: ð12Þ

Now, ~amð1Þ ¼ ~amð1Þ ¼ 0 for m ¼ 2; 3; . . .; ~M . Because ln L(r) # −1 at the boundaries of

the interval (1,1), a MLE r̂ > 1 therefore exists, such that

d
dr

ln LðrÞ ¼
X~M

m¼2

� m~a 0mðrÞ þ ~Zm
~a0mðrÞ
~amðrÞ

� �

¼ 0 ð13Þ

has a root at r ¼ r̂ . In the following, if an MLE lacked an explicit analytic expression, a golden-

section search for maxima determined it numerically.

Unfortunately, the direct method of determining r̂ by substituting amðrÞ � aðDÞm ðrÞ and

then maximizing Eq (12) or solving Eq (13) entails many undependable numerical computa-

tions, because Eq (4) for aðDÞm ðrÞ requires multiplying unreasonably large and small numbers,

followed by adding the resulting products with great precision. For completeness, the
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Supporting Information develops an approximate MLE r̂ ðDÞ by approximating am(r) with

aðDÞm ðrÞ and compares it with our best estimator, derived as follows. Approximate the sum in

aðDÞm by an integral (the first term of an Euler-Maclaurin series [28]): because (1 − r0)M−m = 0

for m = 2, 3, . . ., M − 2,

M

m

 !
X1

g¼1

ðr� gÞm� 1
ð1 � r� gÞM� m �

M

m

 !Z1

0

ðr� gÞm� 1
ð1 � r� gÞM� mdg

¼
M

m

 !Z1

0

ym� 1ð1 � yÞM� m
dy

y ln r

¼
M

mðm � 1Þ

1

ln r

ð14Þ

where the final equality derives from the evaluation of a beta integral. Comparison of Eq (4)

and the two sides of Eq (14) shows that

aðIÞm ≔
M

mðm � 1Þ

1

ln r
ð15Þ

approximates am for m = 2, 3, . . ., M − 2.

After substituting aðIÞm ðrÞ for am(r) in Eq (13) and unfolding all folded quantities,

XM� 2

m¼2

mM
mðm � 1Þ

1

r ln2 r
� Zm

1

r ln r

� �

¼ 0: ð16Þ

Telescoping cancellation yields

XM� 2

m¼2

1

mðm � 1Þ
¼
XM� 2

m¼2

1

m � 1
�

1

m

� �

¼ 1 �
1

M � 2
: ð17Þ

To estimate r, define ~Z � 1 ≔
XM� 2

m¼2
Zm ¼

X ~M

m¼2
~Zm (an observable, the sum of all ~Zm except

~Z1), so the root r̂ ðIÞ of Eq (16) satisfies

ln r̂ ðIÞ ¼
mM
XM� 2

m¼2

Zm

1 �
1

M � 2

� �

¼
mM
~Z � 1

1 �
1

M � 2

� �

: ð18Þ

The sum of independent Poisson variates is Poisson distributed, so the variate ~Z � 1 is

approximately Poisson distributed, with s2ð~Z � 1Þ � E~Z � 1. Define ln2 x≔ (ln x)2. From a

linear Taylor series approximation, the approximation var f ð~Z � 1Þ � ½f 0ðE~Z � 1Þ�
2 var ~Z � 1 with

f(η) = η−1 yields

ŝ2ð ln r̂ ðIÞÞ �
mM 1 � 1

M� 2

� �� �2

ðE~Z � 1Þ
4

E~Z � 1 �
ln2 r̂ ðIÞ

~Z � 1

; ð19Þ

where the final approximation probably has a small relative error if E~Z � 1 is large (i.e.,

~Z � 1 � E~Z � 1).

For comparison of our results with state-of-the-art methods, both the coalescent process

and continuous-time branching process models of population growth produce the same
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approximation, that

aðCÞm ≔
M

mðm � 1Þ

1

1 � r� 1
ð20Þ

approximates am for m = 2, 3, . . ., M − 2. To relate Eqs (15) and (20), recall the Taylor expan-

sion ln r = −ln[1−(1 − r−1)]� 1 − r−1 near 1 − r−1 = 0, i.e., near r = 1. The text near Eq (13) of

[20] elaborates on the context of Eq (20). For comparison with Eq (18), which gives the estima-

tor r̂ ðIÞ in derived from Eq (15), consider the estimator r̂ ðCÞ derived analogously from Eq (20),

1 � ðr̂ ðCÞÞ� 1
¼

mM
XM� 2

m¼2

Zm

1 �
1

M � 2

� �

¼
mM
~Z � 1

1 �
1

M � 2

� �

: ð21Þ

Routine algebra shows that the estimators are related by the equation

r̂ ðCÞ ¼
1

1 � ln r̂ ðIÞ
: ð22Þ

Methods

Although the biological rationale given below in support of the Gamma model of HIV gp120

is brief, the interested reader can find a more detailed discussion elsewhere [20]. The Gamma

model was simulated for each r = R0, as follows. Each realization started with a single success-

fully infecting founder virus, which (for bookkeeping purposes) died at time t = 0, giving birth

to a random number Z1 of successfully infecting daughters. Biologically, each infected cell pro-

duces thousands of daughter virions, each with a small independent probability of infecting.

The simulation therefore chose the number Z1 from a Poisson distribution with mean r = R0.

Each daughter lived an independent random time after her birth. To approximate life-cycle

times relevant to HIV [19,29], the random times had a gamma distribution with mean 2 days

and standard deviation 0.24 days. The shape and rate parameters of the gamma distribution

were therefore (n, λ) = (69.4, 34.7) (to make the mean nλ−1 = 2 and variance nλ−2� 0.242).

The life-cycle of all the founder’s descendants were similar, making the Gamma model a Bell-

man-Harris process [21] with parameters specific to HIV.

Each realization generated daughters until there were 6000 live viruses, to mimic a thresh-

old of viral detection in blood. We also examined thresholds larger than 6000, but the exact

threshold did not substantially alter scientific conclusions. If the viral population went extinct

first, the realization restarted with a new founder. The 6000 live viruses were then sampled to

produce six samples, of sizes M = 2k (5� k� 10). For each sample size M, tracing back the

ancestry of the sample determined the ancestral sample frequency A, which yielded the folded

ancestral sample frequency ~A.

In HIV, the gp120 gene is about 2550 nt long, and (with crossovers neglected) each HIV

replication averages ε� 2.16 × 10−5 point mutations/base/replication [1]. On average, there-

fore, each RNA replication entails μ� 0.0551 mutations in gp120. Simulating from the Poisson

distribution in Eq (7) with μ� 0.0551 yields a folded site-frequency spectrum ~η for the

realization.

If ~Z2 ¼ ~Z3 ¼ . . . ¼ ~Z ~M ¼ 0, the realization fails to estimate ln r. For each r and each M, the

simulation recorded the number F of failed realizations encountered before performing 1000

successful realizations.

The basic reproduction number of a pathogen in a single host
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For each of the 1000 successful realizations, ~η yielded ln r̂ for the estimate r̂ ðIÞ in Eq (18).

The simulation also estimated the corresponding standard deviations ŝð ln r̂Þ given in Eqs

(19). For each r and each M, the simulation calculated a sample mean Eð ln r̂Þ and sample stan-

dard deviation sð ln r̂Þ from the 1000 successfully sampled values of ln r̂ . It also calculated the

sample mean of the estimated standard deviation Eŝð ln r̂Þ for comparison with the sample

standard deviation.

We simulated ancestries as described above for a discrete grid of basic reproduction num-

bers r = (1 + ε)k (k = 1, 2, . . .,blog1+ε Rc), so 1< r� R, with R = 10 and ε = 0.1 (as in [20]).

Results

Eq (18) suggests that
XM� 2

m¼2
Zm tends to decrease as r increases (the Introduction refers

the reader to Fig 1 in [20] for an intuitive explanation). If Z� 1 ¼
XM� 2

m¼2
Zm ¼ 0 in Eq (18),

r̂ ðIÞ ¼ 1 so one can only infer qualitatively that r is large. Thus, if every minority letter in an

alignment column is a singleton, making η−1 = 0, a realization fails to estimate r quantitatively.

Fig 1 displays the fraction of failed realizations (ones where ~Z2 ¼ ~Z3 ¼ . . . ¼ ~Z ~M ¼ 0).

In Fig 1, the x-axis displays x = log10 r (where r = R0); the y-axis, the fraction of failed reali-

zations. The x-axis runs from log10 r = 0.0 to log10 r = 1.0, i.e., r = 1 to r = 10; the probabilities

on the y-axis, from 0.0 to 1.0. The solid line corresponds to M = 32; the dashed line, to M = 64;

the dashed-dot line, to M = 128; the dotted line, to M = 256. The fraction of failed realizations

was identically 0.0 in all simulations with M = 512 and M = 1024.

In each subfigure of Fig 2 for r̂ ¼ r̂ ðIÞ (and also S1 and S2 Figs in the Supporting Informa-

tion), the solid curves indicate the sample mean y ¼ E log
10
r̂ ; the two dashed curves above

and below each solid curve indicate y ¼ E log
10
r̂ � sð log

10
r̂Þ, i.e., they indicate bands above

and below y ¼ E log
10
r̂ of height equal to the sample standard deviation sð log

10
r̂Þ; and the

Fig 1. Plot of the fraction of realizations failed against the true log10 r.

https://doi.org/10.1371/journal.pone.0227127.g001
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two dot-dashed curves above and below each solid curve indicate y ¼ E log
10

r̂ � Eŝðlog
10
r̂Þ,

i.e., they indicate bands above and below y ¼ E log
10
r̂ of height equal to the sample mean of

the estimated standard deviation.

In Fig 2, both x- and y-axes display log10 r: the horizontal, the true value x = log10 r; the ver-

tical, the estimated value y ¼ log
10
r̂ . The x-and y-axes run from log10 r = 0.0 to log10 r = 1.0,

i.e., r = 1 to r = 10. The dotted diagonal line indicates perfect estimation, r̂ ¼ r. In their upper

left, each of the subfigures (a)-(f) indicates the corresponding sample size M = 2k (5� k� 10).

Fig 2 for r̂ ðIÞ displays progressively better recovery of r as M increases. For M� 128, the

accompanying error estimate ŝ2ð ln r̂ ðIÞÞ also has practical accuracy. Near log10 r = 0, Fig 2e

and 2f show some systematic overestimation away from the perfect estimate r̂ ¼ r (see also

S1 and S2 Figs in the Supporting Information).

Fig 3 plots y ¼ log
10
r̂ ðCÞ from Eq (22) against x ¼ log

10
r̂ ðIÞ. The dotted diagonal line indi-

cates perfect agreement, log
10
r̂ ðCÞ ¼ log

10
r̂ ðIÞ. In Fig 2, y ¼ log

10
r̂ ðIÞ slightly overestimated

the true x = log10 r. In Fig 3, y ¼ log
10
r̂ ðCÞ is consistently larger than x ¼ log

10
r̂ ðIÞ. The two

estimators r̂ ðCÞ and r̂ ðIÞ agree well as r̂ ðIÞ decreases to 1, in accord with the Taylor expansion

near r = 1 following Eq (20). (The Appendix of [20] also shows that in the present context, the

Delta model of [20], the coalescent model, and the continuous-time branching-process model

produce the same limiting SFS as r decreases to 1). Fig 3 also shows, however, that for larger

values of r̂ ðIÞ, the coalescent estimate r̂ ðCÞ becomes a gross overestimate, and it even blows up to

infinity at log
10
r̂ ðIÞ ¼ log

10
e � 0:434.

Discussion

In infection of a single host, the basic reproduction number R0 is the expected number of cells

infected by a single infected cell. This article shows how mutational variations observed in a

Fig 2. Plots for the maximum likelihood estimate (integral approximation r̂ ðIÞ).

https://doi.org/10.1371/journal.pone.0227127.g002
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sample from a population descended from a single founder yield an estimator r̂ ðIÞ of R0. It veri-

fies the accuracy of its uncontrolled approximations with simulations that show that r̂ ðIÞ repro-

duces R0 within accuracies practicable for some purposes.

Our plots and statistics took log R0 as the natural scale for the basic reproductive number

R0. The population size at generation g is Ng = (R0)g, so the population effects of changes in R0

are linear on a log scale: log Ng = g log R0. On one hand, increasing R0 by 1 has a greater effect

on Ng when R0 = 1 than when R0 = 10. On the other, hand, doubling R0 has the same additive

effect on log Ng independent of the value of R0.

Before considering the biological implications, we make a few technical statistical observa-

tions on the estimate itself. In simulations of HIV gp120 sequences, the absence of mutations

common to sequence samples can cause estimation of R0 to fail. For sample sizes M� 128, the

probability of failing to estimate R0 was less than 0.051 for all 1< R0 < 10 (see Fig 1). To the

authors’ knowledge, studies sampling HIV sequences from patients typically sample between

M = 16 and M = 30 [30] sequences per patient, an insufficient depth to test the present theory.

The estimator r̂ ðIÞ in by Eq (18) has a simple analytic form, a negligible computation, that

should be compared to the complexity of competing Bayesian calculations. Moreover, it does

not contain derivatives that may lose accuracy because of numerical differencing. As noted

Fig 3. A plot of r̂ ðCÞ against r̂ ðIÞ.

https://doi.org/10.1371/journal.pone.0227127.g003
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after Eq (18), the coalescent and continuous-time birth-and-death branching process models

of population growth yield estimators analogous to r̂ ðIÞ. In fact, the estimators are the same sin-

gle estimator r̂ ðCÞ. The models can be manipulated to yield other estimators, so the comparison

of models is by no means exhaustive, but in the present context r̂ ðCÞ was clearly inferior to r̂ ðIÞ.
It even displayed a singularity with our simulated HIV data (see Fig 3), suggesting that gradual

reproduction in continuous time may have its limits when modeling the lytic viral bursts of

HIV.

Like r̂ ðCÞ, but to a lesser extent, the estimator r̂ ðIÞ overestimated R0 throughout the full range

tested, 1< R0 < 10 (see Fig 2). Despite the overestimation, which became more severe as R0

increased, estimates were accurate enough to be practicable for some purposes. As Fig 2 indi-

cates, because of monotonicity of r̂ ðIÞ, experimental results with a large enough dataset can

demonstrate a decrease in R0. Moreover, near R0 = 1, both the overestimation and the esti-

mated error appeared relatively small, a useful property for detecting subtle therapeutic prog-

ress in reducing R0. In summary, the integral estimator r̂ ðIÞ is easy to compute throughout the

full range 1< R0 < 10 tested; its bias is noticeable not excessive for all sample sizes M� 32;

and its error estimates are generally reliable for all sample sizes M� 128 (see Fig 2 for details).

The estimator ln r̂ ðIÞ in Eq (18) is linear in μ, suggesting that Eq (18) provides the first term

of an expansion that our approximations have linearized around μ = 0. Other articles [1,19,24]

introduced and justified the linearizing approximation of an unvarying phylogeny, given here

after Eq (1). The theory following Eq (1) indicates that the approximation steadily loses accu-

racy as μ increases, but simulations show that it retains enough accuracy to remain practicable

in parameters ranges pertinent to HIV gp120.

We now turn to biological considerations. The chief limitation of our study derives from its

attempt to use a simple mathematical model capture the complex biology of HIV infection. In

fact, R0 is likely to change as infection reaches new microenvironments in the host. Naïve use

of the estimates here can only produce a single effective R0 for early infection. In future (but

beyond the purview of this article), we plan to incorporate time-dependencies into the simula-

tion of R0, and to develop estimates that can recover some of the time-dependency.

Presently, our mathematical model assumes a single founder. The extension of mathe-

matical modeling from a single founder to multiple founders is an important relaxation of

assumptions [19]. Regardless, the single-founder assumption is often satisfied in HIV infec-

tion, because most HIV infections have a single founder. For simplicity, it also assumes a

constant R0. After initial infection, HIV traverses different host microenvironments, poten-

tially undergoing genetic bottlenecks. On one hand, a bottleneck can bias estimates based on

sequence samples, because they obscure whether a most recent common ancestor dominates

early in infection (a founder) or only after the bottleneck. In the present context, therefore,

bottlenecks may bias estimates away from an initial R0 and towards R0 for a later microenvi-

ronment. On the other hand, even multiple escape lineages do not seriously bias genetic

estimates of time since infection [24], so estimates of the initial R0 may share a similar

robustness.

Estimates of R0 may also clarify HIV biology as an infection progresses. If target cells are

scarce in a microenvironment, HIV may proliferate predominantly by cell-free spread, bud-

ding from an infected target cell, entering the extracellular fluid, and infecting another target

cell by chance encounter [31]. Conversely, if target cell are plentiful, e.g., in the microenviron-

ment of a lymph node [32,33], direct cell-to-cell spread may be more efficient than cell-free

spread. Cell-to-cell spread has two distinct mechanisms (and therefore can occur in qualita-

tively distinct environments): (1) transmission of HIV by virological synapses between adja-

cent target cells or (2) transmission by capture and transfer of virions between proximal
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macrophages and dendritic cells [31]. Viral replication may not occur during cell-to-cell trans-

mission, so regardless of the exact mechanism, shifts between cell-free spread and cell-to-cell

spread may manifest themselves as concomitant changes in R0. However fundamental R0 may

be to describing the reproduction of pathogens, cell-to-cell spread exemplifies the difficulties

in interpreting an estimate of R0 biologically.

The route of infection determines the initial microenvironment of HIV. Most routes trans-

mit HIV much less effectively than hematological routes [7], suggesting that their initial R0 is

typically low. Mucosal infection can promote transmission of HIV [34], however, because it

can increase the local concentration of activated T cells, promoting cell-to-cell spread, and

probably increasing the initial R0. Thus, the initial R0 may provide valuable information about

initial infection.

The dominance of cell-to-cell spread over cell-free spread may vary during infection. After

infecting in a cell-rich mucosal microenvironment, HIV may move through the mucosal lam-

ina, before being transported through the lymphatic system to lymph nodes, where the target

cell density in its microenvironment increases dramatically [32,33]. The values of R0 probably

vary accordingly.

The present theory may also have an important application in animal trials of viral prophy-

laxis, when progress towards a therapy is subtle. Indeed, the design of animal trials using high-

dose challenges may have unintentionally impeded practical assessment of candidate HIV

therapies, because some vaccines and prophylactics may mitigate low- but not high-dose chal-

lenges [6]. Repeated low-dose challenge studies represent an important step forward in the

pre-clinical assessment, because they mimic typical HIV challenges in humans [3]. Repeated

low-dose challenges probably yield infections with a single founder virus, satisfying the pri-

mary assumption of the present theory. An estimate of R0 in this context provides a new vari-

able for statistical analysis, beyond the binary infection status of an animal, one with direct

biological relevance to the establishment of infection. Even if a vaccine or prophylactic fails

to produce total sterilizing immunity, a reduction in the initial R0 encourages further investi-

gation of an intervention, where previously the entire line of research might have been

discarded.

Trials using repeated low-dose challenges also pose some unanswered experimental ques-

tions, the most pressing being the possibility that unsuccessful challenges potentially perturb

the challenged animals. Do unsuccessful challenges foster partial immunity to further chal-

lenge? Do they increase the probability of future infection? Subtle perturbations in R0 may

be much more sensitive than a binary infection status in providing the answers to such

questions.

Next-generation deep sequencing can produce around 105 reads of size comparable to

gp120 [35,36]. Given the expectation that future experiments will likely be able to generate

datasets with potentially even greater than 105 sequences, any robust estimator of R0 must be

able to handle extremely large sample sizes efficiently. The consistent tightening of the error

estimates and accuracy as M is increased in Eq (19) suggests that the estimator r̂ ðIÞ is particu-

larly well-suited to application in such experiments. In addition, although a complete likeli-

hood for the entire phylogeny and mutations might be desirable in some circumstances, a

maximum likelihood method for the SFS permits inference about R0 even if the reads are

short, if the reads can be placed against a reference HIV genome.

In clinical trials of HIV therapies, guidelines previously suggested starting treatment only

when CD4+ T cell density declines below 350 cells/μl [37]. Recent studies (notably the SPAR-

TAC trial) of temporally earlier interventions have shown increased efficacy compared to stan-

dard anti-retroviral protocols [38,39]. In some circumstances, the initial R0 might measure the
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clinical efficacy of some such interventions, provide a variable predictive of their efficacy, or

even help predict the clinical intervention with the greatest chance of success.

In conclusion, in the case of HIV and possibly other infectious agents, the integral

approximation r̂ ðIÞ provides a simple, easily computed estimate of the early basic reproduction

number R0 in a single host. The quantitative variable R0 makes a well-characterized biological

contribution to early HIV infection and should be useful assessing the efficacy of therapies in

both human and animal trials.
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