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ABSTRACT
The cell’s movement and morphological change are two interrelated
cellular processes. An integrated analysis is needed to explore the
relationship between them. However, it has been challenging to
investigate them as a whole. The cell’s trajectory can be described by
its speed, curvature, and torsion. On the other hand, the three-
dimensional (3D) cell shape can be studied by using a shape descriptor
such as spherical harmonic (SH) descriptor, which is an extension of a
Fourier transform in 3D space. We propose a novel method using
parallel-transport (PT) to integrate these shape-movement data by
using moving frames as the 3D-shape coordinate system. This moving
frame is purely determined by the velocity vector. On this moving frame,
the movement change will influence the coordinate system for shape
analysis. Byanalyzing the changeof the SHcoefficients over time in the
moving frame, we can observe the relationship between shape and
movement.We illustrate theapplication of ourapproach using simulated
and real datasets in this paper.

KEY WORDS: Cell shape, Cell movement, Moving frame, Spherical
harmonics, Integrated analysis

INTRODUCTION
The cell’s movement and morphological change are highly integrated.
They share many biological mechanisms controlled by the
cytoskeleton, cell membrane, membrane proteins, and extracellular
matrix (Friedl andWolf, 2009; Ridley, 2003). Almost all forms of the
cell’s active movement need forces that are generated from dynamic
shape change (Lämmermann and Sixt, 2009). Moreover, the
difference in the shapes and sizes of motile cells reflects their
movement pattern (Keren et al., 2008; Lämmermann and Sixt, 2009).
The recent advances in 3D-cell imaging and tracking have

provided us with an ability to collect cell movement and
morphological data simultaneously (Nketia et al., 2017; Maška
et al., 2014; Meijering et al., 2012; Wang et al., 2008). It
significantly facilitated researchers to study the dynamic interplay
between shape and movement of the cell. Yet, it also introduces new
challenges. First, we need the ability to objectively quantify the
cell’s shape and movement. Without this quantification, we cannot

measure any standardized form of measurement that allows
statistical procedures and mathematical calculations. Second, we
need a novel computational method to integrate these data. This
method should quantify the change of shape and the dynamic of
movement simultaneously.

A variety of movement quantification can be straightforwardly
computed. Given the trajectories, we canmeasure the total trajectory
length, the distance between start and end point, the speed, and the
acceleration of the cell (Meijering et al., 2012). However, cell
trajectories usually suffer from noise, which may bias the results of
some analyses. The smoothing procedures such as Gaussian Process
(GP) (Mchutchon and Rasmussen, 2011) are necessary to address
this problem.

The shape quantification is not as simple as movement
quantification. Cells are three-dimensional (3D) objects that have
arbitrary spatial positions, directions, and scales in 3D space. These
shapes may be variations of the same shape and should be
recognized as the same one. Thus, the shape objects should be
normalized and put in a common frame of reference to make shape
representations invariant under these isometric transformations
(i.e. translation, scale, and rotation). Normalization for translation
is easy to deal by translating the object so that its center of mass is
at the origin. The scale normalization can be done by scaling the
object in such a way that the surface area or volume is equal to 1.
On the other hand, normalization for rotation is hard and a subject
of many studies. The most well-known approach is the principal
component analysis (PCA) based approach (Shilane et al., 2004).
Another approach is to transform each shape into a function and
then calculate the rotation that minimizes the distance between the
two functions (Makadia and Daniilidis, 2003; Makadia et al.,
2004).

We propose a more natural way to align the rotation of a moving
object such as a motile cell. The cells rarely have a clear axis of
orientation. However, when moving, we can define the front face
of the cell as the most forward part of the cell. A frame of reference
where the object direction becomes one of its axis and moves with
the object along the trajectory is called moving frame (Hanson and
Ma, 1995). This moving frame is constructed primarily using the
velocity vector. Therefore, by using a moving frame as the
reference frame, a change in the movement pattern will also
change the shape quantification. Hence, this approach can bridge
the analysis of shape and movement.

After normalization, we need a shape descriptor, which is a
compact numerical representation of the 3D object shape.
Spherical harmonic (SH) descriptor is a widely used descriptor
to study the 3D cell shape (Shen et al., 2009; Ducroz et al., 2012;
Du et al., 2013; Medyukhina et al., 2020). It is a spherical analogue
of the 1-dimensional Fourier series. It considers a surface as a
function on the unit sphere, which can be represented as a set of
unique coefficients. In shape-movement analysis, SH was used to
analyze amoeboid cell motion (Ducroz et al., 2012; Du et al.,
2013) and to perform shape classification of motile cells
(Medyukhina et al., 2020).Received 13 December 2020; Accepted 11 February 2021
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In this paper, we developed a framework that generates,
standardizes, and integrates the shape and movement data of the
cells. This framework comprises trajectory smoothing using GP,
translation and scale normalization, rotation normalization using
moving frame, and spherical harmonic decomposition for shape
analysis. To illustrate our approach, we use both of simulated and
real datasets.

RESULTS
Simulated dataset
The first step was to create a smooth trajectory from the observed
data. Then, we realigned the shape on each time point by using
moving frames that were created from the smooth trajectory. We
extracted the shape-movement features from these realigned shapes.
To validate these, we created a simulated dataset that consisted of

250 data points. From these 250 data points, we selected 26 data
points as observed data. The smooth trajectory and the shape-
movement features that were extracted from these observed data
should reflect the trajectory and features from the complete original
data.

The validation of the trajectory smoothing
We compared the smooth trajectory obtained from the observational
data with the complete trajectory (Fig. 1A). It was difficult to see any
difference due to almost perfect reconstruction (the mean squared
error=1.203). The quality of the smooth trajectory degrades around
t=0 and t=250. This is probably due to the fact that GP had fewer data
to process around the boundary (i.e. no data at t<0 or t>250).

We constructed the parallel-transport (PT) moving frames on this
smooth trajectory (Fig. 1B). Orientation normalization was
performed using PT frames as the canonical frame of reference
(Fig. 2). After reorientation, we observed the cell protruded its
pseudopod toward the direction of movement (Movie 2b).

Validation of the shape-movement features extracted from
the observed data
The shape-movement features of the simulated cell are shown in
Fig. 3. The features from the complete original data are also shown
on the graph. The pattern that we obtained from observational data
was similar to the complete data, even though the magnitude of the
peak was different. These differences are due to the data from
observational data being smaller than the original data.

In the upper part of Fig. 3, the movement behavior of the cell is
shown on the speed, curvature, and torsion graph. The bimodal
graph of the speed graph indicates the accelerate-decelerate-
accelerate-decelerate pattern. Meanwhile, the peak on the
curvature and torsion graph indicates the change of the direction
between t=100 and t=130.

In the middle part of Fig. 3, the global deformation patterns of the
cell are shown as the eccentricity of the shape. Here, Exy and Exz

changed as time progressed and had values more than 1 the majority
of the time. In contrast, the value Eyz did not vary a lot from 1. These
findings indicate that the cell had ellipsoid shape with the longer
axis on the direction of the movement. Furthermore, the relation
between shape andmovement can be seen in the lower part of Fig. 3.
In this plot, the speed, the Exy, and Exz is standardized for

Fig. 1. Trajectory of simulated cell. (A) The GP
reconstructed the original trajectory from the
observation. (B) The vector T together with the
vectors N and B construct moving frames for each
point on the curve.
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comparison purpose. We can easily identify the similarity of the
bimodal pattern on the speed, the Exy, and Exz plot.

Real data
For each cell in the real dataset, we aggregated the features from all
time points and calculated its descriptive statistics measurements
such as median, percentile, and median absolute deviation. These
measurements can be readily used as the features for classification
and visualization as shown in the latter paragraphs.
To explore and visualize the high-dimensional shape-movement

features, we used UMAP to plot the features of the real dataset on a

two-dimensional (2D) plot. Fig. 4A and B show the 2D plot of the
features from PT moving frame and the standard basis (i.e. no
realignment). Qualitatively, the features obtained on the PT moving
frame separate each group better than the features from the standard
basis. From Fig. 4A, we can see that the saline group is separated
from the treated groups [i.e. granulocyte-macrophage colony-
stimulating factor (GM-CSF), lipopolysaccharide (LPS), and
phorbol 12-myristate-13-acetate (PMA)]. Each of the GM-CSF,
LPS, and PMA groups are also separated in different clusters.

Quantitatively, we performed K-nearest neighbors (KNN)
classifier on the features from the PT moving frame and the

Fig. 2. Reorientation of shape using PT moving frame. (A) Before the reorientation, we used the standard basis (e.g. X;Y;Z) to describe the shape of the
3D object. (B) After the reorientation, the moving frame becomes a canonical coordinate system to describe the shape. The moving frame consists of the
tangent vector T (red), which is parallel to the direction of the movement, and two orthonormal vectors N and B (green and blue, respectively).

Fig. 3. The extracted shape and
movement features from the
smooth trajectory that is inferred
from the observed data (label:
inferred) and from the complete
original data (label: original).
(A,B,C) The movement features of
the cell are characterized by its
speed, curvature, and torsion,
respectively. (D,E,F) The global
shape features of the cell is
represented by the ratio of spherical
harmonic coefficients. The patterns
of the features that are extracted
from the smooth trajectory are
similar to the features from the
complete data. (G) The relation
between shape and movement of
the cell can be seen in this graph.
Here, we standardized the graph of
speed, Exy, and Exz for easy
comparison.
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standard basis to show the performance of our approach. Fig. 5A
shows the mean and the standard deviation of the KNN classifier
accuracy. Most of the accuracy scores on the PT moving frame are
superior to the standard basis. By using one-sample t-test, the
accuracy difference is significant (i.e. P-value <0.05) on k=15,20,25
(Fig. 5B).
In Fig. 6, we plotted the importance of each feature on the

accuracy of KNN classifier. The most important features come
from the speed features, which are the number of peaks on the
curvature graph, the number of peaks on the torsion graph,
the seventy-fifth percentile and median absolute deviation of the
speed. Here, the shape features play a minor role to classify the
sample. We can see the relationship between each feature in Fig. 7.
We found some interesting observations from it; torsion and
curvature features are negatively correlated with the speed
features, which suggests that cells that are moving faster are
inclined to move in a straight line (i.e. rarely change their direction

and have a low magnitude of direction change). We also found that
the fast cells’ shape was more ellipsoid and had a higher shape-
change rate than the slower cells.

DISCUSSION
In this proof-of-principle study, we developed a framework for an
integrated analysis of the cell shape and movement data on moving
frame. We illustrated the application of our framework on simulated
and real data. Our approach can identify the relationship between
shape-movement features such as the similarity between the speed
and cell eccentricity pattern on the simulated dataset. Then, we can
utilize the shape-movement features that are extracted by our
framework for a further analysis or modelling. To illustrate this, we
used shape-movement features extracted from our framework to
visualize and classify neutrophils treated with some stimulants.
We showed that our features could separate the groups of
stimulants.

Fig. 4. The shape-movement features embedding on 2D space using UMAP. We utilized UMAP to visualize the high-dimensional shape-movement
features on (A) PT moving frame and on (B) standard basis.

Fig. 5. The analysis of shape-movement features on PT moving frame. (A) The comparison of accuracy of KNN classifier across tenfold
cross-validation trained on PT moving frame and on standard basis. (B) The accuracy difference of KNN classifier on PT moving frame and on standard
basis. The one-sample t-test showed that the difference was significantly different from 0 for k=15; 20; 25.
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The key contribution of our approach is the capability to couple
movement information with shape data using moving frame. The
moving frame has many applications in the sciences such as in
computer graphics (Hanson and Ma, 1995), medicine (Patil et al.,
2015), and biology (Goriely et al., 2008). The moving frame has
been applied to study the movement of organism and cells
(Crenshaw, 1993; Crenshaw and Edelstein-Keshet, 1993). In this
study, we used the moving frame as a canonical reference frame of
the shape. It makes shape analysis task-independent to rotation
transformation. Also, its construction is easy and fast. Other
approachs, such as the PCA-based approach, rotation invariant
shape descriptor, and estimation from spherical images, only use
shape information to align the rotation (Kazhdan et al., 2003;
Shilane et al., 2004; Makadia et al., 2004). We can integrate the
shape-movement information because the moving frame is
constructed using the velocity vector. In brief, when an object
changes its movement (i.e. changes its velocity vector), the moving
frame is simultaneously changed. The moving frame is the basis for
shape descriptor. Thus, the change in moving frame will ultimately
affect the shape analysis.
We need a smooth trajectory to construct moving frames. In our

study, we used GP as a smoothing method. However, our approach is
not restricted to this. We can also apply other smoothing procedures
such as spline smoothing (Eubank, 1999), or the Savitzky-Golay
filter (Savitzky and Golay, 1964). We chose GP because it can
capture the uncertainty in the movements. These data can be useful
for further movement analysis. GP is also more appropriate for our
data because it does not need dense training data. The application of
other smoothing methods should be studied in the future.
We used SH coefficient as a shape descriptor. The alternative

descriptors are distribution-based (Osada et al., 2002), neural
network-based (Fang et al., 2015), and wavelet-based descriptors
(Laga et al., 2006). As an SH descriptor, they need shape
normalization. Thus, our approach also applies for these

descriptors. The performance of the descriptors should also be
tested. The limitation of SH is the shape must be topologically
spherical (i.e. there are no holes on it). A shape that is not
topologically spherical cannot be mapped onto sphere using
spherical parameterization. Despite this limitation, most of the
cells analyzed were topologically spherical. We excluded cell that
did not meet this requirement.

We used our approach to explore the shape-movement features of
the neutrophil that were stimulated by GM-CSF, LPS, and PMA.
We showed that our approach could extract and quantify the cell
shape and movement information. The quantification allows us to
perform statistical procedures, mathematical modelling, or
classification. These reagents stimulate immune cells (Faurschou
and Borregaard, 2003; Kutsuna et al., 2004; McAvoy et al., 2011).
Thus, we expect our features can separate these groups from the
saline control group. Indeed, we found that the treated groups are
separated on UMAP visualization. Interestingly, each of the GM-
CSF, LPS, and PMA groups had a different cluster. This indicates
that each of the stimulants have different effects on cell shape and
movement. This finding would be interesting to investigate further.
For classification, we used KNN algorithm to measure how well the
extracted shape-movement features captured the structure of shape-
movement information in the dataset. Similar data points should
close to each other. We showed that the shape-movement features
that were obtained in moving frame were better than in the standard
basis. Medyukhina et al. used the rotation-invariant SH classify
migrating cells using Support Vector Machine (SVM) classifier
(Medyukhina et al., 2020). However, the information about rotation
is lost in the rotation-invariant SH (Kazhdan et al., 2003). Our
approach preserved the rotation information (e.g. when the cell
rotated, the moving frame also rotated).

We also measured the correlation between cell protrusion and
movement. It is well known that one of the cell migrationmodes is by
generating protrusion (reviewed in Yamada and Sixt, 2019). Yet, it is

Fig. 6. The permutation importance plot
shows the importance of each feature.
We found that movement features were
dominantly selected as important features.
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difficult to quantify the correlation. It is because of no standardized
way to determine the cell front. By moving frame, we can solve this
problem easily. Using our approach, we found that the fast cells have
an ellipsoid shape with one of its principal axes angled towards the
direction ofmovement. This ellipsoid shapemight be because the cell
is protruding but keeping the volume constant. It agrees with the
experimental observation in Yamada and Sixt (2019).
Despite the advantages, our integrated analysis approach has

limitations. This approach needs high resolution shape data. The
low resolution could create an inaccurate trajectory due to imprecise
calculation of the cell center. We also need many data points (e.g.
preferably more than ten) to create a smooth trajectory.
Taken together, we showed that our framework can provide

standardized measurement of cell shape-movement information and
integrates these data with the appropriate resolution and number of
data. This ability helps to gain insight into the mechanobiological
process of the cell. However, some limitations may apply to this work.

MATERIALS AND METHODS
Overview
The schematic diagram of our approach is shown in Fig. 8. The trajectory
of the cell was smoothed using GP regression. From this smooth curve, we

constructed moving frames at each sample point and extracted the
trajectory properties such as the speed, curvature, and torsion at each
sample point. For each 3D object from each time point we changed the
coordinate basis from the standard basis to the moving frame basis. In this
moving frame, the cell direction become the new x-axis. We performed the
SH decomposition on this new basis to obtain SH coefficients. By
analyzing the change of these coefficients over time, we can observe the
dynamic of shape change when it was moving. We performed the
statistical analysis of the shape and movement features to study their
relationship.

Trajectory and moving frame of the mass center
GP smoothing
We obtained the trajectory by calculating the mass center of the 3D object at
every time point. The mass center of the object is defined as the arithmetic
mean of their vertices. Thus, we had (x(t), y(t), z(t)) as the position of the
mass center at the time t. Then, we defined sx=(x(1),..,x(n)), sy=(y(1),..,y(n)),
and sz=(z(1),..,z(n)). For each sequence si;i=x, y, z, we standardized the
sequence so that it has mean zero and standard deviation one. From
hereafter, the subscript i refers to one of the element of x, y, z, unless
otherwise stated.

We modeled each of the sequence as ssti ðtÞ ¼ fiðtÞ þ e where ssti is a
standardized sequence. The function fi(t) is an underlying smooth function
and ε is a Gaussian noise with mean zero and variance σ2.

Fig. 7. The correlation matrix of each feature.
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The function fi(t) can be approximated by GP regression (Rasmussen
and Williams, 2006). In the GP regression, we have mean function and
kernel function as hyperparameters. The mean function is a function
that calculates the mean at any point of the input space and the
kernel function specify the covariance between pairs of input. As our
sequence had zero mean, we chose the zero mean function. And because
we need a smooth function, we used Squared-Exponential (SE) kernel
function.

The SE kernel itself has two parameters: (1) the length-scale parameter
that determines how far the influence of one sample point to its neighbor
points, and (2) the variance parameter that determines the mean distance
from the function’s mean.

We used the function fi(t) to interpolate new data points between
two consecutive elements of sequence ssti ðtÞ and ssti ðt þ 1Þ. The
number of new data points determines the smoothness of the new
sequence.

Next, we performed the inverse transformation of standardization by
multiplying ssti by the standard deviation of si, then adding it together with the
mean of si to produce a near-smooth sequence ri. Then, we defined r(t)=(rx(t),
ry(t), rz(t)) as the smooth trajectory.

Parallel transport moving frame
One of the main ideas in our approach is a frame of reference, which moves
along with the curve and tells us the main directions of the movement
(Fig. 9). We made this frame of reference using parallel-transport (PT)
moving frame algorithm from Hanson and Ma (1995). In brief, we
calculated a tangent vector Ti for each point i on the curve. Then, set an
initial normal vector N0, which is perpendicular to the first tangent vector
T0. For each sampled point, we calculated the cross product ofU¼Ti�Tiþ1.
If the length kUk¼ 0 (i.e. both vectors are parallel) thenNi+1=Ni. Otherwise,
to obtain Ni+1, we rotated Ni around the vector U by the angle θ=Ti ·Ti+1

using the rotation matrix Rot(U,θ) defined in Hanson and Ma (1995). After
we obtained Ti and Ni for each time point i, we calculated the vector
Bi=Ti×Ni to construct moving frames. The complete algorithm is shown in
Algorithm 1.

Algorithm 1: parallel transport moving frame algorithms

Input: 1. Tangent vectors Ti, i=0,1,…, n;
2. An initial normal vector N0, N0⊥T0

Output: Vectors Ni and Bi, i=0,1,…,n where Ti,Ni,Bi are orthogonal
for i=0:(n−1) do

U=Ti×Ti+1;
if kUk¼0 then

Ni+1=Ni;
else

U ¼ UnkUk;
u ¼ arccosðTi � Tiþ1Þ; // 0≤θ≤π
Ni+1=Rot(U, θ)×Vi;

end
end
Bi=Ti×Ni, i=0,1,…, n;

Orientation normalization
We change the coordinate basis from the standard basis to the PT moving
frame basis using simple linear algebra transformation:

v� ¼
Tx Nx Bx

Ty Ny By

Tz Nz Bz

2
4

3
5
�1

v; ð1Þ

where v* and v are the coordinates of the vertex in moving frame and
standard basis, respectively. The subscript x, y, and z here are the first,
second, and third component of the vectors T, N, and B.

Speed, curvature, and torsion
From the smooth trajectory, we can extract the trajectory features such as
speed, curvature, and torsion as defined on Patrikalakis and Maekawa
(2009). In summary, speed is the distance traveled per unit of time.
Curvature measures the failure of a trajectory to be a straight line, while
torsion measures the failure of a trajectory to be planar. Taken together, the
curvature and the torsion of a space curve are analogous to the curvature of a
plane curve.

Fig. 8. Schematic diagram of integrated analysis of shape and movement in moving frame.
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SH decomposition
After orientation normalization, shapes were decomposed by SH transform. To
perform SH decomposition, we need to map the object surface to the unit
sphere. Before it, we normalize the volume of all objects to one.

Spherical parameterization
We used the mean-curvature flow spherical parameterization method from
Kazhdan et al. (2012) to maps the object surface to a unit sphere. The result
of spherical parameterization is a continuous and uniform mapping between
a point on the object surface and a pair of the latitudinal–longitudinal
coordinate (θ, φ) on a unit sphere:

vðu;fÞ ¼ ðxðu;fÞ; yðu;fÞ; zðu;fÞÞ; ð2Þ
where (x(θ, φ), y(θ, φ), z(θ, φ)) is the Cartesian vertex coordinates.

SH expansion
On the unit sphere, each of the x(θ, φ), y(θ, φ), z(θ, φ) can be approximated
using the real form SH series:

xðu;fÞ
yðu;fÞ
zðu;fÞ

0
@

1
A �

Plmax
l¼0

Pl
m¼�l

Cxðl;mÞYm
l ðu;fÞ

Plmax
l¼0

Pl
m¼�l

Cyðl;mÞYm
l ðu;fÞ

Plmax
l¼0

Pl
m¼�l

Czðl;mÞYm
l ðu;fÞ

0
BBBBBBBB@

1
CCCCCCCCA
; ð3Þ

Ym
l ðu;fÞ ¼

ffiffiffi
2

p
K�m
l P�m

l ðcosðuÞÞ sinð�mfÞ if m , 0
K0
l P

0
l ðcosðuÞÞ if m ¼ 0ffiffiffi

2
p

Km
l P

jmj
l ðcosðuÞÞ cosðmfÞ if m . 0;

8><
>: ð4Þ

Km
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l þ 1Þ

4p

ðl � mÞ!
ðl þ mÞ!

s
; ð5Þ

where Pm
l ðu;fÞ is the associated Legendre polynomial and lmax is the

maximum degree of the SH expansion we want.
The coefficient of degree l, order m, C(l, m) can be obtained using

standard least-square estimation. Using x(θ, φ) as an example, assume that
the number of vertices is n and xi=x(θi, φi). We need to find the coefficients
Cx ¼ ðc1; c2; � � � ; ckÞT , where cj=Cx(l,m). The index j for l [ ð0; � � � ; lmaxÞ;
m [ ð�l; � � � ; lÞ is obtained from the equation j=l2+l+m+1. We can obtain
the coefficients by solving Eqn 6.

y1;1 y1;2 � � � y1;k
y2;1 y2;2 � � � y2;k

..

. ..
. . .

. ..
.

yn;1 yn;2 � � � yn;k

0
BBBBB@

1
CCCCCA

c1
c2

..

.

ck

0
BBB@

1
CCCA ¼

x1
x2

..

.

xn

0
BBB@

1
CCCA; ð6Þ

where yi;j ¼ Ym
l ðu;fÞ, j=l2+l+m+1, and k=(lmax+1)2. After obtaining the

coefficients for each of Cx, Cy, and Cz, we can bundle it into one feature
vector of the shape, C=(Cx, Cy, Cz).

Shape characteristics measures
Each coefficient of the expansion retains a shape information corresponding
to a particular spatial frequency. The increasing degree of l describes the
finer scales of shape information. The direction of shape changes can be
detected in each of three sets of coefficients, especially Cx(1, 1) for
deformation in the x-direction, Cy(1, 0) for y-direction, and Cz(1,−1) for
z-direction. If Cx(1, 1)=Cy(1, 0)=Cz(1,−1) and the other coefficients are 0
then the object is a perfect sphere. Based on these three coefficients, we

Fig. 9. The construction of PT moving frame on
each time point. The moving frames is moving with
the curve and telling us the directions of the object
movement.
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defined three eccentricity index:

Exy ¼ Cxð1; 1Þ
Cyð1; 0Þ ; ð7Þ

Exz ¼ Cxð1; 1Þ
Czð1;�1Þ ; ð8Þ

Eyz ¼
Cyð1; 0Þ
Czð1;�1Þ ; ð9Þ

Exy, Exz, and Eyz are the measurements of howmuch the object deviates from
being sphere in xy, xz, and yz plane, respectively (Fig. 10). We can exclude
the Eyz because the calculation of Exy and Exz already contains all of the
eccentricity information.

The difference between shape i and j, d(i, j ), can be calculated using any
distance metrics intended for real-valued vector spaces. The most common
is the L2 norm distance:

dði; jÞ ¼ kCi � Cjk2;

where Ci and Cj are SH coefficients for shape i and j, respectively. Here, we
calculated the rate of shape change, which is defined as d(t, t+1) , where t,
t+1 are two consecutive time points.

Statistical analysis
For each cell in the real dataset, we calculated the median, median absolute
deviation, twenty-fifth percentile, and seventy-fifth percentile of the speed,
curvature, torsion, shape change rate, Exy, and Exz from all time points. We
also counted the number of peaks from the curvature and torsion graph.
These values are used as features (26 features in total). Then, we
standardized all these features to have mean 0 and standard deviation 1.
To show the correlation from each features, we calculated Kendall rank
correlation coefficient.

We use UMAP (McInnes et al., 2018) for visualization in a 2D plot. The
UMAP parameters that we used: number of neighbors=20, number of
components=2, minimum distance=0.1, and the Euclidean distance as metric.

KNN classifier was trained on the shape-movement features on the
PT moving frame and on the standard basis to show the performance of our
approach. We varied the hyper-parameter k=3, 5, 10, 15, 20, 25. A stratified
tenfold cross-validation was used to give a set of ten accuracy scores for each
hyper-parameter k. The accuracy score is the fraction of the correct
classifications. From each iteration of cross-validation, we calculated the
difference of accuracy scores between these two approaches. The one-
sample t-test was performed to test whether the accuracy difference was
significantly different from 0 or not.

Datasets
Simulated dataset
We created a 3D cell object that moves along a path using open-source
software Blender (Community, 2018). First, we created an icosphere object
and a path for the object to follow. The speed of the object can be controlled in
Blender by adjusting the position curves over time on the Graph Editor menu.
Then, we manually protruded the pseudopodia along the object movement.
The cell surface texture was produced by adding clouds texture and random
noise. We rendered the 3D objects using Eevee render engine in Blender.

The dataset consists of 250 time points and a 3D object at each time
point. The 3D objects were saved as triangular mesh objects. In our
simulation, the cell moves in the accelerate-decelerate-accelerate-
decelerate pattern. The cell starts from a near-spherical shape,
protruding a pseudopod when accelerating, and back to near-spherical
shape when decelerating (Movies 1 and 2a). The volume of the cell is
fixed to be one. We chose the shape object at time point t={1, 10, 20,…,
250} as the observed data. The rest of the data were used as the holdout
data. Using the simulated dataset, we wanted to verify whether the
features extracted from the complete data could be approximated using
the features extracted from the smooth trajectory of the observed data.
The true trajectory of the cell is defined as the center of the mass of the
cell at each of 250 time points. This dataset is available on github (https://
github.com/yusri-dh/MovingFrame.jl).

Real dataset
The real dataset consists of 3D objects frommicroscope images of neutrophils.
We isolated the neutrophils from the bone marrow of LysM-EGFP mice.
Erythrocytes were excluded from harvested bone marrow cells using ACK
lysing buffer and density gradient centrifugation (800 g for 20 min) using
62.5%percoll. The isolated neutrophils were mixedwith collagenwith 3 × 104

cells/µl. Next, we dropped collagen-cell mixture (10 ul) on the glass bottom
dish. After the collagen-cell mixture turned into a gel, we add culture medium
to the dish. The dish was incubated at 37°C for 2 h. Before the imaging, the
culture medium was replaced with the imaging medium. After the cells were
stimulatedwith GM-CSF 25 ng ml−1, LPS 10 µgml−1, or PMA1 µgml−1, we
immediately performed imaging for 90 min at 1-min intervals using two-
photon excitation microscope (Nikon A1R MP). We used lens Nikon X20
(Apo LWD 20X/0.95 WI λ S), excitation wave length 900 nm, and xy-spatial
resolution 0.5 µm. The imaging was performed at 45 µm (15 stacks) in 3 µm
steps in the Z-axis direction. Then, we constructed the 3D mesh shape object
using a method from Cheng et al. (2020).

We analyzed the cells that were captured in a minimal six consecutive
time points (i.e. 233, 398, 293, and 166 cells in saline, GM-CSF, LPS, and
PMA group, respectively).

All animal experiments were carried out according to the guidelines
approved by the Osaka University Institutional Animal Care and Use
Committee.

Fig. 10. Shape eccentricity calculated using SH coefficients. For example, panel A has the eccentricity: Exy=2; Exz=2; Eyz=1; (B), Exy=1=2; Exz=1; Eyz=2;
(C), Exy=1; Exz=1=2; Eyz=1=2.
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Method implementation
The above method was developed as Julia Programming Language package
under MIT license (Bezanson et al., 2017). The package can be downloaded
using Julia from the Github repository.

We used GaussianProcesses.jl package for the GP smoothing
(Fairbrother et al., 2018 preprint). For SH coefficient calculation, we
used Julia wrapper for the GNU Scientific Library (GSL) (Galassi, 2009).

For the SE kernel parameter, we set the length-scale=e1.0 and
variance=1.0. We note that the choice of the parameters is not necessarily
optimal, but it gives good modeling results in our simulation. For the SH
decomposition, we used lmax=6.
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