
molecules

Review

Molecular Spectroscopic Markers of Abnormal
Protein Aggregation

Natalia Wilkosz, Michał Czaja, Sara Seweryn, Katarzyna Skirlińska-Nosek, Marek Szymonski,
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Abstract: Abnormal protein aggregation has been intensively studied for over 40 years and broadly
discussed in the literature due to its significant role in neurodegenerative diseases etiology. Structural
reorganization and conformational changes of the secondary structure upon the aggregation determine
aggregation pathways and cytotoxicity of the aggregates, and therefore, numerous analytical
techniques are employed for a deep investigation into the secondary structure of abnormal protein
aggregates. Molecular spectroscopies, including Raman and infrared ones, are routinely applied
in such studies. Recently, the nanoscale spatial resolution of tip-enhanced Raman and infrared
nanospectroscopies, as well as the high sensitivity of the surface-enhanced Raman spectroscopy, have
brought new insights into our knowledge of abnormal protein aggregation. In this review, we order
and summarize all nano- and micro-spectroscopic marker bands related to abnormal aggregation.
Each part presents the physical principles of each particular spectroscopic technique listed above
and a concise description of all spectral markers detected with these techniques in the spectra of
neurodegenerative proteins and their model systems. Finally, a section concerning the application of
multivariate data analysis for extraction of the spectral marker bands is included.

Keywords: abnormal protein aggregation; secondary structure; amyloids; neurodegenerative diseases;
multivariate data analysis; principal component analysis (PCA); hierarchical cluster analysis (HCA);
molecular spectroscopy; nanospectroscopy

1. Introduction

Following the increase of global average life expectancy, the world population has experienced
an upsurge in the number of individuals suffering from deadly and debilitating neurodegenerative
diseases, such as Alzheimer’s, Parkinson’s, and Huntington’s disorders [1–3]. Recent estimations
imply that over 50 million people worldwide are living with dementia, and the cost of treatment exceed
already 1% of the global GDP [4]. Neurodegenerative diseases not only affect individuals and their
families, but also pose a crippling burden on the healthcare systems. Despite intense scientific efforts
all over the world, dementia is still incurable. The neurodegenerative processes at the heart of those
diseases are caused by an abnormal aggregation of highly cytotoxic, structurally pathological proteins
called amyloids [1–3]. A detailed investigation into the secondary structures of neurodegenerative
proteins and model proteins, that undergo fibrillation processes, is crucial for an understanding
of the etiology of neurodegenerative diseases, which will allow for the development of successful
treatment regimes.
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Abnormal aggregation of proteins such as β-amyloid, tau, α-synuclein and polyglutamine-
containing proteins is known to be related to the pathology of neurodegenerative diseases including
Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD) [5–7]. Protein
aggregates are toxic and lead to neuronal death in different brain regions depending on the disease [8,9].
The etiology of neurodegenerative diseases has not been explained yet. A lot of scientists working on
this issue have suggested various mechanisms of protein misfolding and their aggregation. However,
a complete understanding of this issue still requires further research at the molecular and cellular level.

The first important factor that affects protein aggregation in neurodegenerative diseases is the
protein structure. In particular, primary and secondary structures are critical factors affecting the
physical and chemical properties of proteins/peptides and their three-dimensional conformation
(tertiary structure). In the primary structure, the position and number of different characteristic
amino acid residues can accelerate or slow down the aggregation process. In general, the number of
hydrophobic amino acids in proteins is proportional to the aggregation tendency [6]. Mutations are
another factor that affects the protein structure and are considered to have an impact on the aggregation
process by changing protein solubility and stability [10].

Neurodegenerative diseases are associated with the occurrence of amyloid plaques, which are
specific for each disease. AD pathogenesis is considered to be related to tau protein. Tau protein
in its native state has important physiological functions, such as microtubule stabilization [11,12].
To perform their functions, tau proteins must be phosphorylated at a normal, physiological level.
The hyperphosphorylation causes the loss of their biological activity due to conformational changes
and abnormal aggregation of the tau protein [13].

Amyloid β (Aβ) is a small peptide with a mass of 4–4.4 kDa [14]. It is the main component of
amyloid deposits found in AD, mainly in the cortex, hippocampus, forebrain, and brain stem [8].
The native Aβ occurs in neurons, astrocytes, neuroblastoma cells, hepatoma cells, fibroblasts, and
platelets [15]. Its functions are associated with inflammatory and antioxidant activity. Aβ also affects
the regulation of cholesterol transport and the activation of the kinase enzyme. Native Aβ protein
has mainly disordered structure but several research reveals the presence of local regions displaying
a secondary structure [16,17]. The relative β-sheet content increases with the ongoing aggregation
associated with the AD [18].

α-synuclein (α-syn) is associated with Parkinson’s disease. The mass of the α-synuclein monomer
is ca.14 kDa. The name “α-synuclein” comes from its synaptic and nuclear location. α-Syn regulates
dopamine neurotransmission by modulation of vesicular dopamine storage. This protein interacts with
tubulin. It also has a molecular protective activity in the folding of SNARE (soluble N-ethylmaleimide-
sensitive-factor attachment protein receptor) proteins [19]. Native α-syn is soluble in the cytoplasm in
contrast to its abnormal aggregates, which form Lewy bodies. The secondary structure of the α-syn
aggregates is complex and consists of β-sheet, β-turns, α-helics/disordered conformations [20].

One of polyglutamine-containing, neurodegenerative proteins is a Huntington protein (Htt).
It has a large mass of 350 kDa and consists of 3144 amino acids. Native protein is highly expressed
in the peripheral tissues and the brain. This protein is involved in endocytosis, vesicle trafficking,
cellular signal transduction, and membrane recycling. In the brain, abnormally aggregated Htt protein
damages cells and it is toxic, forming pathological aggregates [21,22].

Monitoring the aggregation process with spectroscopic methods involves tracking the changes
in the protein secondary structure. To correctly interpret the progress of the amyloid aggregation
based on the spectroscopic data, it is necessary to understand the course of the aggregation process
itself. The abnormal protein aggregation is considered to be related to protein misfolding leading to
the exposure of hydrophobic amino acid residues or with the change of the protein net charge [8,23].
The exact aggregation pathway of amyloid proteins depends on the secondary structure of aggregating
molecules. However, the main principles of the amyloid aggregation process can be simplified to a
three-step fibril formation process consisting of the lag-phase, the elongation phase and the plateau
phase (Figure 1) [8,24,25]. Within the lag phase, also called a nucleation phase, the soluble oligomeric
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intermediates are formed. The elongation phase (fibril growth phase) includes the formation of other
“aggregation-prone” intermediates known as protofibrils. A self-template growth mechanism leads to
their rapid growth until the formation of insoluble mature fibrils [8,26]. The plateau stationary phase
is reached when the content of mature fibrils is at a constant maximum level. There are also theories
describing the fragmentation of fibrils during the aggregation process changing the kinetics of mature
fibril formation [26,27].
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Figure 1. The schematic representation of successive species formation in amyloid aggregation process.

Mature amyloid fibrils, regardless of the peptide/protein they are made of, possess universal
characteristic structural features. The morphology of fibrils is represented by a unique cross-β structure
consisting of hydrogen-bonded β-sheets arranged perpendicularly along the fibril axis. The fibril
diameter is usually 6–13 nm and is formed from 2–8 protofilaments twisted around each other [8,24,26].

The amyloid aggregation process and its subsequent steps can be followed with vibrational
spectroscopy techniques. Spectra of proteins have already been described well. Individual bands
are attributed to vibrations of various chemical groups present in the peptide chain. Amide bands
A and B as well as amide bands I-VII (wavenumbers and assigned vibrations are shown in Table 1)
can be observed in the Raman and infrared spectra of peptides and proteins. Molecular spectroscopy
techniques are sensitive to the changes of the protein secondary structure. Each of the intermediate
species of amyloid aggregation, as well as fibrils, are represented by a different ratio of individual
secondary structures. In general, the β-sheet content increases with the progress of the aggregation
process [28,29]. Celej et al. [28] registered the decrease in random coil and/or helical structure content
(absorbance at 1660–1650 cm−1), for α-synuclein aggregation, from ca. 60% in monomers to 52% in
oligomers and 27% in fibrils while the β-sheet contribution increased from 8% for monomers, 26% in
oligomers up to 51% in fibrils. In this case, the β-turn content (at 1670 cm−1) was ca. 22% for oligomers
and fibrils. The different ratio of secondary structures for fibrils formed from various peptide variants
is considered to be a strong premise for different aggregation pathways [30–32].

This review is devoted to the description and organization of all molecular spectroscopic markers
of abnormal protein aggregation. Due to comprehensive presentation of the infrared, Raman TERS,
SERS, nanoFTIR and AFM-IR spectral changes related to the secondary structure modifications of
neurodegenerative proteins and model peptides, researchers can easily verify their results, find
an interpretation of the observed spectral changes and compare them with results obtained so far
for various amyloids systems with all known molecular spectroscopic techniques. In addition,
the usefulness of multivariate data analysis in extraction of spectroscopic markers of the amyloids
aggregation is presented.
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Table 1. Characteristic Raman and infrared bands for proteins [33,34]

Amide Bands Wavenumber [cm−1] Assigned Vibration 1

A 3500 ν(N-H)
B 3100 ν(N-H)
I 1700–1600 80% ν(C=O), 10% ν(C-N), 10% δ(N-H)
II 1580–1480 40% ν(C-N), 60% δ(N-H)

III 1300–1230 30% ν(C-N), 30% δ(N-H), 10% ν(CH3-C),
10% δ(O=C-N), 20% other

IV 770–625 40% δ(O=C-N), 60% other
V 800–640 γ(N-H)
VI 600–540 γ(C=O)
VII 200 skeletal mode

1 ν—stretching, δ—bending, γ—out-of-plane bending

2. Infrared Spectroscopy Studies of Abnormal Aggregation of Proteins/Peptides

Infrared spectroscopy (IR), along with Raman spectroscopy, is one of the vibration spectroscopy
techniques. The leading phenomenon underlying IR spectroscopy is the absorption of electromagnetic
radiation in the infrared range by molecules, exciting vibrations and oscillations of the functional groups
occurring in the studied analyte [35,36]. Each chemical bond undergoes various types of vibrations
(i.e., stretching, bending, twisting, rocking or wagging motions), whose energies correspond to the IR
region including far, mid, and near infrared. IR spectroscopy is selective for vibrations leading to the
change of the molecule dipole moment and these vibrations are detected in the IR spectrum [35,37].
Due to the chemical sensitivity, as well as the susceptibility to intra- and intermolecular effects (which
affects the vibration frequency and the bonds polarity), IR spectroscopy is very common in the science
of biological systems. Although the IR spectra of biomolecules are very complex and consist of
several overlapping bands (resulting in a loss of some information), they are still extremely useful
for tracking structural changes of biological molecules. For example, it is possible to follow each
process that affects the molecule geometry. In the case of proteins, IR spectroscopy makes it possible to
analyze modifications in the protein secondary structure which, according to Barth [35], is probably
the most popular application of this technique. The IR spectrum of proteins or peptides contains a few
characteristic bands carrying the information about the secondary structure, known as the amide I
(1700–1600 cm−1), amide II (∼1550 cm−1) and amide III (1400–1200 cm−1) bands. The amide I region is
especially sensitive to the structure of the protein backbone and is the most useful in neurodegenerative
peptide aggregation research.

For studying biological systems, in addition to the transmission FTIR spectroscopy (Fourier
transform infrared spectroscopy), the attenuated total reflectance (ATR) technique seems to be
advantageous. In an ATR, a sample is placed on a crystal with a high refractive index. The light is
reflected once or several times on the crystal–sample interface, which helps to increase the sensitivity
allowing to measure thin films. The evanescent wave, perpendicularly oriented to the crystal–sample
interface, arises and penetrates into the sample, where it can be absorbed. Due to this phenomenon,
the light reaching the detector contains information about the sample structure [35,38]. ATR is especially
helpful in biological molecules science, where researchers are struggling with small amounts of the
studied material (even less than 100 ng) and low sample concentrations (in the range of µM) [26].

Historically, the interpretation of amyloid aggregate (fibril) structures based on IR spectra was
confusing. According to Sarroukh et al. [26], FTIR spectroscopy has been used to study fibril structures
since the early 70ties. However, as was pointed out in the mentioned review, in the earliest articles
describing the infrared spectra of fibrils, the major components of the amide I band were misinterpreted.
The first paper which helped with the proper assignment of the amide I region peaks on the FTIR spectra
of fibrils was released in 2000 by Bouchard et al. [39]. Tracking the insulin aggregation process over
time (at pH 2.3, 70 ◦C), it was shown that the high frequency component at 1690 cm−1 appears in the
spectrum only for short incubation times and vanishes after 18 h of incubation. It became clear that the
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ca. 1690 cm−1 amyloid IR spectrum component can be assigned to structures other than fibrils with the
cross-β structure present in the sample. In general, for amyloid peptide aggregation, the spectroscopic
marker of the aggregation process and mature fibril formation is the presence of a ca. 1630 cm−1

strong peak in the amide I region attributed to parallel β-sheets. At the same time, the approximately
5-fold weaker peak at ca. 1695–1685 cm−1 characteristic for antiparallel β-sheets is not present in the
spectrum. The simultaneous occurrence of two components at ca. 1695–1685/1630–1610 cm−1 attributed
to antiparallel β-sheets is visible in the IR spectrum when the aggregation process is in progress, at its
initial stages, and oligomers are still present in the sample [40]. The IR marker spectroscopic bands of
neurodegenerative peptide aggregation are presented in Table 2.

The aggregation of amyloid β (Aβ) peptides using IR spectroscopy has been extensively studied,
especially in the past two decades. IR characteristic peaks occurring in the amide I region for the
major component of amyloid β deposits, amyloid β1-42 [40,41] and amyloid β1-40 peptide [42–44] have
already been described. To better understand the Aβ aggregation process, Juszczyk et al. [31] followed
the aggregation of synthetic 11–28 fragment of the Aβ peptide with FTIR spectroscopy. This sequence is
considered to be responsible for Aβ aggregation. The authors also investigated the aggregation of Aβ

11–28 fragments after the introduction of five different mutations (E22K, A21G, D23N, E22G and E22Q)
in 21–23 position. The process was studied in HFIP–D2O mixtures with increasing water content.

The cytotoxicity of neurodegenerative proteins is considered to be strongly correlated with
the secondary structure of entities occurring at subsequent stages of the amyloid aggregation
process [8,24,28,45,46]. To confirm stronger cytotoxicity of oligomers with antiparallel β-sheet
conformation over fibrils, Sandberg et al. [32] incorporated the double-cysteine mutation into the
amyloid β1-42 and amyloid β1-40 (called Aβ42CC and Aβ40CC, respectively), which prevents mature
fibril formation by stabilizing the oligomer structure with an additional intramolecular disulfide bridge.
Both mutants create stable oligomeric molecules but within a different aggregation pathway. Aβ42CC
oligomers/protofibrils turned out to be ca. 50 times more efficient in apoptosis induction than Aβ1-42

monomers or mature fibrils.
The aggregation of α-synuclein, the 140-amino-acid protein most abundant in Lewy bodies

occurring as fibrillar intraneuronal inclusions in Parkinson’s Disease (PD), has also been studied
with IR spectroscopy [28,30,47,48]. In general, infrared spectral markers of α-synuclein aggregation
are similar to those found for amyloid β (see Table 2). An interesting work concerning α-synuclein
aggregation was released lately by Ruggeri et al. [30]. Due to medical evidence of missense mutations
in the SCNA gene encoding α-synuclein involvement in the PD pathogenesis, the aggregation of a
wild type α-synuclein, as well as its variants with the one amino acid replacement in the protein
sequence, has been studied. Results showed that amyloid fibrils formed by different variants of
α-synuclein were varying in the percentage ratio of secondary structure content. This was due to
alternative mechanisms of the aggregation pathway for studied protein variants. Another recent
work concerning α-synuclein aggregation describes the influence of the ionic strength on the β-sheets
orientation in fibrils studied with 1D- and 2D-IR spectroscopy [49]. 2D-IR spectroscopy provides
information about the specific residues of interest and is sensitive to more ordered structures in
general [49,50]. The β-sheet arrangement in fibrils turned out to be correlated with salt concentration
during fibrilization. α-synuclein aggregation in low ionic strength conditions (NaCl concentration
≤ 25 mM) results in parallel β-sheet orientation in fibrils, while the fibrilization upon high salt
concentration, including physiological conditions, contributes to the antiparallel β-sheet arrangement.

Natalello et al. [51] studied the aggregation pathway of prion peptide PrP82–146 characteristic for
another neurodegenerative amyloid disease, called Gerstmann–Sträussler–Scheinker syndrome (GSS).
The major components occurring in brain amyloid plaques are the PrP peptide fragments consisting
of 81–82 to 144–153 amino acids. The FTIR spectra of the 82–146 PrP fragment at the initial stages
of aggregation revealed two components, typical for oligomers displaying antiparallel structures:
a low-frequency band around 1623 cm−1 simultaneously with a high-frequency band around 1690 cm−1.



Molecules 2020, 25, 2498 6 of 26

At the final stages of aggregation, when the sample was rich in the cross-β structure fibrils, only the
1626 cm−1 peak was determined.

Transthyretin (TTR), a biologically relevant protein occurring in human plasma, serves as thyroxin
carrier, or a retinol binding molecule. The misfolding or abnormal aggregation of TTR leads to
amyloidosis such as senile systemic amyloidosis (SSA), familial amyloid polyneuropathy (FAP), and
familial amyloid cardiomyopathy (FAC) [52]. TTR fibril formation was studied by Cordeiro et al. [52]
and earlier by Zandomeneghi et al. [53]. The spectral maker for TTR fibril formation is the band at
1625 cm−1.

Table 2. IR marker bands of abnormal protein aggregation.

Marker Band of the
Aggregation [cm−1]

Assignment Peptide Reference

amide I (1700-1600 cm−1)

1695-1685/1633-1623 antiparallel β-sheet

amyloid β1-42

oligomers

[40,41]
amyloid β1-40 [42–44]
α-synuclein [28,47,48]

PrP82–146 [51]
1693-1685/1623–1613 antiparallel β-sheet amyloid β11-28 fragment and its mutants in 21-23 position [31]

1692/1620 antiparallel β-sheet HET218–289 [55]
1691/1630 antiparallel β-sheet Aβ 42CC oligomers/protofibrils [32]
1688/1620 antiparallel β-sheet human lysozyme, oligomers [29]
1686/1616 antiparallel β-sheet transthyretin (TTR) soluble aggregates [52]
1686/1614 antiparallel β-sheet hen egg white lysozyme (HEWL) [56]
1684/1616 β2-microglobulin (short curved structures) [54]
1684/1612 antiparallel β-sheet SH3 domain, amorphous aggregates, non-fibrilar [57]

1683/1612 ↑→ antiparallel β-sheet insulin oligomer [39]
1678-1670 β-turns amyloid β11-28 fragment and its mutants in 21-23 position [31]

1670 β-turns amyloid β1-42 oligomers and fibrils [40]
α-synuclein [28]

1669 β-turns HET218–289 [55]
1667-1661 310-helix E22K and A21G mutants of Aβ(11-28) fragment [31]

1664 β-turns SH3 fibrils/pepsin digested [57]

1660-1650 random coil and/or
helical structures

amyloid β1-42 oligomers and fibrils [40]
α-synuclein [28]

1659-1652 α-helix amyloid β11-28 fragment and its mutants in 21-23 position [31]

1658 Turns human lysozyme monomers, oligomers,
fibrils [29]

1655 random coil HET218–289 [55]
1649 unstructured SH3 amorphous aggregates [57]

1648-1639 random coil amyloid β11-28 fragment and its mutants in 21-23 position [31]
1648 random coil PrP82–146 [51]

1644-1641 disordered/loops human lysozyme oligomers, fibrils [29]

1641 disordered
structures SH3 fibrils/pepsin digested [57]

1635-1624 β-sheet amyloid β11-28 fragment and its mutants in 21-23 position [31]
1633 parallel β-sheet Sup35 crystals, prion-like [58]
1630 parallel β-sheets HET218–289 [55]

1630-1623 parallel β-sheet amyloid β1-42 fibrils
[40,41]

amyloid β1-40 [42–44]
1630-1614 parallel β-sheet human lysozyme fibrils [29]

1628 parallel β-sheet α-synuclein fibrils [28]
1626 ↑ parallel β-sheet PrP82–146 fibrils [51]

1626 ↑→ parallel β-sheet insulin fibrils [39]
1625 parallel β-sheet transthyretin (TTR) fibrils [52]

1620-1618 β2-microglobulin, fibrils [54]
1620-1600 β-sheets hen egg white lysozyme (HEWL) [56]

1618← parallel β-sheet SH3 fibrils/pepsin digested [57]

↑ increase in intensity,← shift towards higher wavenumbers after aggregation,→ shift towards lower wavenumbers
after aggregation.

In addition to neurodegenerative peptide aggregation, the secondary structure of amyloid fibrils
of other non-neurodegenerative peptides has also been extensively studied. The IR marker bands of
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abnormal protein aggregation have been determined for β2-microglobulin (β2m), whose deposits
occurred in dialysis-related amyloidosis within the musculoskeletal system [54], a prion-forming
218–289 domain of HET protein [55], wild-type human lysozyme [29] and hen egg white lysozyme
(HEWL) [56] (see Table 2). These proteins have been studied as great models of amyloid aggregation.
Zurdo and co-workers [57] characterized the fibrils formed by the SH3 domain of the α-subunit of
bovine phosphatidylinositol-3′-kinase. The FTIR spectra were collected for amorphous aggregates
as well as for fibrils (created at low pH) exposed to pepsin to receive a sample containing only a
fibrillar structure with characteristic low frequency band for parallel β-sheets (1618 cm−1). Another
amyloid-like structure formed from a prion-like protein, Sup35, derived from yeast, was studied by
Balbirnie et al. [58]. FTIR spectra of aggregated protein crystals showed the 1633 cm−1 parallel β-sheet
band. The aggregation kinetics of human islet amyloid polypeptide (hIAPP) was studied using 2D
infrared spectroscopy combined with site-specific isotope labeling [59]. This methodology allowed
to follow the intensity growth of the 1617 cm−1 peak related to the increase of β-sheet content upon
aggregation and fibril formation. Ami et al. [60] incorporated the FTIR microscopy to study aggregates
of amyloidogenic immunoglobulin light chains (LCs) occurring in the light chain (AL) amyloidosis
pathology. The applied methodology involved the FTIR in situ studies of unfixed tissues (hear and
subcutaneous abdominal fat) derived from AL amyloidosis affected patients as well as the research of
in vitro aggregated peptide (derived from a patient). The infrared β-sheet signature characteristic for
amyloid aggregation was possible to detect in situ in the spectra of tissues.

2.1. Infrared Spectroscopy at the Nano Scale in Studies of Abnormal Proteins/Peptide Aggregation

Due to the diffraction limit, the resolution of conventional IR spectroscopy does not make it
possible to track changes concerning single molecules. The signal reaching the detector contains
bulk information, averaged over many molecules of the studied sample. To overcome this limitation
and follow the IR absorbance spectra at the single molecule level, the novel nano-FTIR and AFM-IR
techniques have been implemented.

2.1.1. Nano-FTIR In Studies of Abnormal Proteins/Peptide Aggregation

The nano-FTIR technique makes it possible to achieve simultaneous infrared chemical and
topographic characteristics of a sample at nanoscale resolution. It became possible due to the invention
of scattering-type scanning near-field optical microscopy (s-SNOM), which is a unique combination of
atomic force microscopy (AFM) with optical imaging and IR spectroscopy [61]. Nano-FTIR combines
the nanometric spatial resolution of AFM with the chemical sensitivity of IR spectroscopy. The local
probing of molecular vibrations involves the incident light scattering at an AFM tip apex (Figure 2).
The electric charge accumulated on the probe apex generates a localized electric field. When the AFM
probe (usually metallic) is in contact with the sample, it is possible to detect the near-field interaction of
infrared light with the sample due to the induction of a local evanescent field [61]. Depending on the
measurement purposes, the nano-FTIR technical setup provides a broadband mid-infrared laser (fiber
laser plus difference frequency generator) or tunable single line laser (quantum cascade laser, QCL).
Both of these light sources enable chemical imaging, the broadband laser makes it possible to obtain
the hyperspectral maps and the QCL provides maps at the fixed wavelength. When the interferometer
is operating as a Fourier transform spectrometer, it is possible to collect single FTIR spectra at points of
interest on the sample, selected precisely based on the AFM image [61].

Nano-FTIR was employed to study amyloid aggregates by Amenabar et al. [61]. In this work,
it was shown for the first time that nano-FTIR can be used to study the secondary structure of individual
proteins. Amenabar and co-workers explored the conformation of single insulin fibrils. The nano-FTIR
spectra of insulin fibrils (Figure 3) revealed the bands characteristic for β-sheets at 1639 cm−1, α-helical
structures at 1671 cm−1 and the band at 1697 cm−1 whose authors attributed to β-turns or antiparallel
β-sheet. The weak band at 1609 cm-1 was assigned to amino acid side chains. The images at single
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wavelengths provided by QCL laser (Figure 3c) as well as single broadband spectra (Figure 3d)
confirmed the presence of α-helices in 3-nm and 9-nm thick fibrils.
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topography image [61]. Images reproduced under CC BY license.
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2.1.2. Infrared Spectroscopy Combined with Atomic Force Microscopy (AFM-IR) in Studies of
Abnormal Proteins/Peptide Aggregation

Infrared nanospectroscopy, also called Photothermally Induced Resonance (PTIR) or infrared
spectroscopy coupled with atomic force microscopy (AFM-IR), enables the measurement of a local
infrared light absorption [62]. Thanks to the use of tunable infrared lasers it is possible to obtain
single spectra or maps showing the spatial distribution of selected molecules and their functional
groups. Conventional spectroscopic methods, such as IR or Raman spectroscopy, are limited by the
diffraction criterion. The spatial resolution of these techniques depends on the wavelength and is
in the range of 5–10 µm [63]. Therefore, they cannot be applied in imaging of micro- or nanometric
biological objects. The PTIR method has been first demonstrated in 2005, by prof. A. Dazzi from
Université Paris Sud [62–64]. This technique is based on the detection of infrared radiation absorption
using atomic force microscopy (AFM). Transient and local sample extension are detected as a change
of AFM cantilever deflection (Figure 2). Photothermally induced signal increases when the laser is
tuned to frequencies which are absorbed by the sample. The limitation of AFM-IR spatial resolution is
determined by scanning and sampling rates and is related to several factors such as the tip apex size
and thermomechanical properties of the investigated sample [62–64].

An application of AFM-IR in the structural organization of individual fibril aggregates is of central
importance for several scientific groups. Henry and co-workers studied the amyloid β (Aβ1-42) peptide
and its G37C mutant at the nanoscale [65]. They used AFM-IR to examine the interaction of lipids such
as 1-palmitoyl-2-oleoylphosphatidylcholine, sphingomyelin, or cholesterol with amyloid aggregates.
It was discovered that aggregation of amyloid β1-42 and its mutant essentially changes the structural
organization of the fibrils in the presence of the investigated phospholipids. Ruggeri et al. applied
AFM-IR to investigate single aggregates of a highly fibrillogenic domain of ataxin-3 called “Josephine”
and followed its whole aggregation pathway [66]. They observed that already at the first aggregation,
abnormal folding of Josephine was formed. It was possible to detect conformational transitions starting
from native oligomers to misfolded oligomers and finally to mature amyloid fibrils. Ruggeri and
co-workers also studied Exon1 aggregation which is the first exon of Hungtinton protein [67]. They
determined the influence of the polyQ content and the Nt17 domain occurrence on the biophysical
features of Exon1 fibrils. In the presence of the Nt17 domain, the IR spectra of fibrils revealed the peak
characteristic for β-turn rich secondary structure at 1684 cm−1 while the lack of this domain changed
the secondary structure of fibrils which displayed antiparallel β-sheet structure. Rizevsky et al. [68]
studied insulin fibrils using AFM-IR. In the following work, the formation of two different types of
fibers was described. This phenomenon is associated with the insulin aggregation pathway. The first
fibril type had an β-sheet-rich secondary structure, whereas the second polymorph revealed mainly an
unordered secondary structure. Galante and co-workers [69] studied the influence of the most toxic,
pyroglutamylated isoform of amyloid β (AβpE3-42) on the biophysical features and biological activity
of amyloid β1-42 [70,71]. It was confirmed that the mixture of ApE3-42/A1-42 with the 5% content of
AβpE3-42 isoform was the most toxic. Ramer et al. [72] applied AFM-IR for the first time to investigate
the chemical structure of amyloid aggregates at the nanoscale in water. They demonstrated that it was
possible to collect PTIR spectra in liquid with a high signal-to-noise ratio. They studied aggregates
of diphenylalanine (FF, Figure 4b), which is the core amyloid β peptide, and its tert-butoxycarbonyl
derivative (Boc-FF, Figure 4a). It was confirmed that the detection of differences in the studied fibrils is
possible for measurements conducted in liquids. Boc-FF appeared to have a more helical conformation
in comparison to FF. These results are promising, and make it possible to state that AFM-IR can be
widely used for very composed aggregation systems in liquids. AFM-IR marker bands related with
the neurodegenerative peptide aggregation are presented in Table 3.
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Figure 4. PTIR structural comparison of FF and Boc-FF fibrils in D2O. Chemical structure and AFM
morphology maps of (a) Boc-FF and (b) FF fibrils. (c) Comparison of the fibrils averaged PTIR spectra
in the amide I (green and yellow) and C=O stretching vibration (red) spectra ranges. (d) Comparison
of the second derivatives spectra in the amide band I region [72].
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Table 3. AFM-IR marker bands of the neurodegenerative peptide aggregation.

Marker Band of the
Aggregation [cm−1]

Assignment Peptide Reference

amide I (1730–1600 cm−1)

1730 C=O Boc-FF, FF [72,73]
1700–1690 anti-parallel β-sheet amyloid β (AβpE3-42) [69]
1700–1600 ν(C=O) bk unexpanded Exon1 (22Q) [26,34,35,67,74]
1696–1690 anti-parallel β-sheet, carbamate group Boc-FF, FF [72,73]
1695–1665 β-turn and antiparallel β-sheets ataxin-3 [38,66,70,71,75]
1695,1684 β-turn, anti-parallel β-sheet amyloid β (AβpE3-42) [69]

1695 β-turn insulin [68]

1692 anti-parallel β-sheet amyloid β with 5%
pyroglutamylated peptide [69]

1692 anti-parallel β-sheet unexpanded Exon1 (22Q) [26,34,35,67,74]
1689,1625 anti-parallel β-sheet mutant oligomer G37C [65,76]

1684 glutamine side chain vibrations and
β-turn expanded Exon1 (42Q) [26,34,35,67,74]

1664,1655 α-helix, 3-helix Boc-FF, FF [72,73]
1662 β-turn amyloid β [65,76]

1660–1650 α- helix ataxin-3 [38,66,70,71,75]

1660 α-helix/unordered protein secondary
structures Insulin [68]

1658 poor α-helix amyloid β (AβpE3-42) [69]
1658 α-helix expanded Exon1 (42Q) [26,34,35,67,74]

1645–1630 random coil ataxin-3 [38,66,70,71,75]
1645–1635 random coil unexpanded Exon1 (22Q) [26,34,35,67,74]
1640–1600 residual water absorption, NH3

+ group Boc-FF, FF [72,73]

1638 random coil
amyloid β (AβpE3-42),

amyloid β with 5%
pyroglutamylated peptide

[69]

1635–1610 low density native/high density
amyloid β-sheets ataxin-3 [38,66,70,71,75]

1635 β-sheet unexpanded Exon1 (22Q),
expanded Exon1 (42Q) [26,34,35,67,74]

1631 parallel β-sheet secondary structure amyloid β [65,76]
1623 high β-sheet amyloid β (AβpE3-42) [69]
1620 β-sheet Insulin [68]

amide II (1600–1500 cm−1)

1580–1510 bk δ(N-H), ν(C-N) ataxin-3 [38,66,70,71,75]
1555,1520 NH vibrations Boc-FF, FF [72,73]

C-C ring vibrations

1605,1495,1452,1430 C-C ring vibrations FF [72,73]

amide III (1400–1200 cm−1)

1350–1200 ν(C-N), δ(N-H),ν(C-C), δ(C=O) ataxin-3 [38,66,70,71,75]

ν—stretching, δ—bending, bk—backbone.

3. Raman Spectroscopy in Studies of Abnormal Proteins/Peptide Aggregation

Raman spectroscopy is a non-destructive analytical technique that makes it possible to obtain
information about the chemical structure and composition of the investigated sample. The basic
phenomenon used in this method is an inelastic light scattering, which contains information about the
energies of the vibrational states [77] (the light scattering mechanism is shown in Figure 5). The energy
difference between incident radiation and scattered radiation is corresponding to the energy levels of
vibrational modes in functional groups of the investigated molecules. This process causes the excitation
of characteristic vibrations, which are observed in the spectrum as specific bands [77,78].
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Figure 5. During non-resonant light scattering, three scenarios are possible: in the middle, elastic
scattering, called Rayleigh scattering (without energy changes), on sides inelastic light scattering
(causing energy changes), called Raman scattering including anti-Stokes (higher energy of scattered
photon), and Stokes (lower energy) lines.

In respect to these relationships there is a selection rule, and according to this, the polarity of the
molecule must change. Inelastic scattering, also called Raman scattering, is very rare. Approximately
only one photon per 1010 is scattered inelastically [78]. For this reason, various methods to amplify the
signal are proposed, such as surface and tip-enchanted Raman spectroscopy, which are described in
the next paragraphs of this article. Raman spectroscopy is widely used in the study of various types of
biological material [79], and its use in medical diagnostics is being considered [80,81].

Deep UV Resonance Raman (DUVRR) Spectroscopy is a variant of the Raman spectroscopy very
commonly used in the research of protein aggregation. In contrast to Non-resonance or Normal Raman
(NR) Spectroscopy, the radiation used in the experiment (in this case UV spectral range) transfers the
electron to a higher energy state, which causes resonant amplification of the scattered light signal
(Figure 6). Thus, it becomes possible to observe bands that are less visible in the NR method [82,83].

As a result of the aggregation process, structural transformations occur in proteins, which manifest
as characteristic changes in the Raman spectra (Table 4). An increase in the intensity of the bands from
amide I and II is observed, due to the formation of β-sheets. This process was observed in various
forms, depending on the proteins tested [84–86]. Kurouski et al. observed an increase in the intensity of
amide I and II bands in the formation of insulin fibrils [86], while in the case of hen egg white lysozyme
(HEWL) studied by Rosario-Alomar et al. only the change of amide II was visible [85]. In addition,
a shift of amide I and II bands towards higher energies was observed [85,86]. The second characteristic
marker that almost always appears is an increase in the intensity of the Cα-H band at 1390 cm−1, which
is explained by the decay of α-helix into a disordered structure [85,87]. In addition, there are changes
in the intensity of the complex amide III band. Xu et al. described an increase in intensity in the range
of 1270–1320 cm−1 and a decrease in the range of 1230–1270 cm−1 [88].
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Figure 6. Comparison of NR and DUVRR spectroscopy. In NR, the electron is not transferred to a
higher energy state, but only to a virtual state (lower energy than S1). In DUVRR, the radiation scattered
on the sample excites the electron to the S1 state energy, causing the resonant signal amplification.

Table 4. Raman marker bands of peptide aggregation.

Marker Band of the
Aggregation 1 Assignment Peptide Reference

amide I (1700–1600 cm−1)

1690–1600 ↑1672→ β-sheets formation insulin, hen egg white lysozyme (HEWL) [85,86,88]

amide II (1580–1480 cm−1)

1580–1480 ↑
β-sheets formation HEWL [84–86]

1550→ 1-SS-carboxymethyl lactalbulin (1-SS-LA),
HEWL

Cα H

1390 ↑ insulin, HEWL [85,86,88]

amide III (1283–1218 cm−1)

1320–1270 ↑1270–1230 ↓ HEWL [88]

disulfide (S-S) (550–450 cm−1)

523, 507 ↓490 HEWL [84,85]
540, 510 ↓508 apo-α-lactabulin (LA)

phenylalanine (Phe)

1000 ↓ HEWL [87,88]
1
↑ an increase of peak intensity, ↓ a decrease of peak intensity,→ a peak shift to higher energy

In the spectra of aggregated proteins, there is often a change in the band’s intensity from individual
amino acids. In particular, a characteristic peak for phenyloalanine (1004 cm−1) is often described as
one of the spectroscopic markers of fibrillation [88]. In some cases, there is a significant decrease of Phe
band intensity [87,88], which is explained by the change in the chemical environment of this amino
acid. However, this change is not always observed [86].
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Interesting changes in Raman spectra were detected for the disulfide band in the range of 450–550
cm−1. Kurouski and Lednev observed significant changes in the spectrum for apo-α-lactalbumin (LA)
and 1-SS-carboxymethyl lactalbumin (1-SS-LA) [84]. In the spectra of native LA, two peaks were
observed at 510 cm−1 and 530 cm−1 due to various secondary structures. In LA fibrils, the β-sheets
structure is mainly predominant; therefore, in their spectra, one peak at 508 cm−1 was observed.
In turn, 1-SS-LA showed a slightly more complex structure, but also in this case a significant change in
the spectra related to secondary structure transition was visible. Similar studies were carried out by
Rosario-Alomar et al. for HEWL. Along with ongoing fibrillation, two peaks at 507 cm−1 and 523 cm−1

merged into one at 490 cm−1 [85].

3.1. SERS In Studies of Abnormal Proteins/Peptide Aggregation

Surface-Enhanced Raman Spectroscopy (SERS) is based on the enhancement phenomenon in
Raman scattering by the application of nanostructures consisting of noble metals, transition metals,
or semiconductors. For all molecules adsorbed onto nanostructured metal surfaces inelastic light
scattering is greatly enhanced (enhancement factor can be up to 1010) in comparison to free molecules [89].
It is considered that the SERS effect is a combination of two mechanisms: an electromagnetic field
enhancement (EM) and chemical surface interactions. EM field enhancement is caused by the excitation
of surface plasmons on the surface due to the interaction between the electrons in metal nanostructure
with the incident electromagnetic radiation. The locally enhanced electromagnetic field on the
nanoparticle surface strongly increases the intensity of Raman scattering, because the Raman scattering
cross-section is proportional to the electromagnetic field. On the other hand, the Raman scattering
cross-section also strongly depends on the polarizability of the investigated molecule. Chemical
enhancement is attributed to a significant increase in the polarization of the molecules due to its
absorption onto the metallic surface, which results in the charge transfer affecting significantly the
polarizability. New energy states are created that can be excited with the laser beam. This Raman
resonance enables electron transfer from the Fermi level of the metal to the lowest unoccupied molecular
orbital of the molecule (LUMO) and from the highest occupied molecular orbital (HOMO) to the Fermi
level of the metal. The chemical enhancement is less effective and strongly depends on the type of
adsorbed molecules, while the electromagnetic enhancement is universal for all molecules [90,91].

During the last decade, SERS has become quite popular as one of the most sensitive analytical
techniques in chemistry, material science and biotechnology. It provides information about
conformational and structural changes in molecules at very low concentrations. However, protein
investigation still remains challenging. First of all, SERS measurements suffer from low spectral
reproducibility. The SERS enhancement factor is strongly determined by the distribution of
nanoparticles. Variations in spectral characteristics are therefore induced by inconsistent aggregation
and collocation of the nanoparticles. Thus, the uncontrolled enhancement of signal from proteins
adsorbed on the SERS-active surface generates SERS spectra with low reproducibility. Moreover,
proteins, as the intrinsic molecules, often form complex SERS patterns, which makes identifying
characteristic Raman fingerprints difficult [92–94]. To overcome this limitation, it is important to
ensure that protein binding to a SERS-active substrate is consistent and well understood. Constant
enhancement and reproducibility of SERS substrate preparation are therefore of central importance.

Due to the fact that SERS technology provides information about the secondary structure, it allows
for an understanding of properties and functionality of the abnormal protein aggregates at very low
concentrations. SERS marker bands associated with the abnormal amyloid aggregation are summarized
in Table 5. One of the first SERS studies on protein aggregation concerned amyloid β [95]. Choi
et al. used a nanofluidic device with SERS active gold nanoparticles to determine and characterize
various stages of amyloid β aggregation. To understand conformational changes induced by protein
aggregation, SERS spectra were collected as a function of time and protein concentration. The analysis
of the amide III band allowed to investigate the formation of amyloid aggregates, the decrease in
α-helics and the increase in β-sheet at micromole to femtomole concentrations [96]. A similar study
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was conducted by a group from Texas University [97]. Further research related to the conformational
changes of amyloid aggregates was provided. Bhowmik et al. used Surface-Enhanced Raman
Spectroscopy with silver nanoparticles to determine the Aβ oligomers structure that spontaneously
bind to lipid bilayer. The secondary structure information of individual residues was examined
based on Raman isotope shifts. The authors determined that the structure of Aβ40 oligomers bound
to the membrane, display β-turn in the 23-28 region, situated between antiparallel β-sheets [98].
Insulin aggregation has also been investigated. Kurouski et al. used surface-enhanced Raman
scattering to study the kinetics of insulin aggregation followed via detection of the insulin prefibrillar
oligomers secondary structure. Insulin at different stages of aggregation was mixed with 90 nm
of Au nanoparticles. SERS analysis demonstrated a more than two-fold increase in the number of
insulin oligomers after the first hour of incubation. Further protein incubation resulted in a slow
decrease in oligomers amount. The observed decrease in the quantity of prefibrillar species was linked
to their conversion into fibrils [99]. Li et al. discovered that bromophenol blue (BPB) potentially
inhibits the insulin fibrillation process [100]. Karabelli et al. used the electrochemical SERS (EC-SERS)
method to study interaction between intermediates occurring at various stages of insulin aggregation
and biomimetic membrane. It was observed that protofibrils and oligomers evoked significant
membrane perturbation, whereas the native protein seems to have a protective role. The authors
presented one of the first applications of the EC-SERS technique to investigate protein aggregation
intermediates–biomembrane interactions [101]. Yu et al. discovered a method that makes it possible
to distinguish Aβ40 and Aβ42 peptides easily. SERS combined with principal component analysis
(PCA) revealed changes in peptide conformation and self-association [102]. Undeniably, SERS has
great potential in peptide/protein studies, continuous work on increasing spectrum repeatability will
certainly provide a deeper understanding of protein aggregation.

Table 5. SERS marker bands of the neurodegenerative peptide aggregation.

Marker Band of the Aggregation Assignment Peptide Reference

amide I (1700–1600 cm−1)

1678–1664↑ β-sheets
insulin [99]

1664–1640↓ α-helics, unordered

amide III (1283−1218 cm−1)

1244 ↑ β-sheets amyloid β1–42 [95,96]
1266 ↓ α-helics

CCN stretching

1144 ↓ amyloid β1–42 [96]

C-C stretching

960 ↑ amyloid β1–42 [95]

↓ a decrease of peak intensity, ↑an increase of peak intensity

3.2. TERS In Studies of Abnormal Proteins/Peptide Aggregation

Tip-enhanced Raman Spectroscopy (TERS) takes the advantage of the nanometric spatial resolution
from Scanning Probe Microscopy (SPM) including Atomic Force Microscopy (AFM) or Scanning
Tunnelling Microscopy (STM), and the chemical selectivity of Raman spectroscopy. Therefore,
it provides information about the molecular structure and composition with nanometric spatial
resolution [103]. The excitation of surface plasmons in a metal nanostructure, which can be deposited on
the apex of an AFM tip (AFM-TERS) or in STM tip apex itself (STM-TERS), modifies the electromagnetic
field of incident laser light [103,104]. The Raman scattering cross-section is proportional to this
electromagnetic field, and due to the enhancement, it can be dramatically improved. What is more,
the generated electromagnetic field is highly localized; therefore, spectra are acquired from the small
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amount of sample located directly under the tip [103,104]. TERS tip can be understood as a nanoantenna.
It converts the electric field of the Raman laser into highly spatially confined energy [105], breaking
the Rayleigh’s diffraction limit, and improving the spatial resolution to a few nanometers. On the
other hand, TERS probe converts the near field of the sample to a far field, accessible to a microscopic
objective, increasing the sensitivity to the single molecule level [106–108]. In recent years, TERS has
mainly been applied for samples with a high natural Raman scattering cross-section including carbon
nanotubes and dyes [106–108]. The main limitation of TERS is actually related to its high sensitivity.
The Raman scattering cross-section of carbonaceous substances and contaminations is exceptionally
high [109]. Even thin traces of carbon contaminations can be easily detected as rapidly fluctuating
and sharp peaks, which averaged over many spectra result in the broad D- (1360 cm−1) and G-bands
(1580 cm−1) [109]. A very strong electromagnetic field, however, could damage delicate biological
samples and cause their photochemical/thermal decomposition.

TERS delivers highly resolved topographic information and provides a chemical composition of
the investigated sample. Therefore, this analytical technique is potentially ideal for studying protein
secondary structure and its modification upon the fibrillation process. However, TER marker bands
required for secondary structure identification such as amides I and III or C-H/N-H motions, allowing for
conformation detection based on spectral positions, are mostly not well resolved. In particular, the most
informative amide I band is absent in TER data. This problem has been broadly discussed [110–112],
and finally it was proved that peptide backbone bonds may dissociate in the laser hot spot, which
causes the lack of the amide I band. An application of the mid measurement condition (reduced laser
exposition time and laser power) prevents the decomposition of the peptide backbone improving the
spectra quality.

Due to the TERS limitations mentioned in the previous paragraphs, measurements of biological
samples including proteins are still very limited. However, the results obtained so far are undoubtedly
very valuable and should be presented in this review. For clarity, TER marker bands related to the
abnormal amyloid aggregation are presented in Table 6. One of the first neurodegenerative peptides
characterized with TERS was β2-microglobulin [113]. Several polypeptides were intensively studied
by the group of prof. Deckert from Jena University. Deckert and co-workers applied TERS to analyze
the surface molecular structure of human islet amyloid polypeptide fibrils, proving that the highly
heterogeneous fibril surface mainly contains α-helical or unordered structures, in contrast to the fibril
core, which is built of β-sheets [114]. Insulin fibrils were also investigated. Kurouski et al. probed
the chemical composition and the secondary structure of insulin fibrils [115], demonstrating the high
capability of TERS in characterization of heterogeneous fibrils. Insulin was also applied to test the
efficiency of several aggregation inhibitors including: benzonitrile, dimethylsulfoxide, quercetin,
and β-carotene [116]. Analysis of the shape of the amide I band in the TERS spectra makes it possible
to detect the influence of these inhibitors on fibrils secondary structure [116]. It was proven that all
insulin aggregates showed similar morphology but various inhibition results in their different β-sheet
structure content, suggesting serious modification in the aggregation pathway. Specifically, the authors
suggested that prevention of the β-sheet stacking of the peptide chains played a major role in the
aggregation inhibition [116]. Additionally, the group from Jena identified the secondary structure
of insulin aggregates via the amide III band and what is more, performed successful detection of
hydrophobic and hydrophilic domains on the surface [117]. Bonhommeau et al. characterized Aβ1–42

and its two synthetic, less toxic mutants at the nanoscale. Based on the examination of amides I and III
bands, detection of fibers organized in parallel β-sheets and in anti-parallel β-sheets was possible.
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Table 6. TER marker bands of the neurodegenerative peptide aggregation.

Marker Band of the
Aggregation [cm−1]

Assignment Peptide Reference

amide I (1700–1600 cm−1)

1680–1660 ↑ β-sheets amyloid β1-42, insulin, [111,113,115–118]
β2-microglobulin

1674 ↑ β-sheets hIAPP (Amylin) [112]
1655–1630↓ random coil amyloid β1-42 [117]

1640↓,1664–1640 ↓ α-helics, unordered hIAPP (amylin), insulin [112,113,115,118]

Cα H/N-H (1370–1360 cm−1)

1364 ↑ β-sheets amyloid β1-42 [116]

amide III (1283–1218 cm−1)

1228–1218 ↑ parallel β-sheets amyloid β1-42 [117]
1242–1233, 1250↑ antiparallel β-sheets insulin [116,117]

1235–1230↑ β-sheets amyloid β1-42, [111,115]
1261–1248, 1258 ↓ random coil β2-microglobulin [116,117]

↓ a decrease of peak intensity with the ongoing fibrillation, ↑ an increase of peak intensity with the ongoing fibrillation.

In previous studies, single-point TER spectra were mainly acquired at selected locations. However,
recently, hyperspectral TER mapping, which consists of a full TERS spectrum in each pixel of
the image, was performed. Paulite et al. successfully applied STM-TERS to map Aβ1-40 through
integration of the phenylalanine ring breathing mode [119]. The highly reproducible and intense peak
from phenylalanine at 1004 cm−1 dominates each STM-TER spectrum; however, amides were not
well resolved. Recently, AFM-TERS was applied for nano-spectroscopic hyperspectral mapping of
amyloid β1–42. An application of AFM-TERS allowed for localization of β-sheet and unstructured
coil conformation distribution in oligomers and along fibrils and protofibrils [118]. These studies
confirmed the high capability of TERS in the mapping of amyloids, and what is more, they allowed for
direct monitoring of aggregation pathways by following the distribution of the secondary structure in
individual aggregates: oligomers, protofilaments, and fibrils. Figure 7 demonstrates the AFM image of
A β1–42 deposited on a gold surface. The zoomed-in area is partially overlapped by the TERS map
in the central part. Two types of TER spectra, presented below the maps, were acquired in the area
of the individual fibril. The distribution of each of those spectra is superimposed on the zoomed
AFM topography. The main difference between the two types of spectra acquired from the fibril is a
significant shift of the amide III band from 1260 cm−1 (green spectrum) to 1250 cm−1 (blue spectrum).
The position of the amide III band indicates the particular peptide secondary structure: turns/random
coil and β-sheet conformation, respectively. The distribution of these conformations along a single
fibril is presented in the zoomed-in area. Another characteristic marker of β–sheet structure, which
can be observed in the blue spectrum, is a high intensity of the Cα- H/N-H bending mode at 1364 cm−1

(Figure 7). Despite the absence/low intensity of the amide I band in the studies described above, it was
confirmed that TERS is an efficient tool for investigation of the amyloids secondary structure and for
direct verification of the aggregation pathway [118].
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4. Multivariate Data Analysis in Studies of Abnormal Proteins/Peptide Aggregation

The main purpose of performing a multidimensional statistical analysis (MSA) on spectroscopic
data is to prove that measured spectral differences exist according to different populations and this
information is statistically significant. The subject of considerations in multidimensional statistical
analysis is a large set of data describing the studied phenomenon by means of vectors. MSA methods
make it possible to organize this data, establish relationships between variables, as well as to estimate
parameters and verify hypotheses of interest. Classical multivariate statistical analysis was developed
assuming that the observable random vectors have normal distributions. However, in recent decades,
there has been a rapid development of nonparametric multidimensional statistical analysis. Principal
Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) are the most popular. However,
in contrast to the PCA method, the use of HCA is not limited to all-numeric data. In the case of the
spectroscopic methods with the single-molecule sensitivity as SERS, TERS, AFM-IR or nano-FTIR,
the details obtained by performing the MSA analysis cannot be immediately apparent from the separate
analysis of peak intensities. The different approach is commonly used in Raman or IR techniques due
to the greater signal-to-noise ratio in those methods.

Many techniques have been developed to simplify data analysis, especially in the case of difficulties
with interpretation of large datasets. Principal component analysis (PCA) is one of the oldest and
most widely used techniques in this area. The main idea of PCA is to drastically reduce dataset
dimensionality in an interpretable way without a significant loss of statistical information. The basic
requirement in PCA is to successively maximize variance and finally to find new variables that are
linear functions of those in the original dataset. Therefore, it finally leads to an eigenvalue/eigenvector
problem solution. PCA was firstly incorporated for data analysis by Pearson [120] and Hotelling [121].
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Although PCA needs no distributional assumptions, a multivariate normal distribution of the dataset
establishment is commonly used. This method is an exploratory adaptive and can be used on various
numerical data types. The PCA method makes it possible to reduce the noise and to detect the
sub-groupings within the spectra. The most important results of PCA are the score plots and the
loading plots. The score plots represent the degree of variability within the totality of spectra and
the loading plots show which variables in the data set are responsible for the greatest degree of
separation [122,123].

The overall goal of hierarchical cluster analysis (HCA) is similar to that of PCA, but the
mathematical approach is different. The HCA is typically applied to determine how entities can be
grouped into clusters, that exhibit high similarity within-group and low similarity to other groups.
The result of HCA is usually presented as a dendrogram, which is a plot that shows the relationships
between the samples in a tree form. In HCA, two main approaches (agglomerative and divisive)
are used to resolve the grouping problem. In the agglomerative approach, each sample is initially
considered as a cluster, and subsequently, pairs of clusters are merged. The divisive approach is
contrary, the algorithm starts with one cluster including all of the samples, and recursive splits
are performed. Clustering is achieved by the use of an appropriate metric of sample distance and
linkage criterion among groups. The most commonly used, in the case of the datasets obtained from
mentioned techniques, are Euclidean or Manhattan distance in combination with Ward’s method
linkage. Clustering can be used for the identification of interesting patterns and distributions in the
data structure. Therefore, it is a useful technique for discovering and extracting information that may
previously have been unnoticed [124]. Cluster analysis was proposed in 1930; however, it has found
applications across a wide variety of disciplines since the beginning of the early 1960s. One of the
primary difficulties with the application of HCA for the extraction of significant information is the
choice of the optimal number of clusters. This problem is still considered to be important despite
several activities concerning this field. Although several criteria are available to assist in the proper
selection of the appropriate number of clusters, the results depend on the researcher.

PCA was used to analyze spectroscopic data concerning amyloid aggregation for the first time by
Ruggeri et al. [66]. The authors performed the PCA by means of the nonlinear iterative partial least
squares algorithm with cross-validation and mean-centered data analysis of underivatized spectra
and second derivatives calculated after an application of the Savitzky–Golay algorithm for smoothing.
This analysis confirmed that shifts of the amide I (from 1655–1620 cm−1 to 1710–1680 cm−1) and the
amide III bands (from 1380 to 1295 cm−1) are spectral markers of the Josephine domain of ataxin-3
protein aggregation. The secondary structure of the studied domain changed from the random
coil/α-helical structure in native protein to β-turn/antiparallel β-sheet conformations in aggregated
forms [66].

The HCA analysis was performed to obtain the averaged TERS spectra used as the reference for
assigning the two conformations, turns/random coils, and β-sheet in the analysis of TER maps [99].
The correlations between each single spectrum from the acquired maps and the marker spectra
determined by HCA were estimated with Pearson’s correlation coefficient. Calculations were performed
using not the raw spectra, but rather their second derivatives to avoid any influence from the baseline.
The same maps were also analyzed using principal component analysis for the statistical comparison.
The multidimensional statistical analysis allowed to demonstrate the distribution of the turns/random
coils and β-sheets secondary structures in individual amyloid β1-42 aggregates, therefore, Lipiec et al.
verified spectroscopically several hypothetically proposed aggregation pathways [118].

The PCA performed on the SERS data allowed to distinguish amyloidβ isoforms, Aβ1–40 associated
with classical vascular and Aβ1–42, related to parenchymal vascular plaques in the Alzheimer’s Disease.
Five different wavelengths were analyzed using the PCA method to maximize the between-group
(data from each point) variation. During the mentioned analysis, the observation of a minimum of nine
differentiable clusters within PCA spaces was implied, which corresponds to at least nine different
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assembly states in the fibril formation pathway. This approach finally proved to be extremely useful
for determining structure-activity relationships [102].

5. Conclusions

In conclusion, the work presented in this review shows the enormous progress in the state of
knowledge concerning amyloid aggregation. Spectroscopic studies of abnormal protein aggregation
revealed characteristic marker bands related to specific secondary structure content occurring at
successive steps of the aggregation process. The spectroscopic research carried out so far has made
it possible to link the ratio fluctuations of individual secondary structures content in fibrils with
the occurrence of alternative aggregation pathways. In particular, molecular nanospectroscopy has
made it possible to study the distribution of particular conformations along individual amyloid fibrils
that appeared to have a highly heterogeneous structure at the nanoscale. This tremendous progress
allows one to go one step further and conclude about the specific aggregation mechanism of the
studied system. Now, the greatest limitation of nanospectroscopy seems to be related to technical
difficulties with transferring measurements into the liquid conditions. The drying process of biological
components may influence their native structure. The efforts of nanospectroscopy community are
focused on overcoming this limitation and the progress in this direction had already been presented in
the work of Ramer et al. [72].

The research concerning abnormal protein aggregation has been focused so far on studying
the aggregation of isolated/synthesized peptides and fibrils formed in vitro. That gave one the
solid benchmark to study more complicated systems such as isolated amyloid plaques from
neurodegenerative diseases or amyloidosis affected patients. Such works have been limited so
far due to the complexity of such systems, but now it seems to be one of the future directions of
spectroscopic studies concerning abnormal protein aggregation.
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