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Abstract

Background: In the literature, there are fruitful algorithmic approaches for identification functional modules in
protein-protein interactions (PPI) networks. Because of accumulation of large-scale interaction data on multiple
organisms and non-recording interaction data in the existing PPI database, it is still emergent to design novel
computational techniques that can be able to correctly and scalably analyze interaction data sets. Indeed there are
a number of large scale biological data sets providing indirect evidence for protein-protein interaction
relationships.

Results: The main aim of this paper is to present a prior knowledge based mining strategy to identify functional
modules from PPI networks with the aid of Gene Ontology. Higher similarity value in Gene Ontology means that
two gene products are more functionally related to each other, so it is better to group such gene products into
one functional module. We study (i) to encode the functional pairs into the existing PPI networks; and (ii) to use
these functional pairs as pairwise constraints to supervise the existing functional module identification algorithms.
Topology-based modularity metric and complex annotation in MIPs will be used to evaluate the identified
functional modules by these two approaches.

Conclusions: The experimental results on Yeast PPI networks and GO have shown that the prior knowledge based
learning methods perform better than the existing algorithms.

Background
Protein-protein interactions give a fundament knowl-
edge of the biological process within a cell. Such inter-
actions are helpful for deciphering the molecular
mechanisms underlying given biological functions.
Usually, the connections between proteins can be repre-
sented on a graph in which the nodes corresponding to
proteins and the edges corresponding to the interac-
tions. There are many ways to identify protein-protein
interactions, for instance, according to the proteins simi-
larity calculated based on gene expression profile,

biomedical literature, and etc, see [1,2]. In order to
further investigate the topological properties and func-
tional organizations of protein networks in cells, the dis-
covery of complex formation (also called as functional
module) from PPI networks becomes a major research
topic in systems biology [3,4].

Related work
Most previous methods [5-16] for automatic complex
identification or related functional module detection
have employed the unsupervised graph clustering
techniques and try to discover similarly or densely
connected subgraphs of nodes, e.g., Newman-Girvan
method (NG) [8]. Mason and Verwoerd [17] provided
an overview of recent and traditional approaches to
the problem of identifying community structure in
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biological networks. Brohee and Heldan [18] made a
comparative assessment for protein-protein interaction
networks of four clustering algorithms: Markov cluster-
ing (MCL), restricted neighborhood search clustering
(RNSC), super paramagnetic clustering (SPC), and mole-
cular complex detection (MCODE). They found that
MCL and RNSC were more robust to identify commu-
nity structure in graph alterations than the other two
algorithms.
Qi et al. [15] summarized the existing complex identi-

fication methods and divided them into five categories:
graph segmentation, overlapping clustering, new similar-
ity measures, conservation across species and spatial
constraints analysis. In [7] and [8], the authors
attempted to segment the PPI graph into disjoint highly
connected clusters (complexes) based on the nodes’
neighboring interactions cost or the iterative edge-
removal process. Since some proteins are part of multi-
ple complexes or functional modules, a number of
approaches [5,6,9,11] allow overlapping clusters. Schol-
tens et al. [10] applied a local modeling method to bet-
ter estimate the protein complex membership from
direct mass spectrometry complex data and Y2H binary
interaction data. They claimed to achieve a finer level of
detail than that obtained by using only the mass spec-
trometry data. In contrast to the divisive approach, the
techniques proposed in [12] in an agglomerative fashion.
Asur et al. [12] proposed an ensemble approach based
on different hierarchial clustering algorithms for various
vertices topological similarity metrics. They experimen-
tally demonstrated the effectiveness of such ensemble
clustering approach. There are some approaches based
on analysis of the spectrum of the Laplacian or similar-
ity matrix of the network described in [19]. Also, several
works have established the interconnection between
expression profile similarity and protein interactions
[20,21]. Even though there are fruitful algorithmic
approaches developed for dissection of interaction net-
work, identifying functional modules correctly becomes
a bottleneck in the current research. One reason is the
accumulation of such large-scale interaction data on
multiple organisms [1,22]. The other reason is that a
large portion of protein-protein interactions are not
recorded in the existing PPI database. Thus it is emer-
gent to design novel computational techniques that will
be able to correctly and scalably analyze interaction data
sets. Meanwhile, besides PPI databases, there are a num-
ber of large scale biological data sets providing indirect
evidence for protein-protein interaction relationships.
For instance, the well-established microarray technolo-
gies provide a wealth of information on gene expression
in various tissues and under diverse experimental condi-
tions. Recently, researchers began to combine these

existing biological resources to detect the previously
unknown regulated modules in interaction networks. In
[13,14,23,24], researchers integrated gene expression
profiles and PPI networks to evaluate the weights of
edges or noded in the graph. Supervised predicting
functional modules based on the complex prior informa-
tion and eight data sources [15].
Sohler et al. proposed a joint analysis concept for

mining biological networks and expression data in
[23]. By integrating much more sources (including
expression profile, sequence information, PPI database
and etc.), Dittrich et al. [14], Zheng et al. [24], and
Ulitsky and Shamir [13] used aggregation statistic
methods to re-weight the importance of each node and
edge in the protein-protein interactions graph. Dittrich
et al. searched the subnets in the graph with large
scores as the functional modules. Zheng et al. used the
general graph clustering algorithm (MCL) to mine the
subgraphs. Ulitsky and Shamir proposed a statistical
method to find the subnetworks by using the maxi-
mum likelihood approach.

Prior knowledge based learning
Most existing functional modules mining methods are
unsupervised and they are based on the assumption that
complexes for a clique in the interaction graph. How-
ever, many complexes with other topological structures,
e.g., ’star’ or ’spoke’ model exit in real applications.
Yeger-Lotem et al. [25] have raised this issue in the
complex identification. Qi. et al. [15] firstly adopted
supervised learning for protein complex identification,
but their method needs abundant prior knowledge
about complexes to build a probabilistic Bayesian net-
work as a learning model. In real applications, there
may be only a few prior sufficient knowledge to build a
learning model. In this case, semi-supervised learning
[26] is a good way to handle the learning problem with
only a few prior knowledge but with a large of unlabeled
information. Usually, the prior knowledge is represented
in the form of pair-wise constraints, must-link and can-
not-link constraints. A must-link constraint specifies
that objects pair connected by the constraint belonging
to the same group, while a cannot-link constraint speci-
fies that objects pair connected by the constraint, cannot
belong to the same cluster. The semi-supervised learn-
ing method has been applied to many applications, such
as text classification [27] and computer-aided diagnosis
[28].
Hartwell et al. [29] defined a functional module as a

discrete entity whose function is separable from those of
other modules. In other words, the proteins in the same
module should have similar functions. Usually, PPI net-
works are good resources to find protein functional
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modules. In PPI networks, functional modules can be
taken as special kinds of subgraphs, where each sub-
graph is consistent of a subset of nodes with a specific
set of edges connecting among proteins. Based on these
knowledge, the main aim of this paper is to present a
prior knowledge based learning strategy to identify func-
tional modules from PPI networks with the aid of Gene
Ontology [30]. The Gene Ontology (GO) database holds
functional gene annotation in a hierarchical structure
that reflects the relationship between the biological
terms and associated gene products. Thus, the func-
tional relationship between two annotated gene products
can be calculated as a similarity value [31,32] according
to the GO hierarchical structure. Higher similarity value
means that two gene products are more functionally
related to each other, so it is better to group such gene
products into one functional module. Our proposed
semi-supervised learning strategy can use such gene
product pairs as the prior information in two ways. One
is to encode these functional pairs into the data repre-
sentation, i.e., combining them with the existing PPI
networks. The other approach is to use these functional
pairs as pairwise constraints to supervise the existing
functional module identification algorithms such as
MCL and MCODE. Topology-based modularity metric
[8] and complex annotation in MIPs [33] will be used to
evaluate the identified functional modules by the pro-
posed approaches. The experimental results on Yeast
PPI networks and GO have shown that the prior knowl-
edge based learning methods perform better than the
existing algorithms.
The rest of paper is organized as follows. In Section 2,

we describe the methods calculating protein similarity
based on GO, and analyze the relationship between
functional similarity values and existing PPI networks.
Then we propose two prior knowledge based learning
methods for identifying functional modules from PPI
networks with the aid of GO. Experimental results on
Yeast PPI networks and Gene Ontology were described
and discussed in Section 3. In Section 4, we make a
conclusion and showed our future work in brief.

Methods
Gene products functional similarity
Quantitative measure of functional similarity between
gene products has been used in many applications, eg.,
to validate high-throughput protein interaction, help the
development of new pathway modeling tools and clus-
tering methods and enable the identification of function-
ally related gene products independent of homology
[32,34]. GO [30] provides a good vocabulary system to
estimate the functional relationship between gene
products.

In GO structure, terms and their relationships are
represented in the form of directed acyclic graphs. GO-
based semantic similarity measures can be classified into
two categories. The first category defines semantic simi-
larity based on GO structure. The similarity between
two gene products is estimated by the number of nodes
two gene products share divided by the total number of
nodes in two graphs. The other category is based on
information content that is defined as the frequency of
each GO term occurring in an annotated data set [32].
This kind of methods assume that the more information
two terms share indicated by the information content of
terms, the more similar they are. In this paper, we
adopted the second category to calculate the semantic
similarity between gene products because it was proved
to be more efficient than the former one [32].
Similarity measure
The relevance similarity SimRel[32] is calculated based
on the probability of each term. The probability of a
term is assumed to be its frequency freq(c) = ∑ {occur
(ci)|c Î Ancestors(ci)}. in the annotations of a databases
[35] Note that, for each ancestor a of a concept term c,
we have freq(a) ≥ freq(c), because the set of descendants
of a contains all the descendants of c. Then the prob-
ability of a term c is defined as p(c) = freq(c)|freq(root)
where freq(root) is the frequency of the root term. The
probability is calculated independently for each ontol-
ogy. It is monotonically increasing as one moves up on
a path from a leaf to the root.
Based on the probability p(c) of each term, the infor-

mation content (i.e., the amount of information shared
by terms) can be measured. Schlicker et al. [32] called
this kind of information content as the Relevance simi-
larity SimRel between a pair of terms. SimRel defines the
similarity between two terms in two parts:

Sim c c
p c p c

p c pc S c c
Rel( , ) max

log ( ) ( ( ))
log ( ) log( , )

1 2
11 2

2 1= ⋅ ⋅ −
+∈ (( )c2

(1)

S(c1, c2) is the set of common ancestors of terms c1
and c2. The first part evaluates the ratio of the common-
ality of the terms and the information needed to fully
describe the two terms. The second part records the
position information of the two terms in the whole
ontology. Schlicker et al. [32] have studied many meth-
ods to compute the semantic similarity between GO
terms. It has been shown in [32] that the measure in (1)
can consider as much information about the terms in
GO as possible. Given a gene products list G = {g1, g2,
…, gn}, the corresponding annotation terms for each
gene can be identified in GO as ATi = {ci1, ci2,…, ci|gi|,}
where |gi| is the total number of annotation terms in
GO for gene product gi. Finally, the semantic similarity
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between two gene products gi and gj can be calculated
with
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We used Bioconductor package SemSim in R project
(http://bioconductor.org/packages/2.2/bioc/html/Sem-
Sim.html) to calculate the Yeast gene products func-
tional similarity.
Comparison of protein pairs and PPIs in terms of functional
similarity
In order to investigate the functional similarity between
each pair of gene products, we calculated SimRelbetween
Yeast gene products which were downloaded from SGD
[36]. Meanwhile, we check the distribution of functional
similarity value in recorded Yeast PPIs downloaded

from MIPs database [33]). There are total 6201 Yeast
proteins are included in SGD, among them, 4554 Yeast
proteins are covered in MIPs database with 12316 pro-
tein protein interactions, here we ignored the self loop
and direction. Based on SimRel (Eq.(1)) method, the
functional similarity value of each gene product pair
ranges from 0 to 1. A functional similarity value close to
one indicates high functional similarity whereas a value
close to zero indicates low similarity. We analyzed the
distribution of the functional similarity value in terms of
all Yeast protein pairs and MIPs Yeast PPI networks.
Because there are some genes (1616) are not annotated
in GO, total 4585 (6201-1616) genes as the input of
SemSim package, 4585 × 4584/2 = 10508820 similarity
values for the corresponding gene pairs. 65 percent of
similarity values has zero value while 19 percent cannot
be identified because some genes are annotated by dif-
ferent GO (eg., GOBP, GOCC or GOMF), the remaining
16 percent of gene product pairs has similarity value
great than zero, as shown in Figure 1. Again, most of
gene product pairs have smaller similarity value, which

Figure 1 The functional similarity value distribution of all Yeast protein pairs based on GO. Subfigure (a) all values distribution with
10508820 pairs, (b) the > 0 values distribution with 1686196 pairs, (c)similarity distribution of MIPs Yeast PPIs.
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means that they are not very similar in terms of func-
tion. For the gene product pairs with similarity values
close to one, we will analyze them in detail and used
them as our prior information for semi-supervised
mining functional modules from PPI networks. Because
some genes are not annotated by GO terms, their corre-
sponding similarity values are zero or can not be identi-
fied, and only about 10 percent of PPIs have functional
similarity value greater than zero, higher similarity value
means that the corresponding proteins are more similar
to each other with regarding to function.
The goal of functional modules identification from

PPI networks is to determine a group of cellular com-
ponents and their interactions attributed as specific
biological functions [29]. In other words, the proteins
in one module will be related to each other with
regarding function. Usually, PPI networks used here
are recorded in the existing PPI networks database,

e.g, MIPs, where the major part of PPI information are
extracted by manual annotation from the yeast litera-
ture. However, limited number of literatures make
such PPI information insufficient. Therefore, identify-
ing modules based on such insufficient PPI information
(i.e., the existing PPI networks database) will not get a
good performance. As shown in Figure 2a, ten proteins
were listed with eight interactions which are recorded
in the existing PPI networks database. In this case, it is
difficult for any method to identify functional modules.
Actually, the protein pairs without recorded interaction
information may share common functions shown in
Figure 2b marked as dash line. Once such functional
information is added, it will be easy to derive the func-
tional components for these ten proteins, finally two
modules (left module with clique shape and right mod-
ule with star shape) in this example are found and
circled in Figure 2b.

A B

C

Figure 2 The effect of the functional similarity on module identification. Subfigure (a) shows the protein protein interactions, new protein
relations (marked as dash line) were added to (a) because they have higher functional similarity, then a new protein network was built as show
in (b). Both modules (circled) will be easily found in (b). Note that the five genes in the left cycle form a module only after the addition of the
functional relations between genes, so does the right module.
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From the example in Figure 2, we can see that the
additional protein functional information is helpful for
modules identification. In this paper, GO was used to
obtain protein functional information indicated by the
similarity value. In the next section, we will describe
how to use such functional information to supervise
mining functional modules from PPI networks.

Functional modules identification methods
Before introducing our proposed functional modules
identification methods, we briefly review the existing
popular function modules mining algorithms, including
hierarchical clustering (HC) [37], Newwan-Girvan (NG)
[8], MCL [38] and MCODE [6].
Hierarchical clustering
In the view of computation, functional modules are spe-
cial kind of subgraphs in PPI networks, and each sub-
graph is consistent of a subset of nodes with a specific
set of edges connecting them. Meanwhile, hierarchical
clustering method [37] is popularly used in networks
clustering, thus, we use it to obtain the base clusters, i.e,
functional modules. The implementations of this hier-
archical clustering algorithm (agglomerative average-
linkage hierarchical algorithm (Agnes)) is available in R
project, a cluster package http://cran.r-project.org/web/
packages/cluster/index.html). Agnes finds the clusters by
initially assigning each object to its own cluster and
then repeatedly merging pairs of clusters until either the
desired number of clusters has been obtained or all of
the objects have been merged into a single cluster lead-
ing to a complete agglomerative tree. The algorithm
takes input as a similarity matrix. Next, we will employ
two different similarity metrics, Clustering Coefficient
(Scc) [3] and Neighborhood (Snb) [39] designed to cap-
ture various topological properties of scale-free networks
because PPI networks are typical scale-free networks
[40], and the corresponding clustering methods are
called as HCcc and HCnb respectively. The first similarity
metric is based on the Clustering coefficient, a popular
metric from graph theory. The clustering coefficient
[41] is a measure that represents the inter-connectivity
of a vertex’s neighbors. The clustering coefficient of a
vertex v with degree kv can be defined as follows:

CC v
n

k k
v

v v

( )
( )

=
−

2
1

(3)

where nv denotes the number of triangles that go
through node v. Essentially, if the edge between two
nodes contributes a lot to the clustering coefficients of
the nodes, then they are considered similar and should
be clustered together. Here the edge-clustering coeffi-
cient [3] is defined, in analogy with the usual node-clus-
tering coefficient, as the number of triangles to which a

given edge belongs, divided by the number of triangles
that might potentially include it, given the degrees of
the adjacent nodes. More formally, for the edge-con-
necting node i and node j, the edge-clustering coeffi-
cient is

S i j
z

k kcc
i j

i j

( , )
[( ),( )]

,=
− −min 1 1

(4)

where zi,j is the number of triangles built on that edge,
i.e., the number of common neighbors of node i and
node j. min[(ki – 1), (kj – 1)] is the maximal possible
number of triangles.
The idea behind the use of this metric is that edges

connecting nodes in different communities are included
in few or no triangles and tend to have small values of
Scc(i, j). On the other hand, many triangles exit within
clusters. Hence the coefficient Scc(i, j) is a measure of
how intercommunication a link is. Note that Scc(i,j) will
be zero when ki ≤ 1 or kj ≤ 1, also, when zi.j = 0.
The second metric we use is a Neighborhood-based

similarity metric. We use the well-known Czekanowski-
Dice distance metric [39] for this purpose. This metric
uses the adjacency list of each node and favors nodes
that have several common neighbors. Two nodes having
no common neighbor will have the minimum similarity
value (i.e. zero), while those interacting with exactly the
same set of nodes will have the maximum value. The
Neighborhood Based similarity metric is defined as:

S i j
Int i Int j

Int i Int j Int i Int jnb( , )
( ) ( )

( ) ( ) ( ) ( )
= −

∪ + ∩
1

  Δ
(5)

Here, Int(i) and Int(j) denote the adjacency list
(including themselves) of proteins i and j, respectively,
and Δ represents the symmetric difference between the
sets. The value of this metric ranges from 0 to 1. Note
that using this metric, nodes that do not interact with
each other may have a non-zero similarity if they have
common neighbors.
Newman-Girvan method
Newman and Girvan [8] first introduced edge-between-
ness measure for clustering networks in sociology and
ecology to obtain communities. This measure favors
edges between communities and disfavors ones within
communities. As pointed out by Holme et al [42] edge-
betweenness uses properties calculated from the whole
graph, allowing information from non-local features to
be used in the clustering. Newman et al. introduced
three different edge-betweenness measures, Shortest-
path, Random-walk and Current-flow. In this paper, we
consider the Shortest-path betweenness measure, which
computes for each edge in the graph the fraction of
shortest paths that pass through it. It is given by:
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EB e
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where SPi,j is the number of shortest paths passing
through edge ei,j and SPmax is the maximum number of
shortest paths passing through an edge in the graph.
EB(ei,j) denotes the shortest-path edge betweenness

value of the edge between nodes i and j. The edge-
betweenness of an edge is the proportion of the shortest
paths that edge belongs to. NG method can be taken as
a divisive clustering method. It starts with one cluster of
all vertices and recursively splits the most appropriate
cluster at the edges with a large edge-betweenness
value. The process continues until a stopping criterion
(the criterion is usually the splitting steps s) is achieved.
MCL
The Markov Cluster algorithm (MCL) [38,43] simulates
a flow on the graph by calculating successive powers of
the associated adjacency matrix. At each iteration, an
inflation step is applied to enhance the contrast between
regions of strong or weak flow in the graph. The process
converges towards a partition of the graph, with a set of
high-flow regions (the clusters) separated by boundaries
with no flow. The value of the inflation parameter (r)
strongly influences the number of clusters, i.e., a larger
number of smaller clusters will be obtained with
increasing of the inflation value (r). The core concept
behind this method is that clusters of related nodes are
densely interconnected and hence there should be more
long paths between pairs of nodes belonging to the
same cluster than between pairs of nodes belonging to
distinct clusters. Subsequently, in [5,9,44] MCL was
used to identify functionally related clusters in the pro-
tein interaction network of S. cerevisiae and Human.
The experimental results indicated that the identified
modules did represent functional clusters within the
network. In this paper, we used the MCL package
(http://www.micans.org/mcl/#source) to mine the func-
tional modules from PPI networks.
MCODE
Molecular complex detection (MCODE) [6] is a method
to detect densely connected regions. First it assigns a
weight to each vertex corresponding to its local neigh-
borhood density, i.e., with the core-clustering coefficient
instead of the clustering coefficient for each vertex.
Next, starting from the top-weighted vertex (seed ver-
tex), it recursively moves outward, including in the clus-
ter vertices whose weight is above a given threshold
(Node Score Cutoff (t)). During the clustering process,
new members are added only if their node score devi-
ates from the cluster’s seed node’s score by less than the
set cutoff threshold. Therefore, small cutoff values create
much more smaller-size clusters and vice versa. The

third stage is post-processing the above clustering
results by increasing the size of the complex according
to a given parameter (f), so that there can be overlap
among the modules which have already been defined. In
this paper, we used the MCODE plugin in Cytospace
(http://baderlab.org/Software/MCODE) to mine the
functional modules from PPI networks.

Prior knowledge based functional modules identification
methods
Given the prior information (usually as pairwise con-
straints), semi-supervised learning approaches [26] can
be implemented in two ways. One method is to restrict
the solution space based on the pairwise constraints and
then find the solution consistent with the constraints for
other unlabeled data, such as probabilistic models [45],
hierarchical clustering [46], spectral clustering [47], and
etc.. The other method is employing the prior informa-
tion to learn a distance metric which can be used to
computer the pairwise similarity, so that the learning
methods based on similarity matrix could be adopted,
such as [48,49]. The key difficulty of semi-supervised
learning is how to influence an learning algorithm with
the prior information. An efficient and simple method
to address this challenge is encoding the prior informa-
tion into the data representation and then inputting the
data into an existing learning algorithm [50]. The other
way is using the prior information to supervised the
learning process. In this section, we will give these two
methods for prior knowledge based mining function
modules from protein protein interaction networks.
(a) Prior information is combined into the original

data set to form a new data set, and then all existing
module identification algorithms can be applied on the
new data set.
(b) Prior information is used by the proposed learning

algorithms:
– Semi-supervised hierarchical clustering (ssHC): prior

knowledge is used to construct the transitive closure
[46], and then set them as the initial clusters with the
other points.
– Semi-supervised NG, Semi-supervised MCL and

semi-supervised MCODE (ssNG, ssMCL and ssMCODE
respectively): using NG, MCL or MCODE to group PPIs
into a relatively large number of sub-modules, and then
establish the connections between sub-modules accord-
ing to the pairwise constraints.
The first approach (as indicated in Figure 3) encoding

the prior information into the data representation is
easily implemented. As shown in Figure 2, the protein
functional pairs identified from GO can be added into
the original PPI networks. Then, the existing functional
modules identification methods (say, HCcc[3], HCnb[39],
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NG [8], MCL [5] and MCODE [6]) can be applied on
the new combined PPI networks. Furthermore, we pro-
pose a novel prior knowledge based learning framework
(as indicated in Figure 4 based on the pairwise con-
straints and can use any existing modules identification
method, such as, HCcc , HCnb, NG, MCL, MCODE and
etc.. For HCcc and HCnb, the prior information using
protein functional pairs was used to construct the tran-
sitive closures [46]. The transitive closure is constructed
based on the pairs of proteins with large functional
similarity which gives the constraint degree between
each pair of proteins. If the similarity is greater than a
threshold (in this study, the best threshold is experimen-
tally proved to be 0.999), we can say that there is a
must-link constraint between Pi,Pj. A set of constraints
C makes up of all the must-link constraints. In this case,
an undirected graph G, with one node for each point
appearing in the constraints C, and an edge between
two nodes if the corresponding points appear together
in a must-link constraint. Then, the connected compo-
nents of G give the sets in the transitive closure. For
instance, in our example in last Section, there are 162
transitive closures on 654 Yeast proteins with 1488 pro-
tein functional pairs, where different closures may cover
different numbers of proteins. The biggest closure has

21 proteins and 207 pairs, while the smallest closure has
2 proteins and 1 pair, as shown in Figure 5.
Such transitive closures and the other proteins which are

not included in these closures will be set as the initial clus-
ters of hierarchical clustering methods. Next, hierarchical
clustering methods will merge a pair of clusters if they
have a smallest distance or a largest similarity (here, clus-
tering coefficient and neighborhood are used to measure
the cluster similarity, and average-linkage method is
adopted to merge the clusters). The merging procedure
will end when the given number of clusters are obtained.
These two semi-supervised hierarchical clustering meth-
ods (based on clustering coefficient and neighborhood) are
denoted by ssHCcc and ssHCcc respectively.
For NG, MCL and MCODE, we adopted a two-stage

semi-supervised learning approach with the aid of the
prior information (i.e., protein functional pairs). In the
first stage, the PPI networks are grouped into a relatively
large number of sub-modules by relaxing the parameters
of the existing algorithms. For instance, a large value for
s, the number of splitting steps, will be given for NG
algorithm, a large inflation r will be set in MCL method
and a small cutoff (t) will be set in MCODE method.
Then, connections between sub-modules are established
according to the protein pairs with higher functional

PPI
Database

GO
Resource

Protein pairs
with higher functional relationship

Functional
Similarity
Measure

Combinned
PPI database

Functional modulesHCcc, HCnb, NG,
MCL, MCODE

Figure 3 Framework of the proposed method I.Prior knowledge based functional modules identification methods by encoding prior
information into data representation.
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relationship in the second stage. Finally, three semi-
supervised methods, ssNG, ssMCL and ssMCODE, are
designed to mine the functional modules.

Results and discussion
In this section, we conducted a series of experiments to
show how the protein functional pairs improve the per-
formance of the existing modules identification methods
(HCcc, HCnb, NG, MCL and MCODE) with our proposed
prior knowledge based strategy. Yeast PPI networks in
MIPs database [33] and GO [30] were used to test the
presented methods. In MIPs database, the Yeast PPI

networks covers total 12316 protein protein interactions
between 4554 proteins, here we ignored the self loop and
direction. The identification modules were evaluated by
comparing them with the predefined biological complex
annotations in MIPs database [33]. Meanwhile, modular-
ity measure [8] was used to select the best parameters.

Evaluation metrics
Modularity
Topology-based modularity metric, proposed by New-
man and Girvan [8], can be used to evaluate cluster
quality. This metric uses a k × k symmetric matrix of

GO
Resource

Protein pairs
with higher functional relationship

Functional
Similarity
Measure

PPI
Database

HCcc
HCnb

Initialization clusters
(transitive closure

based on Protein pairs
and other points in PPI

database)

Similarity Matrix
based on CC and

NB

NG,MCL,
MCODE

Large number of
small sized
sub modules

Functional modules

Functional modules

Merging
sub modules

Figure 4 Framework of the proposed method II. Prior knowledge based functional modules identification methods by encoding prior
information into post-processing stage of existing methods
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clusters where each element dij represents the fraction
of edges that link nodes between clusters i and j and
each dii represents the fraction of edges linking vertices
within cluster i. The modularity measure is given by

M d dii ij

ji

= − ∑∑( ( ) ).2
(7)

Larger value modularity has, better performance the
clustering method obtains.
Complex annotation measure
Since our goal is to find functional modules from PPI
networks, it is necessary to test if the obtained modules
correspond to known functional modules. This can be
done by validating the modules with the predefined bio-
logical annotations from the MIPs database [33]. MIPs
provides three domain annotation categories: function
annotation, complex annotation and localization annota-
tion. Because function annotation category of MIPs is
based on GO and our proposed approach combined the
functional information of GO, we used complex cate-
gory to validate the different identification methods.
Merely counting the proteins that share an annotation
will be misleading since the underlying distribution of
proteins among different annotations is not uniform.

Hence, the enrichment analysis are used to calculate the
statistical and biological significance of a function mod-
ule. The enrichment score [51] of a module is the
minus log transformation on the geometric mean of p-
values (i.e., – log(p – value)) from the enriched annota-
tion terms association with one or more of the module
members. The enrichment score essentially shows how
the module is involved in the important annotation
association with the module members. Probably, the
higher the score the more important biology to the gene
group.

Experimental results
How much prior information is perfect for learning
Based on the functional similarity analysis for all Yeast
protein pairs in Section , there are total 14090 protein
pairs with similarity greater than 0.99, as shown in
Figure 6. Among them, 1488 protein pairs (noted as T1)
have functional similarity value equal to 1, 3375 protein
pairs (noted as T2) have functional similarity value great
than and equal to 0.999, 4146 pairs (noted as T3) have
similarity value great than and equal to 0.998, 6951
pairs (noted as T4) have similarity value great than and
equal to 0.997 and etc. In our experiments, we tested
the performance of prior knowledge based strategy with

Figure 5 Transitive closure examples based on protein functional pairs. 162 transitive closures were obtained for Yeast proteins with 1488
protein functional pairs. The biggest closure has 21 proteins and 207 pairs. The smallest closure has 2 proteins and 1 pair.
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the first four sets of protein pairs (named as MYP,
MYPT1, MYPT2, MYPT3 and MYPT4 respectively).
The first prior knowledge based strategy, combining the
protein functional pairs into the PPI networks, was used
to show how many protein functional pairs are suitable
to be the prior information.
Five module identification methods were used in our

experiments as described in last Section. For each
approach, there are some parameters to be predefined,
e.g., the inflation factor r for MCL, the number of split-
ting steps s in NG method, the node score cutoff t in
MCODE, and the number of clusters k in HCccand
HCnb. In this case, the evaluation measure, modularity,
was used to validate which parameter value makes the
algorithm perform best. For reference, we listed the
experimental results for two data sets MYP and
MYPT2. The best modularity value for both data sets
was obtained at the point 4200, i.e., the number of split-
ting steps on the modularity of NG method is 4200, as
shown in Figure 7(e). Similarly, we can see MCL gets
the best performance on modularity when the inflation r
is equal to 1.4, as shown in Figure 7(a). MCODE got the
best performance at the Node score cutoff t = 0.2, as
shown in Figure 7(b). With the same way, the hierarchi-
cal clustering algorithms based on clustering coefficient

similarity and neighborhood similarity got their best
performance with complete linkage at k = 350. That is,
the final number of clusters identified by hierarchical
algorithms is 350, as shown in Figure 7(c) and Figure 7
(d). On the one hand, we experimentally show how the
performance of different identification methods are
improved by adding different numbers of protein func-
tional pairs to the original protein interaction networks.
For each method, five data sets were used, MYP,
MYPT1, MYPT2, MYPT3 and MYPT4. They represent
the original MIPs Yeast PPIs with 12316 PPIs, adding
1488 protein pairs with similarity = 1, adding 3375 pro-
tein pairs with similarity ≥ 0.999, adding 4146 protein
pairs with similarity ≥ 0.998, and adding 6951 protein
pairs with similarity ≥ 0.997 respectively. Here only the
best results will be listed to compare the different algo-
rithms on different data sets. We can consider the –log
(p-value) of the significant modules identified by the
corresponding method on one data set. Larger value
shows the better performance. Because the smallest
number of modules in all experiments is sixty, we
showed the top sixty modules for all methods on all
data sets. We can find that all algorithms got the best
performance on data set MYPT2, adding 3375 protein
pairs with similarity ≥ 0.999 on the original protein
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Figure 6 The Yeast protein functional similarity value ( 0.99) distribution. The functional similarity value (≥ 0.99) distribution of Yeast
protein pairs based on GO (total 14090 unique pairs).
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networks. Even though the other three data sets,
MYPT1, MYPT3 and MYPT4, do not make the identifi-
cation method obtaining the best result, all of them
increase the identification performance by comparing
with the original PPI networks (MYP). For MYPT3 and

MYPT4 adding 4146 protein pairs with similarity (≥
0.998), and 6951 protein pairs with similarity (≥ 0.997)
respectively, the identification results are better than on
the original data set MYP, but less than on MYPT2, the
reason is that more added protein pairs may add more

Figure 7 Impact of the parameter on the modularity of clustering results. Impact of the parameters on different module identification
methods: (a) inflation g on MCL, (b) node score cutoff t on MCODE, (c) number of clusters k on HCcc, (d) number of clusters k on HCnb and (e)
splitting steps t on NG.
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noise. For MYPT1 adding 1488 protein pairs with simi-
larity (= 1), the identification results are better than on
MYP but less than on MYPT2, the reason is that
MYPT1 may not have enough functional information.
Figure 8 shows the detail results, where each sub-figure
represents the experimental results of one identification
method, and each line shows the –log(p-value) of the
significant modules identified by the corresponding
method on one data set.
Comparison of the identification performance
According to the above experimental results, we selected
MYP and MYPT2 as the data sets to test the perfor-
mance of our proposed prior knowledge based strategy.
Three parts of experiments were conducted, one for the
five existing identification methods (HCcc, HCnb, NG,
MCL, and MCODE) on the original PPI networks
(MYP), the other for these five algorithms on the com-
bined PPI networks (MYPT2), another one for the five
proposed semi-supervised ssHCcc, ssHCnb, ssNG, ssMCL,
and ssMCODE on MYPT2. For the last part of experi-
ments, the protein functional pairs would be taken as
the prior information of the identification algorithms.
Table 1 gives a comparison summarization on the first

two parts of experimental results. For each algorithm, we
listed the number of identified modules (# modules) which
are annotated in MIPs complex annotation database, the

average – log(p-value) (noted as − −log( )p value ) and the

coverage which is the percentage of proteins which are
covered by the annotated modules. From this table, we

can see that − −log( )p value on MYPT2 is better than on

MYP. Also, we can see that MCODE has the best p-value
but MCODE only covers a small part of proteins. MCL

got the best result both on − −log( )p value and coverage,

which is also experimentally proven by Vlasblom and
Wodak [44]. Newman-Girvan method got better

− −log( )p value than HCcc and HCnb, but NG includes

less proteins than HCcc and HCnb. For two hierarchical
clustering methods, it is obvious that clustering coefficient
similarity method (HCcc) is better than neighborhood-
based similarity (HCnb).
Table 2 gives the experimental results of our proposed

strategy with the aid of prior information. Here, T2, the
protein pairs with functional similarity (≥ 0.999) were
used as the prior information. In ssMCL, ssMCODE
and ssNG, T2 was used to merge the sub-modules iden-
tified by MCL, MCODE and NG respectively, where the
initial sub-modules are identified by MCL at r = 5, by
MCODE at t = 0.05 and by NG at s = 6500. For hier-
archical clustering algorithm ssHCcc and ssHCnb, T2 was
used to construct the initial clusters, and the parameter
k was set to be 350. Meanwhile, we listed the

identification results of the original methods (MCL,
MCODE, NG, HCcc and HCnb) at the given parameter
value to compare with the proposed prior knowledge
based methods. Obviously, the proposed strategy
obtained better performance in terms of both coverage
and complex annotation p-value. Even comparing with
the best performance of the original methods on MYP
in Table 1, our proposed strategy have a comparative
performance.
In order to investigate the identified modules, we

listed the top ten functional modules identified by the
original methods (MCL, MCODE, NG, HCcc and HCnb)
and our proposed prior knowledge based strategy with
the first method (i.e., encoding the prior information
(T2) into the data representation) in Table 3, 4, 5, 6, 7.
For each identified module, we can show the number of
proteins it includes (Size), number of total annotated
proteins by MIPs complex database (# Annotated), the
corresponding complex ID in MIPs database (Com-
plexID) and the number of genes both in the complex
and current module (Hits). We can find that our pro-
posed algorithm can identify functional modules with
biological meaning. According to Tables 3-7, we find
that there are more common modules detected by MCL,
NG and HCcc on two data sets MYP and MYPT2 than
those detected by MCODE and HCnb. More importantly,
we find that there is only one module commonly
detected by five different algorithms on MYP, namely,
the complexID is 510.190.10. There are around 14 Hits
for this module detection. However, there are four mod-
ules commonly detected by five different algorithms on
MYPT2, namely, the complexIDs are 260.50, 550.1.213,
550.1.147 and 440.30.10. There are totally around 91
Hits for these modules detection. These results show
that the enhanced data set can provide a better network
for functional module detection. Furthermore, a func-
tion module identified by the proposed strategy
(ssMCL) is given in Figure 4. The function module with
62 proteins in Figure 9 is dominated by Complex
550.1.213 about ‘probably transcription/DNA mainta-
nance/chromatin structure’ and Complex 510.10 about
‘RNA polymerase’. In this figure, the red line represents
the protein pair with higher functional similarity, and
the blue line represents the protein pair recorded in
MIPs database. ssMCL can successfully find this module
because the prior information (protein functional pairs)
were added to the original PPI networks. When check-
ing the function modules identified by MCL on the ori-
ginal PPI networks (MYP), we did not find this module,
while the proteins in the module were divided into dif-
ferent modules. Therefore, we can say prior knowledge
based strategy has ability to effectively mine function
modules.
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Figure 8 Comparison of the complex annotation p-value for the functional modules identified by different methods. The complex
annotation p-value of the identified functional modules via different methods on MIPs Yeast PPIs with adding different number of functional
protein pairs, (a) Hierarchical algorithm based on Clustering coefficient similarity matrix (HCcc) and (b) Hierarchical algorithm based on
Neighborhood similarity (HCnb), (c) MCL, (d) MCODE and (e) NG.
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Table 1 Comparison of different identification methods on the original PPI networks (MYP) and the best extended
networks (MYPT2)

parameter MYPT2 MYP

#modules AVG -log(p-value) Coverage #modules AVG -log(p-value) Coverage

MCL r = 1.4 271 7.8696 0.95249 327 5.44644 0.95623

MCODE t = 0.2 95 11.78031 0.26683 60 8.23775 0.10493

NG s = 4200 279 7.65399 0.79388 292 5.21413 0.81588

HCcc k = 350 195 7.12497 0.92719 173 4.1128 0.87769

HCnb k = 350 224 6.65543 0.96706 173 4.0578 0.86120

Table 2 The performance of prior knowledge based identification methods on PPI networks (MYP) with the aid of
protein functional pairs (T2)

Parameter Algo. MYPT2 Algo. MYP

#modules –log(p – value) Coverage #modules –log(p – value) Coverage

r = 5 ssMCL 352 7.77136 0.97342 MCL 483 4.68541 0.97214

t = 0.05 ssMCODE 99 11.04522 0.30314 MCODE 137 7.66 0.27335

s = 6500 ssNG 286 6.95497 0.85456 NG 522 4.23116 0.83421

k = 350 ssHCcc 201 6.07873 0.92314 HCcc 173 4.1128 0.87769

k = 350 ssHCnb 220 5.96928 0.93412 HCnb 173 4.0578 0.86120

Table 3 Comparison of complex annotation information for top ten significant modules with best p-value identified
by MCL on MYP and MYPT2

MYPT2 MYP

Size # Annotated ComplexID Hits Size # Annotated ComplexID Hits

28 21 260.50 19 39 34 550.1.149 30

260.50.10 10 550.2.520 15

156 104 510 61 12 11 60 11

510.190.10 15 550.1.3 6

62 37 550.1.213 20 40 34 550.1.214 20

510.10 13 510.190.10 14

55 36 133 19 201 122 140 29

133.10 10 140.30 20

89 64 550.1.147 31 76 29 260.60 10

440.30.10 21 550.1.75 10

36 28 290 16 16 12 520.20 8

290.10 8 520 8

101 55 510.40.20 19 13 9 140.10.20 7

550.1.209 20 140.10 7

13 12 60 11 148 80 260 24

550.1.3 6 260.50 11

30 26 550.1.149 21 9 8 550.1.148 8

550.2.94 13 550.3.56 6

12 9 520.20 9 7 5 290.20.10 5

550.1.44 5 290.20 5
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Table 4 Comparison of complex annotation information for top ten significant modules with best p-value identified by
MCODE on MYP and MYPT2

MYPT2 MYP

Size # Annotated ComplexID Hits Size # Annotated ComplexID Hits

131 105 510 61 14 14 510.190.10 14

510.1.213 20 510.190.10.20 14

24 24 500.10 21 66 58 60 11

550.2.380 10 260.60 10

48 47 550.1.147 33 16 9 260.50 8

440.30.10 24 260 9

160 139 260.50 19 8 8 550.1.148 8

510.40.20 18 550.3.56 6

49 34 60 11 5 5 510.180.50 5

550.1.3 6 510.180 5

31 25 550.1.208 13 28 22 140.30 10

550.2.415 4 550.1.221 6

42 22 520.20 9 5 5 440.12.10 5

550.1.44 5 550.3.22 5

17 17 550.1.141 10 7 7 510.40 7

550.3.22 9 510.40.20 6

75 66 220 12 5 5 290.10 5

550.1.452 9 290 5

16 16 420.50 9 4 4 260.80 4

420 9 550.1.77 4

Table 5 Comparison of complex annotation information for top ten significant modules with best p-value identified
by NG method on MYP and MYPT2

MYPT2 MYP

Size # Annotated ComplexID Hits Size # Annotated ComplexID Hits

43 33 500.10 23 45 39 550.1.149 33

550.2.380 10 550.2.520 16

43 39 550.1.149 31 14 12 60 11

510.2.520 15 550.1.3 6

69 36 260.50 19 568 355 140 49

260 22 140.30 23

216 133 550.1.147 40 67 52 510.190.10 15

440.30.10 29 510.190.10.20 15

62 46 290 17 14 13 260.60 10

290.20 9 550.1.75 10

85 49 550.1.213 20 17 10 290.10 7

510.10 13 290 7

72 37 510.40.20 17 21 15 260.50 9

550.1.209 19 260 11

14 12 60 11 12 10 510.190.110 7

550.1.3 6 510.190 7

25 21 410.40 15 12 10 550.1.81 6

550.1.205 7 160 6

20 16 260.60 10 6 6 510.180.50 5

550.1.75 10 510.180 5
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Table 6 Comparison of complex annotation information for top ten significant modules with best p-value identified
by HCcc on MYP and MYPT2

MYPT2 MYP

Size # Annotated ComplexID Hits Size # Annotated ComplexID Hits

27 21 260.50 19 17 17 510.190.10 14

260 20 510.190.10.20 14

42 42 510 39 10 10 260.60 10

230.20.20 14 550.1.75 10

69 36 510.10 22 12 12 550.1.149 11

550.2.380 10 550.2.161 5

20 19 510.40.20 18 10 8 510.40 8

550.1.209 19 510.40.20 7

61 60 550.1.147 33 5 5 510.180.50 5

440.30.10 24 510.180 5

30 29 550.1.213 20 5 5 440.12.10 5

510.10 13 550.3.22 5

72 37 220 12 36 27 177 5

550.1.45 9 550.1.221 5

45 35 2 5 13 11 22 5

290.20 8 550.1.45 3

14 12 260.60 10 53 31 140 10

550.1.75 10 140.30.30 6

12 9 520.20 9 3 3 290.20.10 3

550.1.44 5 290.20 3

Table 7 Comparison of complex annotation information for top ten significant modules with best p-value identified
by HCnb on MYP and MYPT2

MYPT2 MYP

Size # Annotated ComplexID Hits Size # Annotated ComplexID Hits

26 26 500.10 23 18 18 510.190.10 14

500 23 510.190.10.20 14

28 23 260.50 19 10 10 260.60 10

260 20 550.1.75 10

21 19 510.40.20 18 34 23 140.30 11

550.1.209 19 140.30.30 8

20 19 550.1.147 36 19 19 550.1.138 10

440.30.10 27 550.2.163 7

30 29 550.1.213 20 5 5 440.12.10 5

51.10 13 550.3.22 5

53 51 133 19 8 8 470.20 5

510 30 550.2.153 5

45 35 290 15 6 6 500.10.40 5

290.20 8 550.1.107 6

13 9 520.20 9 6 5 140.20 5

520 9 140 5

53 42 140.30 17 73 47 550.1.221 6

140 17 270.20 7

20 19 550.1.208 13 19 14 510.180.20 4

550.2.415 4 510.180 5
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Conclusions
In this paper, we presented a prior knowledge based
strategy for mining function modules from PPI networks
with the aid of GO. The functional protein pairs were
extracted according to their functional similarity in GO,
and then such pairs were taken as the prior information
of the proposed mining methods. Two kinds of prior
knowledge based methods were designed: one for
encoding the prior information into the data representa-
tion, i.e., combining the functional protein pairs and PPI
networks to a new PPI networks, and the other for
using the prior information as pairwise constraints to
supervise the existing ming methods. Experimental
results on Yeast PPI networks and GO knowledge
resource have shown that our proposed strategy per-
forms well in terms of coverage and complex annotation
p-value.
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