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Focal adhesions (FAs) are adhesive organelles that attach cells to the extracellular matrix
and can mediate various biological functions in response to different environmental cues.
Reduced FAs are often associated with enhanced cell migration and cancer metastasis. In
addition, because FAs are essential for preserving vascular integrity, the loss of FAs leads
to hemorrhages and is frequently observed in many vascular diseases such as intracranial
aneurysms. For these reasons, FAs are an attractive therapeutic target for treating cancer
or vascular diseases, two leading causes of death world-wide. FAs are controlled by both
their formation and turnover. In comparison to the large body of literature detailing FA
formation, the mechanisms of FA turnover are poorly understood. Recently, autophagy
has emerged as a major mechanism to degrade FAs and stabilizing FAs by inhibiting
autophagy has a beneficial effect on breast cancer metastasis, suggesting autophagy-
mediated FA turnover is a promising drug target. Intriguingly, autophagy-mediated FA
turnover is a selective process and the cargo receptors for recognizing FAs in this process
are context-dependent, which ensures the degradation of specific cargo. This paper
mainly reviews the cargo recognition mechanisms of FA-phagy (selective autophagy-
mediated FA turnover) and its disease relevance. We seek to outline some new points of
understanding that will facilitate further study of FA-phagy and precise therapeutic
strategies for related diseases associated with aberrant FA functions.
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INTRODUCTION

A focal adhesion (FA) is a large macromolecular assembly consisting of the transmembrane protein
integrin connected to the actin cytoskeleton through adaptor proteins and intracellular signaling
molecules (Burridge, 2017). Integrins in FAs bind to different ligands, such as collagen or fibronectin,
in the extracellular matrix (ECM), and thus mediate the attachment of cells to their ECM. As
subcellular compartments that localize at the ventral membrane of the cells, FAs can sense
environmental cues, such as ECM rigidity, as fewer FAs have been observed on softer matrices
(Yeh et al., 2017). Although FAs were originally observed in two-dimensional culture dishes, they
exist in different cell types in vivo and are critical adhesive organelles for mediating cell-ECM
interactions (Lo and Chen, 1994; Geiger et al., 2001; Delon and Brown, 2009; Kuo et al., 2012).

In the cerebrovascular system, FAs play an essential role in preserving vascular stability by
adhering the monolayer endothelium to its basement membrane that is predominantly composed of
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ECM proteins such as collagens and laminins. Inactivation of the
αv or β8 integrin subunit of FAs in mice (McCarty et al., 2002;
Proctor et al., 2005) or the integrin-binding partner talin in
zebrafish (Wu et al., 2015), leads to cerebral hemorrhage.
Interestingly, our previous study showed that thrombospondin
type 1 domain containing 1 (THSD1), a single-span
transmembrane protein, physically interacts with talin and
integrin (Rui et al., 2017). Loss of THSD1 also causes cerebral
hemorrhage in both zebrafish and mice as well as contributes to
intracranial aneurysm development in humans (Santiago-Sim
et al., 2016), highlighting the role of FAs in cerebrovascular
diseases.

In addition to their role in vascular stability, FAs are broadly
linked to the initiation and progression of various cancers. Focal
adhesion kinase (FAK) as a central protein of FAs promotes FA
turnover and cell migration and stabilization of FAs by FAK
inhibitors was shown to have anti-tumor effects (Schober et al.,
2007; Tiede et al., 2018). As dynamic organelles, FAs are tightly
controlled by different signaling pathways and can be
asymmetrically distributed inside cells. For instance, FA
turnover rate is significantly higher in the leading edge than
the rear area of the migrating cells and inhibition of FA turnover
blocks cell migration and prevents the cancer dissemination in
mice models (Sharifi et al., 2016; Chang et al., 2017), suggesting
that FAs may serve as a promising therapeutic target for cancer
metastasis, a devastating stage of this disease that accounts for
over 90% of cancer patient deaths.

FA is controlled by its formation and turnover. In comparison
to numerous publications on FA formation, few studies elucidate
themechanisms that regulate FA turnover. Recently, autophagy, a
self-eating system in the cells, was reported to degrade FAs. In this
paper, we mainly review the mechanisms of autophagy-mediated
FA turnover, a subject that has recently attracted intensive
attention. Knowledge from this emerging research field may
provide novel therapeutic targets for cerebrovascular diseases
or more broadly for cancer that is associated with the loss of FAs.

SELECTIVE AUTOPHAGY OF FA
TURNOVER/FA-PHAGY

Autophagy is a catabolic process that degrades intracellular cargo
in the lysosome. There are three types of autophagy:
macroautophagy, microautophagy, and chaperone-mediated
autophagy (Yu et al., 2018). In comparison with the latter two,
macroautophagy is a process in which double-membrane vesicles
termed autophagosomes form and sequester substrates. Our review
focuses on macroautophagy because macroautophagy (hereafter
referred to as “autophagy” for simplicity) has the capacity to
degrade large cargo. In autophagy, autophagosomes marked
with LC3 protein on both sides of the membrane can engulf the
large cargo, such as mitochondria or protein aggregates, and
subsequently fuse with the lysosomes for cargo degradation
(Lamark and Johansen, 2012; Palikaras et al., 2018).

Depending on the mechanisms of cargo recognition by the
autophagosomes, autophagy can be categorized as selective and
non-selective. Selective autophagy depends on a specific organelle

receptor while non-selective does not. Starvation induces non-
selective or bulk autophagy. The main purpose of this biological
process is to survive adverse conditions by recycling necessary
cellular constituents and generating nutrient support such as
amino acids. Many autophagy-specific genes such as atg5 and
atg7 that are essential for assembling autophagosomes, the core
machinery in autophagy, were identified from genetic screens in
budding yeast under starvation conditions (Yu et al., 2018). In
addition to surviving unfavorable conditions, autophagy plays a
fundamental role in preserving cellular hemostasis that is
important for health. Autophagy can degrade damaged
organelles like endoplasmic reticulum (ER) or mitochondria or
excessively large cargo, such as protein aggregates or nuclear pore
complexes (NPC) (Lamark and Johansen, 2012; Lee et al., 2020;
Ma et al., 2020; Yang et al., 2021). Notably, autophagy-mediated
turnover of ER, mitochondria, protein aggregates or NPC is a
selective process, where cargo receptors are required to bring the
autophagosomal membrane to the cargo sites for engulfment and
degradation. For instance, different cargo receptors were
identified for selective autophagy-mediated ER turnover,
suggesting that distinct mechanisms may exist for controlling
ER homeostasis under different stresses (Stolz and Grumati, 2019;
Yang et al., 2021). In some scenarios, a large scaffold protein such
as huntingtin is involved and facilitates selective autophagy, a
process we outlined in a previous publication (Rui et al., 2015).
Depending on the substrates, selective autophagy is referred to as
NPC-phagy, ER-phagy, aggrephagy, mitophagy, and lipophagy,
respectively (Table 1).

Autophagy was recently reported to degrade FAs in different
cell types. First, autophagosomal marker LC3 was found to co-
localize with the FA protein paxillin in human breast epithelial
cells or mouse embryonic fibroblasts (Sharifi et al., 2016; Kawano
et al., 2017). The co-localization rate is higher in the leading edge
of the migrating cells where FAs are more frequently degraded.
Second, knockdown of autophagy essential genes such as ATG5
or ATG7 increases both the number and the size of FAs,
supporting the idea that autophagy negatively regulates FA
stability (Kenific et al., 2016; Sharifi et al., 2016). Importantly,
autophagy-mediated FA turnover is a selective process and two
cargo receptors including NBR1 and c-Cbl were identified
(Kenific and Debnath, 2016; Chang et al., 2017), respectively.
Another study demonstrated that the cargo recognition step can
be regulated by SRC kinase, though the identity of the cargo
receptor is unknown (Sharifi et al., 2016). Based on all
aforementioned published results, we coined the term “FA-
phagy” for selective autophagy of focal adhesions (bottom line
in Table 1), according to its analogous role with other types of
selective autophagy such as ER-phagy or NPC-phagy.

CARGO RECOGNITION MECHANISMS IN
FA-PHAGY

Selective autophagy has two main steps: autophagosome
biogenesis and cargo recognition. The latter step has become a
more attractive therapeutic target than the former in autophagy
cascade. Autophagic core machinery that generates

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 7991232

Lu et al. Cargo Recognition Mechanisms in FA-Phagy

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


autophagosomes is shared in all types of selective autophagy,
while the cargo recognition mechanism can be distinct and
specific. So far, more than a dozen cargo receptors have been
identified for different forms of selective autophagy (Table 1).
Therefore, targeting cargo recognition mechanisms in disease
should be more precise than general inhibition of
autophagosomes biogenesis that may affect other types of
selective autophagy essential for the quality control of
respective organelles, which would have undesired consequences.

In FA-phagy, NBR1 is the first cargo receptor that was
identified by Debnath’s group (Kenific et al., 2016). NBR1 is

an adaptor protein with multiple domains, including a LC3-
interacting region (LIR). As a cargo receptor, NBR1 links
autophagosomal membrane to FAs by directly interacting with
both LC3 and paxillin, two prominent markers for each organelle,
respectively. Notably, the NBR1 mutant lacking LIR lost the
ability to induce FA-phagy. Later, Alaoui-Jamali’s team
demonstrated that c-Cbl, an E3 ligase with a ring-finger
domain, functions as another cargo receptor in FA-phagy
(Chang et al., 2017). A new LC3-interacting region was
mapped out in c-Cbl that is known to bind paxillin.
Interestingly, c-Cbl preferentially recognizes Y118-
phosporylated paxillin, compared to Y31-phosphorylated
paxillin, which adds the posttranslational modification as a
layer of regulation in cargo recognition step. In addition,
Macleod’s lab reported that SRC as a non-receptor tyrosine
kinase regulates the cargo recognition efficiency in FA-phagy
(Sharifi et al., 2016). In particular, SRC phosphorylates paxillin at
Y40, which creates a new LC3 bindingmotif. Y40-phosphorylated
paxillin can be engulfed by autophagosomes by interacting with
LC3. Consistently, paxillin mutant Y40F that is resistant to SRC-
mediated phosphorylation becomes more stable in FA-phagy.
Cargo recognition mechanisms in FA-phagy are altogether cell
type-specific (summarized in Figure 1), possibly due to the
differential expression level of cargo receptors in different cells
or the posttranslational modification codes on substrates.

FA-PHAGY AS A THERAPEUTIC TARGET

So far, two reports have demonstrated that inhibiting FA-phagy
prevents cell migration and cancer metastasis. Increased number
of FAs was observed in breast cancer cells when the core
autophagy machinery was inactivated by knockdown of ATG5
or ATG7, which retards the metastasis to lung and liver (Sharifi
et al., 2016). Another study showed that FA turnover in cancer
cells was blunted by interfering with c-Cbl-mediated cargo
recognition efficiency and thus cell migration and progression
to metastasis was inhibited (Chang et al., 2017). These data
support the idea that FA-phagy can serve as a target for
treating cancer metastasis.

Virtually no studies have reported on the role of FA-phagy in
cerebrovascular diseases in comparison with its known
contribution to cancer progression. Interestingly, autophagy
was upregulated in the samples of patients with intracranial
aneurysms and loss of FAs and cerebrovascular integrity has
been observed during intracranial aneurysm development (Lee

TABLE 1 | Types of selective autophagy/organellophagy and cargo receptors.

Types
of selective autophagy

Selective cargos Cargo receptors

NPC-phagy Nuclear Pore Complex (NPC) Nup159
ER-phagy Endoplasmic Reticulum (ER) FAM134B,SEC62,RTN3,CCPG1,TEX264,ATL3,PGRMC1,ATG39,ATG40
Aggrephagy Aggregates P62,NBR1
Mitophagy Mitochondria NIX,BNIP3,FUNDC1,SPATA33,Atg32
Lipophagy Lipid Droplet P62
FA-phagy Focal Adhesion (FA) NBR1,c-Cb1

FIGURE 1 | Molecular mechanisms of FA-phagy. Focal adhesions
(FAs) are simplified as protein complexes containing integrin a and ß that
bind to both the extracellular matrix and intracellular paxillin protein.
Filamentous actin (F-actin) comprising actin monomers are in grey
and are attached to paxillin. Different cargo receptors such as NBR1 or
c-Cbl, on one hand directly interact with LC3 (round blue dots associated
on both sides of autophagosome), and on the other, recognize cargos
such as paxillin, facilitating FA-phagy. Alternatively, paxillin can be
phosphorylated at tyrosine 40 in an SRC-selective manner, which
increases the binding affinity to LC3. In the cells, LC3 mainly has two
forms, LC3-I and LC3-II. With the help of Atg16L complex, LC3-I is
transformed to LC3-II by a lipidation process. Lipidated LC3-II is able to
insert into both sides of the phagophore membrane, a well-established
mechanism for autophagosome around the cargo. LC3-II on the inner
side of the autophagosome will be degraded by lysosomal enzymes after
enclosed autophagosome fuse with lysosome for cargo degradation.
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et al., 2015; Wang et al., 2015; Santiago-Sim et al., 2016; Rui et al.,
2017). It would be intriguing to explore the hypothesis that FA-
phagy negatively regulates vascular integrity and examine
whether cargo receptors like NBR1 or c-Cbl play an essential
role in cerebrovascular diseases, such as intracranial aneurysm or
many other diseases due to the loss of vascular integrity.

CONCLUSION/DISCUSSION

Altogether, FA-phagy is a selective process even though cargo
recognition mechanisms can be distinct and context-dependent,
allowing for an exquisite regulation in FA stability.
Posttranslational modifications such as tyrosine
phosphorylation may play an important role in the cargo
recognition step and cargo with different modifications may
have differential binding affinity to cargo receptors. This idea
was supported by the observation that c-Cbl preferentially
recognizes Y118-phosphorylated paxillin but not Y31-
phsphorylated paxillin in FA-phagy (Chang et al., 2017). It is
worth mentioning that both c-Cbl and NBR1 have a ubiquitin-
associated domain (UBA) that interacts with ubiquitin, a well-
documented posttranslational modifying molecule that can label
the substrates for degradation via proteasome system or
autophagy. NBR1 was reported to bind ubiquitinated protein
aggregates by its UBA domain and is required for aggrephagy
(Lamark and Johansen, 2012). Some FA proteins can be
ubiquitinated such as integrin, paxillin, and VASP (Iioka et al.,
2007; Lobert and Stenmark, 2010; Boyer et al., 2020). Therefore,
ubiquitination may serve as another mechanism for regulating
cargo recognition specificity and/or efficiency in FA-phagy;
however, more experiments are needed to test this possibility.

In FA-phagy, as in other selective autophagy types, cargo
receptors both recognize the cargo to be degraded, potentially by
binding to the substrates or to the addedmoieties in the substrates
caused by posttranslational modification, and recruit the
autophagosomal membrane to the cargo. One of the
prominent features for cargo receptors is that they can
physically interact with LC3 connecting autophagosomal
membranes to the cargo. However, the origin of this
autophagosomal membrane remains a mystery. Are they
formed locally or transported to the FAs from elsewhere? It is
possible that common vesicle trafficking routes are involved since
autophagosomes were reported to transport via the microtubule
network by kinesin/dynein motor proteins or via actin filament
by myosin proteins (Kimura et al., 2008; Tumbarello et al., 2012).
It is equally possible that autophagosomes can form de novo at the
cargo site, a phenomenon that has been observed in a few recent
investigations. Phagophores that lack LC3 can act as a membrane
resource for autophagosomal formation. Such phagophores can
exist in some organelles to be degraded, such as p62-positive
condensates or damaged mitochondria. Notably, FIP200 localizes
at the phagophores and interacts with both autophagy initiation
kinase ULK1 and cargo receptors such as p62 or NDP52 in
aggrephagy or mitophagy, respectively (Turco et al., 2019; Shi
et al., 2020). Once LC3 replaces FIP200 at the phagophores,

autophagosomes begin to mature, expand, and eventually engulf
the cargo. These results suggest an exciting new model in which
on-demand autophagosome biogenesis can be initiated by cargo
in selective autophagy. Intriguingly, FIP200 was originally
identified as FAK-interacting protein by a yeast-two hybrid
screen and confirmed as a functional regulator for FAK in FA
stability (Abbi et al., 2002). It would be tempting to examine
whether FIP200 plays a role in FA-phagy especially at the cargo
recognition step.

In comparison to other types of selective autophagy/
organellophagy, FA-phagy is poorly understood with many
unknown facets remaining to explore. FAs generally comprise
two types: small, dot-like nascent ones and large, streak-like
mature ones. Are the mature FAs preferentially degraded by
autophagy while the nascent ones are alternatively degraded by
the proteasome system? Furthermore, are there any other cargo in
FA-phagy besides paxillin? Since FA is a large macromolecular
assembly, it is likely that other structural components can be
recognized by cargo receptors. Zyxin might be an interesting
candidate since it mainly labels the mature FAs, which are much
bigger than the nascent ones and has a higher demand on
autophagy-mediated turnover. These new FA components may
require different cargo receptors that can physically bind to them
as well as to autophagosomal protein LC3 for FA disassembly or
digestion. Furthermore, in addition to phosphorylation and
ubiquitination, there might exist other types of
posttranslational modifications, such as acetylation or
sumoylation, which fine-tune the cargo recognition step in
FA-phagy in response to different stimuli. Wound-healing
triggers FA-phagy in cancer cells but more other upstream
signals are still awaiting to be identified. Last but not least,
how does dysregulated FA-phagy contribute to human diseases
such as intracranial aneurysm development or cancer metastasis?
More mechanistic studies of FA-phagy in cell culture and animal
models may reveal exciting new insights that may establish FA-
phagy as a therapeutic target for these devastating diseases.
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