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Poly-extremophiles microorganisms have the capacity to inhabit hostile environments
and can survive several adverse conditions that include as variations in temperature,
pH, and salinity, high levels UV light and atmospheric pressure, and even the presence
of toxic compounds and the formation of reactive oxygen species (ROS). A halotolerant
Exiguobacterium strain was isolated from Salar de Huasco (Chilean Altiplano), a well-
known shallow lake area with variable salinity levels, little human intervention, and
extreme environmental conditions, which makes it ideal for the study of resistant
mechanisms and the evolution of adaptations. This bacterial genus has not been
extensively studied, although its cosmopolitan location indicates that it has high levels
of plasticity and adaptive capacity. However, to date, there are no studies regarding the
tolerance and resistance to salinity and osmotic pressure. We set out to characterize
the Exiguobacterium sp. SH31 strain and describe its phenotypical and genotypical
response to osmotic stress. In this context, as a first step to characterize the response to
the SH31 strain to salinity and to establish the bases for a molecular study, we proposed
to compare its response under three salt conditions (0, 25, and 50 g/l NaCl). Using
different physiology, genomic, and transcriptomic approaches, we determined that the
bacterium is able to grow properly in a NaCl concentration of up to 50 g/l; however,
the best growth rate was observed at 25 g/l. Although the presence of flagella is not
affected by salinity, motility was diminished at 25 g/l NaCl and abolished at 50 g/l. Biofilm
formation was induced proportionally with increases in salinity, which was expected.
These phenotypic results correlated with the expression of related genes: fliG and fliS
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(Motility); opuBA and putP (transport); glnA, proC, gltA, and gbsA (compatible solutes);
ywqC, bdlA, luxS y pgaC (biofilm and stress response); and therefore, we conclude that
this strain effectively modifies gene expression and physiology in a differential manner
when faced with different concentrations of NaCl and these modifications aid survival.

Keywords: halotolerant, Chilean Altiplano, Exiguobacterium, extremophile, environmental pressure

INTRODUCTION

In the northern region of Chile, is located the oldest and most
arid non-polar environment on Earth, the Atacama Desert (Bull
et al., 2016), characterized for having soils deemed too extreme
for life (Navarro-González et al., 2003). However, it comprises a
wide range of ecological niches and harbors microbial diversity
recently described, although culture and taxonomic identification
has not been achieved (Crits-Christoph et al., 2013; Bull
et al., 2016). Apart from the hyperarid and extreme hyperarid
environments at the core of the desert, the region comprises the
Andean plateau, the Altiplano, in this area high elevation and
lower total ozone column (TOC) levels brings as a consequence
high UV radiation (Bull et al., 2016; Cordero et al., 2016).
Moreover, water bodies found in the Altiplano show different
chemical compositions, evaporation rates, temperatures depths,
among others. These variable factors trigger changes in the
community structure that inhabits these lakes (Márquez-García
et al., 2009; Dorador et al., 2013; Cordero et al., 2014). Reports
on the microbiology composition from these environments have
increased during the last decade, which reflects the widening
interests in both fundamental and applied topics (Bull et al.,
2016).

Salar de Huasco is a high altitude (3800 m.a.s.l) saline wetland
composed by a complex system composed of various ground
sources, streams, and shallow permanent and non-permanent
ponds (Dorador et al., 2008b, 2010). This wetland presents poly-
extreme environmental conditions that include a broad range of
salinity ranging from freshwater to saturated salt waters, negative
water balance, large daily thermal amplitude (−10 to + 25◦C),
low atmospheric pressure, and one of the highest solar radiations
registered in the world (over 1000 Wm−2; Risacher et al.,
2003; Hernández et al., 2016; Molina et al., 2016). There are
several reports of the composition of microbial communities
including Proteobacteria, Cyanobacteria, ammonia-oxidizing
bacteria, Bacteroidetes, Verrumicrobia, Firmicutes, and Archaea
(Dorador et al., 2008a,b, 2009, 2010, 2013). Bacterial diversity and
active community belonging to most of these groups have been
corroborated using pyrosequencing approaches (Aguilar et al.,
2016; Molina et al., 2016). Moreover, it was demonstrated that
this system presents a large percentage of unclassified sequences
suggesting the existence of large, undiscovered bacterial diversity
(Aguilar et al., 2016), and the diversity and structure of
active bacterial community is extremely dynamic throughout
the day subjected to nutrient recycling (Molina et al., 2016).
In this environment, there have been isolated microorganism
with relevant traits that have been recently studied with the
“omics” approaches that include high-throughput quantitative
proteomics and comparative genomics analysis, for example, the

survival of Rhodocater sp. has been studied under extreme UV
radiation and other environmental stress conditions (Pérez et al.,
2017, 2018), and the phylogenetic placement of Exiguobacterium
sp. SH31 and its possible genetic determinants required for the
response to stress (Castro-Severyn et al., 2017), respectively.
Therefore, Salar de Huasco represents a reservoir of model
microorganisms to study response mechanisms to a wide range
of stress factors.

Halotolerant bacteria are those capable of growing in the
absence as well as in the presence of relatively high salt
concentrations (if growth extends above 2.5 M are known as
extremely halotolerant; Kushner, 1978). Overtime there has
been isolated and taxonomic characterized a large number
of moderately halophilic bacteria (Oren, 2008), and many of
them belong to phyla Cyanobacteria, Proteobacteria, Firmicutes,
Actinobacteria, Spirochaetes, and Bacteroidetes (Ventosa et al.,
1998; Oren, 2008). One of the most important strategies used
by halotolerant microorganisms to thrive in high salinity is the
transport and/or biosynthesis of organic solutes (Imhoff, 1986;
Ventosa et al., 1998; Kempf and Bremer, 1998; Müller and
Oren, 2003; Roberts, 2005; Ma et al., 2010). Interestingly, most
halophilic bacteria maintain intracellular cocktails of different
compatible solutes (Ventosa et al., 1998; Roberts, 2005), and
these molecules can also protect microorganisms against other
stresses, namely, dehydration, heat, desiccation, freezing and
UV radiation (Kempf and Bremer, 1998; Welsh, 2000; Lebre
et al., 2017; Pérez et al., 2017). However, in some Gram-positive
bacteria, the response to different salt concentrations may affect
fatty acids in the membrane lipids, stress response, protein
quality control, endospore germination, chemotaxis, and motility
(Ventosa et al., 1998; Steil et al., 2003; Feng et al., 2007; den Besten
et al., 2009; Hahne et al., 2010; Lopalco et al., 2013).

The versatile genus Exiguobacterium is a highly diversified
group of pigmented Gram-positive bacteria with variable
morphologies, ranging from small rods to cocci, and have
adapted to a large variety of habitats (Collins et al., 1983;
Vishnivetskaya et al., 2009; Kasana and Pandey, 2018). To date,
a large number of Exiguobacterium strains have been isolated
from different habitats with the highlighted relevance of its
ability to thrive in a wide temperature range that pose possible
biotechnological applications (Vishnivetskaya and Kathariou,
2005; Vishnivetskaya et al., 2007, 2009; Kasana and Pandey,
2018). This genus has been divided into two major groups based
on taxonomic and phylogenetic analysis of the genus (using 16S
rRNA gene sequences), group I comprises strains isolated from
cold environments and group II includes strains from alkaline
marine environments and hot springs (Vishnivetskaya et al.,
2009). Furthermore, a recent comparative genomic analysis of 34
available Exiguobacterium genomes proposed that there are six
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clusters (two within group I and four within group II) grouped by
an ANI cut-off value of 75%, this value was necessary to achieve
groups formation, due to the high degree of divergence presented
by this genus. Moreover, the same work revealed differences
between the two groups with respect to the presence of stress-
response genes, which were observed on pigment biosynthesis,
osmo-adaptation, oxidative stress, capsule biosynthesis, DNA
repair, and cold shock genes, using bidirectional BLAST-based
approach. The strains isolated from each environment present
a particular gene repertoire that correlates to those extreme
conditions (Castro-Severyn et al., 2017).

As a consequence of the environments in which this
microorganism is able to live, it has developed several traits of
biotechnological interest, namely, reduce mercury and chrome,
and arseneate to arsenite, neutralize alkaline waste water, and
remove pesticide additionally, some strains are able to function
on variable ranges of temperatures, pH, and salt concentrations.
Numerous strains of the genus Exiguobacterium have been
isolated from saline environments that include saline soils,
salterns, wetlands, high-altitude lakes, among others, showing
its plasticity and adaptation capability (Rebollar et al., 2012;
Ordoñez et al., 2013; Paul and Lade, 2014; Castro-Severyn
et al., 2017; Murthy and Gayathri, 2017); however, the response
from these bacteria to salinity has been poorly studied. Most
of the findings show ranges of tolerance to NaCl in the
genus Exiguobacterium (between 0–20 g/l) have focused on
the description of type-strains and genomes announcement
(Supplementary Table S1). On the other hand, some salt tolerant
Exiguobacterium strains have showed possible applications
in bio-removal of hexavalent chromium from water (Okeke,
2008), reduction of dissolved organics presents in tannery
saline wastewater (Sivaprakasam et al., 2008), treatment of
azo dye wastewater (Tan et al., 2009), and plant growth-
promoting in salt stressed soils for cultivation (Bharti et al.,
2013).

We aimed to understand the salt response mechanisms in
the Exiguobacterium genus, a group of bacteria with relevant
characteristics and high plasticity that promotes it as an ideal
subject to evaluate adaptation strategies that allows it to survive
under extreme conditions, hence we used as a model the
strain SH31 isolated from sediments from poly-extreme Salar de
Huasco. The genome from this strain was recently sequenced,
and several genetic determinants required for the response to
stress were identified (Castro-Severyn et al., 2017). As this strain
possesses several adaptation traits at the genome level, we set
up to characterize the recently discovered SH31 strain and to
describe its physiological response or adaptation against saline
stress. For this, we determined the recurrence of Exiguobacterium
strains in water and sediment of three sites with different salinity
levels. Additionally, we phenotypically characterized the strain
SH31 (shape, presence of flagella, pigmentation), and determined
the effect of NaCl concentration on its growth, motility, fatty
acid composition, and biofilm formation. Finally, we searched
compatible solutes synthesis and transport genes in the strain
SH31 and sequenced members of Exiguobacterium genus, and we
determined the transcriptional expression of genes of interest that
are related to osmoprotection.

MATERIALS AND METHODS

Site Description and Sample Collection
During January 2011, we collected water and sediment samples
from three sites in the Salar de Huasco (3,800 m altitude). The
salar shows high spatial heterogeneity, represented by shallow
permanent and non-permanent lagoons, streams, bofedales
(peatlands), and salt crusts (Dorador et al., 2008b). The sampling
sites (H3, H4, and H6) were selected because they showed
different levels of salinity (Table 1). Salinity and conductivity
were recorded with a Hanna HI 98192 meter, and pH with a
Hanna HI 8314 meter.

Enrichment and Isolation of Halophilic
Bacteria
Samples of water and sediment were collected at three sites of
Salar de Huasco. Upon collection, samples were inoculated into
YP culture medium (2 g/l yeast extract, 5 g/l Peptone and different
salt concentrations [0, 25, 50, and 100 g/l NaCl]) and incubated
at 25◦C for 24 h. Enrichments were then plated in marine broth
(prepared following the manufacturer’s instructions – Difco) and
YP medium (both including 12 g/l of agar). The plates were
incubated at 25◦C until the appearance of colonies. All colonies
(50 in total) were re-isolated into YP culture media and the salt
tolerances (within a range of 0–150 g/l) were tested.

Molecular Identification and
Phylogenetic Analysis
DNA from isolated halophilic bacteria was extracted using Ultra
Clean Soil DNA Isolation Kit (MoBio Lab., Inc.). For PCR-
amplification of bacterial 16S rRNA genes, 27F and 1542R
primers (Stackebrandt et al., 1993) were used. Each PCR reaction
contained 5x PCR-buffer with 1.7 mM MgCl2 (Roche), 2 mM
dNTP mixture (Gibco), 0.8 µM of each primer, 1.25 U Taq
polymerase (PROMEGA), 10–50 ng template DNA, and MiliQ
water to a final volume of 25 µL. PCR reactions were performed
using the following conditions: initial denaturing step of 5 min
at 94◦C, followed by 30 cycles of denaturing at 94◦C for 45 s,
annealing at 40◦C for 45 s, elongation at 72◦C for 1.5 min,
and a final elongation step at 72◦C for 5 min. 16S rRNA
sequences of phylotypes were compared with GENBANK using a
BLAST search (accession numbers are shown in Table 2; Altschul
et al., 1990). A total of 64 sequences including the isolated and
closest relatives were aligned using MUSCLE (Edgar, 2004) and a
phylogenetic tree was constructed using MEGA6 (Tamura et al.,
2013) with the maximum likelihood method based on general
time reversible (GTR) model (Nei and Kumar, 2000). A total of
1,000 iterations were used.

Electron Microscopy
Morphology and flagellum presence in the Exiguobacterium sp.
SH31 strain was examined by transmission electron microscopy
(TEM), cells were grown in three separated conditions (YP
medium with 0, 25, and 50 g/l NaCl), at 25◦C, until the early
stationary phase. After, the cells were washed with ultra-pure
water and were later suspended to an OD600 of 0.5 and aliquots
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TABLE 1 | Location and characteristics of sampling sites at Salar de Huasco.

Site Location Salinity Conductivity pH

H3 S 20◦ 16′ 59.2′ ′ W 068◦ 53′ 17.2′ ′ 0.3% 623 µS/cm 8.60

H4 S 20◦ 17′ 41.6′ ′ W 068◦ 53′ 17.3′ ′ 12.3% 20,600 µS/cm 8.81

H6 S 20◦ 19′ 42.3′ ′ W 068◦ 51′ 10.1′ ′ 1.2% 2,300 µS/cm 8.60

TABLE 2 | Halophilic bacterial phylotypes isolated from water and sediment samples of Salar de Huasco.

Phylotype Sample Site Isolates AN First hit Blastn Identity NaCl tolerance

1 Water H6 1a KU696292 Shewanella baltica strain 63 99% 0–25 g/l

2 Water H6 2a KU696293 Pseudoalteromonas sp. BSs20043 98% 25–50 g/l

3 Water H3, H6 3a, 6a, 7a, 21a KU696289 Halomonas sp. B01 99% 25–100 g/l

4 Water H3, H6 4a, 8a, 19a, 22a KU696291 Aeromonas sp. Z2_S_TSA18 99% 0–50 g/l

5 Water H3, H4, H6 5a, 13a, 15a, 17a KU696287 Exiguobacterium sp. AC-SC-C2 99% 0–50 g/l

6 Water H4 9a, 10a KU696294 Pseudoalteromonas aliena strain
EH1

99% 25–100 g/l

7 Water H4 11a, 12a,14a KU696288 Pseudomonas guineae strain LMG
24016

99% 0–25 g/l

8 Water H3 18a KU696290 Erwinia aphidicola strain LMG
24877T

99% 0–50 g/l

9 Water H3 20a KU696286 Exiguobacterium undae strain
GLPB9

99% 0–50 g/l

10 Sediment H3, H4 23a, 41a, 44a,46a KU696302 Halomonas neptunia strain MAT-17 98% 25–100 g/l

11 Sediment H3, H4 24a, 43a KU696303 Uncultured Pseudoalteromonas sp.
Clone C146500413

99% 25–50 g/l

12 Sediment H4 25a KU696301 Halomonas ventosae strain
XJSL6-9

99% 25–100 g/l

13 Sediment H4 27a KU696308 Staphylococcus warneri strain 41cp 100% 0–100 g/l

14 Sediment H3, H4, H6 28a, 29a, 31a, 34a, 38a,
45a, 47a, 48a, 49a, 50a

KU696296 Exiguobacterium sp. AC-SC-C2 99% 0–50 g/l

15 Sediment H4 30a KU696298 Marinobacter excellens strain KMM
3809

99% 5–100 g/l

16 Sediment H6 32a KU696300 Marinobacter persicus strain M9B 98% 25–100 g/l

17 Sediment H6 33a, 39a KU696306 Vibrio metschnikovii strain NB9 99% 0–50 g/l

18 Sediment H3, H4 34a, 49a KU696297 Bacillus methylotrophicus strain
CBMB205

99% 0–100 g/l

19 Sediment H6 35a KU696295 Halomonas sp. GT 99% 25–100 g/l

20 Sediment H6 36a KU696307 Salinivibrio sp. S10B 97% 25–200 g/l

21 Sediment H6 37a KU696304 Idiomarina loihensis GSL 199 99% 25–50 g/l

22 Sediment H6 40a KU696305 Enterobacter aerogenes strain
PSB28

99% 0–50 g/l

23 Sediment H3 42a KU696299 Halomonas sp. M45-2N 96% 25–100 g/l

The bold numbers are the sequences deposited at GenBank. AN, accession number.

of 10 µl were placed onto carbon-coated nickel grids. After the
microorganisms settled in the grid for 10 min, the samples were
dried as described previously (Remonsellez et al., 2006). Finally, a
transmission electron microscope (Philips Tecnai 12), operating
at 80 kV, was used to obtain images.

Extraction of Pigment and
Spectrophotometric Analysis
Cells of Exiguobacterium strain SH31 were grown until the early
stationary phase in YP culture media with 25 g/l NaCl and were
harvested by centrifugation at 7,700 g for 15 min. Pellets were
washed with sterile distilled water and spun at 1,000 g for 15 min.
Each pellet was suspended in 5 ml absolute methanol, subjected

to vigorous vortex for 2 min, followed by a resting period of
10 min and centrifuged at 4,000 g for 15 min. The colored
supernatant was filtered through Whatman no.1 filter paper. The
absorption spectrum of the pigment extract was measured within
wavelengths of 270–660 nm in a UV–visible spectrophotometer
UV 1800 (Shimadzu).

Effect of Salinity on Phenotypic
Properties
The metabolic capacity and utilization of organic substrates
as sole carbon sources by Exiguobacterium sp. SH31 under
different NaCl concentrations (0, 25, and 50 g/l) was tested
using Biolog GP2 MicroPlates (Microlog Systems) according to
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the manufacturer’s instructions. YP medium plus the different
NaCl conditions was used instead of Biolog Universal Growth
agar medium after bacterial culture with the same conditions as
before. Cell suspensions were prepared in the inoculating fluid (IF
GN/GP). The inoculated plates were incubated for 24 h and the
results were read (OD590) with a multimode plate reader (Tecan
Infinite M200 Pro). The analysis was carried out as recommended
by Garland (1997).

Effect of Salinity on Growth
The Exiguobacterium strain SH31 was grown in YP culture media
with 0, 25, 50, and 75 g/l NaCl. Cells were incubated at 25◦C
and orbital agitation at 120 rpm for 75 h was performed. These
experiments were performed with previously adapted cells to
their respective salt concentrations. Growth was monitored by
measuring OD600 in a UV–visible spectrophotometer UV 1800
(Shimadzu).

Effect of Salinity on Fatty Acid
Composition
To determine the effect of NaCl on fatty acid composition of
the Exiguobacterium strain was grown at 25◦C in YP medium
with the three different NaCl concentrations (0, 25, and 50 g/l)
separately, until the early stationary phase. Cells from 0.5 l of each
culture were lyophilized and mixed with methanol:hydrochloric
acid:chloroform (10:1:1 v/v) for transesterification, as previously
described (Miller and Berger, 1985). The fatty acids were
identified as methyl esters using gas chromatography-mass
spectrometry (Focus Clarus 680, Perkin Elmer) coupled with a
mass spectrometer (Clarus SQ 8T model, Perkin Elmer) equipped
with a DBP-1 capillary column (30 m× 0.2 mm, i.d.× 0.33 µm).
Helium was used as a carrier gas at a flow rate of 1 ml/min. Oven
temperature was initially kept at 150◦C for 10 min, ramped at
4◦C/min to 300◦C, and held for 5 min. Spectra were recorded
in full scan (from 50 to 500 m/z). The esterified fatty acids were
identified by comparing the mass spectra with the NIST MS 2.O
library data.

Effect of Salinity on Motility
Swimming motility assays were done as previously described
with minor modifications (Roeßler et al., 2000). Exiguobacterium
strain was grown in the solid YP medium (0.3% of agar-Difco)
and the petri dish was inoculated with a drop over the agar in the
center. Assays were performed in the absence (0 g/l NaCl) and in
the presence of NaCl (25 and 50 g/l NaCl), and the motility ratios
were determined after 72 h of incubation at 25◦C.

Effect of Salinity on Biofilm Formation
Biofilm formation assays were examined on polystyrene plates
using crystal violet (CV) staining (Pratt and Kolter, 1998).
Assays were done as described previously with the following
modifications (Ueda and Wood, 2009). Overnight cultures of the
Exiguobacterium strain SH31 grown in YP medium with 0, 25,
and 50 g/l NaCl were diluted to OD600 of 0.05 with fresh YP
medium with their respective salt concentrations, and then 1 ml
of diluted bacterial culture in quadruplicate were incubated in

48-well polystyrene plates for 50 h at 25◦C. Later, the bacterial
cultures were removed from wells. After wells were stained
with 1 ml of 1% CV, rinsed and thoroughly dried, the CV was
solubilized by the addition of 1.2 ml of ethanol–acetone (80:20).
1 ml of the solubilized samples were used to determine the OD570
using a UV–visible spectrophotometer UV 1800 (Shimadzu).
The OD570 values were normalized using the cell density value
(OD600) of overnight culture for each condition (0, 25, and 50 g/l
NaCl).

Exiguobacterium Genomic Dataset and
Orthologous Search
All available genome sequences used in the analyses have been
deposited in GenBank as of May 2017 (Supplementary Table S2).
The resulting 42 genomes were organized into 22 described
species, plus 20 not classified at the species level. All the genomes
were re-annotated using a combination of ab initio and similarity
methods as implemented in Prokka version 1.10 (Seemann, 2014)
in order to even all the annotations and make them more
comparable. We set out to find on the SH31 strain genome, 15
genes (Supplementary Table S3) reported as related to processes
of bacterial osmotolerance using BLAST (Altschul et al., 1990).
We downloaded protein sequences for each one of these genes
from Swiss-Prot (Bairoch and Apweiler, 2000) and performed
a reciprocal BLAST (tblasn) against SH31 genome, to infer its
presence and homology. Following, we search on the genomes
data set for the presence and copy number of these genes, using
the best hits, through BLAST. A maximum e-value of 1E−05

and a query coverage filter of 85% were used to avoid partial
alignments. This strategy was used to compare osmotic stress
related genes through the whole data set, as well as pigment
synthesis ones on the SH31 strain.

Relative Expression of Genes Related to
Osmoprotection
To determine the relative expression of genes involved in
osmoprotection that are present in Exiguobacterium SH31:
opuBA, putP, glnA, proC, gltA, gbsA, fliG, fliS, ywqC, bdlA,
luxS, and pgaC, transcripts levels were quantified by qt RT-PCR.
Exiguobacterium SH31 was grown in YP medium at 25◦C with
constant agitation in the three different conditions (0, 25, and
50 g/l of NaCl) until reaching an OD600 of 0.4. At this point,
the cultures were pelleted and RNA extractions were carried out
using the GeneJET RNA Purification Kit (Thermo Scientific)
according to manufacturer’s instructions. RNA integrity, quality,
and quantity were verified using 1% agarose electrophoresis
and OD260/280 ratios. cDNA was synthesized using the M-MLV
Reverse Transcriptase kit (Promega) and Random Primer
oligonucleotides hexamers (InvitrogenTM). The PCR reaction
was carried out as follows: 10 minutes at 95◦C followed by 40
amplification cycles (95◦C × 30 s, 58◦C × 30 s, 72◦C × 30 s),
and a final step of 95◦C × 15 s; 25◦C × 1 s; 70◦C × 15 s; and
95◦C× 1 s) using primers specific for each gene (Supplementary
Table S4). Transcript levels were quantified using the Brilliant II
SYBR Green qPCR Master mix kit (Agilent Technologies) on a
Stratagene Mx3000P thermal cycler. Gene expression levels were
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calculated according to Pfaffl (2001) using 16S rRNA gene as
normalizator.

Statistical Analysis
All the assays were performed in at least three independent
experiments with three technical replicates each. One-way
ANOVA with post hoc Tukey HSD test was used for all
comparisons and a P-value < 0.05 was considered statistically
significant. All the statistics were performed using GraphPad
Prism 5.0, (Prism R©, San Diego, CA, United States1).

RESULTS

Diversity and Recurrence of Isolated
Halophilic Bacteria
Halophilic bacteria were isolated from three study-sites that
had similar pH values, but marked differences in salinity and
conductivity values, which have been defined in previous works
(Dorador et al., 2008a, 2010). The sampling sites from north to
south include: H3: shallow lagoon with low salinity, H4: shallow
hypersaline lagoon, and H6: anoxic lagoon with fluctuating
water levels and high salinity (Table 1). A total of 50 isolates
were obtained in this study, and 21 of these isolates come
from water samples and 29 from sediments. All of them were
classified within Gammaproteobacteria class and Firmicutes
phylum (Supplementary Figure S1). In the water samples, we
observed seven different genera that included Aeromonas,
Erwinia, Halomonas, Pseudoalteromonas, Pseudomonas,
and Shewanella, with only Exiguobacterium representing
Firmicutes. Members of Halomonas and Exiguobacterium
genera were found in all waters samples (Table 2). Instead,
within the 11 genera detected in the sediment samples, it was
observed the presence of Enterobacter, Halomonas, Idiomarina,
Marinobacter, Pseudoalteromonas, Pseudomonas, Salinivibrio,
and Vibrio; and Bacillus, Exiguobacterium, and Staphylococcus
as part of Firmicutes. Although members of Halomonas and
Exiguobacterium genera were also detected in all sediment
samples, the latter one was the most abundant isolate (10
isolates), this may be a cause of favoring culture conditions
and medium. The phylogenetic analysis of the most abundant
phylotype (represented by strain SH31) showed 99% similarity
in the 16S rRNA gene sequence with Exiguobacterium sp. AC-
SC-C2 (FJ231171) and Exiguobacterium aurantiacum DSM 6208
(type-strain). Moreover, the salt tolerance of phylotypes showed
the presence of strict halophiles and halotolerant between the
isolated bacteria, in which Exiguobacterium strains were able to
tolerate up to 50 g/l NaCl (Table 2). Therefore, it is notable that
Exiguobacterium is a recurrent halotolerant cultivable bacterium
in this poly-extremophilic ecosystem.

Characterization of the Recurrent
Exiguobacterium Strain, SH31
The isolated strain, SH31, showed rod morphology, only one
polar flagellum, which was not altered by the absence (0 g/l)

1www.graphpad.com

or presence (25 g/l) of NaCl in the growing culture (Figure 1).
The same phenomena were observed in the presence of 50 g/l
NaCl (data not shown). On the other hand, SH31 strain colonies
are regular, circular, and orange-pigmented (Supplementary
Figure S2A). The methanolic extract of SH31 cells analyzed
spectrophotometrically by scanning the absorbance within a
wave length region 270–670 nm demonstrated the presence
of a shoulder peak with a maximum absorbance of λ = 465
(Supplementary Figure S2B). Moreover, in regard of the
spectrophotometric determination of SH31 pigments, the
genomic analysis showed, as we expected, the presence of genes
related to carotenoids biosynthesis (crtB, crtD, crtP, and carC)
located in the same gene context with other genes that have been
referenced as participants in processes like L-arginine and uridine
monophosphate biosynthesis and others (carH, carD, carA,
pcs, trans-aconitate 2-methyltransferase, N-glycosyltransferase,
acyltransferase; Supplementary Figure S2C).

Phenotypic properties such as the ability of the SH31 strain
to utilize or oxidize different carbon sources was tested to
yield a characteristic pattern, which could constitute a metabolic
fingerprint for this strain and for each condition tested. The
pattern of strain SH31 presented a level of similarity of 49% with
respect to E. aurantiacum DSM 6208 (type-strain) in the control
condition (NaCl 0 g/l) and comparing the three NaCl conditions
(only in SH31 strain), we find that the pattern does not turn
out to be logic or viable, because as the concentration of salt
in the test increases, the amount of positive reactions decreases
(Supplementary Table S5). This phenomenon may be due to the
fact that the high NaCl concentration in the tests causes some
type of interference in the reaction, so it is unable to yield an
appropriate result.

Effect of Salinity on Growth, Fatty Acids,
Motility, and Biofilm Production in Strain
SH31
The growth curve of the SH31 strain reveals its ability to replicate
in the presence of high salt concentrations. We found that at
25 g/l of NaCl this strain exhibits its best growth behavior,

FIGURE 1 | Visualization of Exiguobacterium strain SH31 cells grown in the
presence of NaCl by transmission electron microscopy (TEM). Cells were
grown to early stationary phase in 0 g/l (A) and 25 g/l (B) NaCl. Arrows
indicate the presence of flagella.
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reaching an OD600 value of 1.4 and stationary phase earlier than
the other conditions evaluated (around 24 h). SH31 is classified
as halotolerant, interestingly, in the absence of NaCl; SH31 is also
able to grow well, although it exhibits slower and poor growth
in the 50 g/l concentration. We also found that 75 g/l completely
inhibits the ability of the SH31 strain to survive and replicate itself
(Figure 2).

The major amounts of fatty acids found in strain SH31 were
iC15:0, C16:0, and C17:0 and other minor components listed in
Table 3. The proportion of fatty acids of strain SH31 did not
change with varying salt concentrations in the medium. Although
it was previously evidenced that SH31 strain is phylogenetically
related to Exiguobacterium mexicanum and Exiguobacterium
auriantiacum (Castro-Severyn et al., 2017), our results regarding
fatty acids patterns show differences between then (Table 3).
However, E. mexicanum and E. auriantiacum type-strains show
some resemblance, although iC17:0 and C18:1ω9c are absent
in E. mexicanum while C16:1ω7c is absent in E. auriantiacum
(Table 3). The fatty acid patterns of other members of the
Exiguobacterium group II (Exiguobacterium alkaliphilum and
Exiguobacterium marinum) also show differences with the SH31
strain (Kim et al., 2005; Kulshreshtha et al., 2013).

Swimming motility was observed in cultures exposed to 0
and 25 g/l NaCl and showed the highest motility ratio at
25 g/l of NaCl (Figure 3). However, motility was completely
inhibited at 50 g/l. The highest motility was reached in the same
NaCl concentration where SH31 strain exhibited its best growth
(Figure 2). Nonetheless, at higher concentrations, it is still able
to survive, and although it has flagellum (as confirmed by TEM,
Figure 1), it is not motile, which suggests that at these salt
concentrations, the cell is less active or could be under some
kind of regulation by environmental cues (Chatterjee et al., 2010).
On the other hand, it has been reported that several bacterial
groups are able to generate extracellular compounds to establish
their niche and survive. Specifically, bacteria use biofilms as a
structure to resist adverse conditions. Here we find that SH31
strain increases the production of biofilm proportionally to salt
concentrations in the media (Figure 4), this phenomenon is very
common among extremophile bacteria or those that face extreme
conditions, in which this structure is used as protection (Le
Magrex-Debar et al., 2000; Hall-Stoodley et al., 2004; Thormann
et al., 2005).

Genomic Analysis
To assess the genomic possibilities of the Exiguobacterium genus,
and specifically the SH31 strain’s ability to cope with highly
saline environments, we used a reciprocal BLAST approach
against Swiss-Prot. The SH31 strain genome was searched for
the presence of osmoprotection genes in the way of transport
and compatible solutes biosynthesis. In this search, we selected
15 genes to use as queries against all 41 other Exiguobacterium
genomes and searched for the orthologous genes and the copy
number of each gene (Figure 5). Overall, we found that all the
genomes have a good repertoire of genes related to this function.
The important variation (revealed in the dataset) is related to
gene copy number and, in most cases, not related to a specific
group, contrary to what was previously reported on this genus

for most of the arsenic resistance genes (Castro-Severyn et al.,
2017). In only a few cases, we observed some kind of group
pattern, specifically opuBA, opuBB, and glnA genes, which are
generally absent in group I, the first two genes are part of a choline
transport system and the last with a glutamine synthesis process.
Other particular cases (like the gltB gene, which is involved in
the glutamate synthesis) is absent in some group II strains and in
some strains of group I have multiple copies. The copy number of
these genes in each strain may be very particular or specific to its
own niche, or the specific conditions that each one of the strains
faces.

Transcriptional Expression of Genes
Related to Osmoprotection
To correlate the gene expression with the phenotypic experiments
and gain insight on the participation of different processes that
lead (as a whole) to the osmotolerance capacity of this strain,
we measured the transcript of several genes of interest that
participate in processes like transport systems, compatible solutes
biosynthesis and resistance to stress conditions as motility and
biofilm production. Gene expression (quantified by qRT-PCR)
shows a clear induction in all measured genes in response to
the salinity conditions (25 and 50 g/l), compared to the levels
found in 0 g/l NaCl (Figure 6 and Supplementary Table S6).
By functional grouping, we observed that those genes related
to transport (opuBA, putP) were up to 50-fold in expression as
were genes related to compatible solutes (proC, glnA, gltA, gbsA).
Furthermore, expression of genes related to motility (fliS, fliG),
biofilm, and stress response (bdlA, pgaC, luxS) were also induced,
but not as high as the previous groups, except for the ywqC
gene (biofilm formation) which was the only one that showed
repression under the 25 g/l NaCl condition and no difference in
the 50 g/l NaCl condition, with respect to controls.

DISCUSSION

Previous studies have shown there is a high presence of
Proteobacteria, and also the presence of Firmicutes (but in
lower abundance), in Salar de Huasco (Dorador et al., 2013;
Aguilar et al., 2016; Molina et al., 2016). Regarding cultivable-
dependent techniques, most studies are focused on using
selective media to cultivate groups of halophilic prokaryotes
and primarily focus in Archaea or extreme halophilic bacteria
because of the biochemical strategies used to survive in high salt
concentration. These halophilic bacteria are present in our study
site (Table 1). In this context, members of Gammaproteobacteria
(i.e., Halomonas and Salicola) and Firmicutes (Bacillus) are
the most recurrent isolates identified from cultivable diversity
studies in saline systems (Rohban et al., 2009; Sabet et al.,
2009; Vahed et al., 2011; Luque et al., 2014; Kalwasinska et al.,
2017). Strains with different grades of salt tolerance that belong
to Pseudomonas, Pseudoalteromonas, and Staphylococcus genera
have been isolated from two high altitude Andean lakes in
Argentina (Flores et al., 2009). All these groups, besides members
of Idiomarina, Marinobacter, and Salinibrivio genera, have been
isolated from a saline lake in Romania, and its halotolerance
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FIGURE 2 | Growth of Exiguobacterium sp. SH31 in the presence of NaCl. Strain SH31 cells were grown in their respective growth media in absence of NaCl or
supplemented with 25, 50, or 75 g/l NaCl. OD600 readings were recorded during 74 h. Mean values (n = 3) are plotted.

TABLE 3 | Fatty acid composition of Exiguobacterium sp. SH31 grown in different NaCl concentrations and comparison with the closer type strains.

Fatty acid E. sp. SH31 (This work) E. mexicanum DSM 16483T E. auriantiacum DMS 20416T

0 g/l NaCl 25 g/l NaCl 50 g/l NaCl (López-Cortés et al., 2006) (Frühling et al., 2002)

iC7:0 0.09 0.23 0.28 – –

3-(methyltio)C3:0 0.09 0.38 0.41 – –

C4:0 (diacid) 0.57 0.73 0.68 – –

iC11:0 – – – 1.5 2.0

iC12:0 – – – 2.1 3.0

C12:0 – – – 8.1 2.0

iC13:0 0.21 0.18 0.19 11.2 18.0

aiC13:0 – – – 8.3 12.0

C13:0 0.08 0.12 0.10 – –

iC14:0 1.01 0.38 0.3 – –

C14:0 3.77 2.55 2.51 6.1 3.0

iC15:0 62.01 65.44 65.14 1.7 4.0

C16:1w7c – – – 6.5 –

C16:1w9c 0.44 0.28 0.32 – –

C16:1w11c – – – 10.3 10.0

iC16:0 4.19 2.52 2.72 – –

C16:0 9.67 11.94 12.03 32.8 27.0

iC17:0 0.61 1.46 1.44 – 6.0

C17:0 16.69 13.38 13.12 – –

C18:1w9c – – – – 2.0

C18:0 0.57 0.41 0.43 7.0 5.0

capabilities have also been determined (Crognale et al., 2013).
Strains of Shewanella and Aeromonas genera have been isolated
from Salar de Aguas Caliente and research was focused on its
capabilities of resistance to UV radiation (Demergasso et al.,
2010). The effect of several stress factors were studied in an

Enterobacter strain isolated from a high-altitude Andean saline
lake (Dib et al., 2008). One member of the Vibrio genus, Vibrio
ruber, is one the most studied halophilic eubacteria (Ventosa
et al., 1998), and members of this genus have also been found
in non-marine systems such as Salar de Atacama, where the
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FIGURE 3 | Effect of salinity in motility of Exiguobacterium strain SH31. The microorganism was adapted to grow with 0, 25, and 50 g/l NaCl. Cells were inoculated
in their respective salts concentration in swim plates and photographed after 72 h of incubation at 25◦C.

FIGURE 4 | Biofilm production by Exiguobacterium sp. SH31 under different NaCl conditions. Data represents an average of three independent experiments with
three technical replicates each (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).

relation between pigmentation and salt tolerance was investigated
(Gallardo et al., 2016).

The Exiguobacterium genus has been widely described as
a highly diverse group that are found in different habitats,
which include extreme environments (Vishnivetskaya et al., 2009;
Kasana and Pandey, 2018). However, bacteria in this genus are
not reported as common in saline environments (Oren, 2015;
Ventosa et al., 2015), several Exiguobacterium strains have been

isolated from saline lakes with the aim of studying their responses
to different stress factors, such as UV radiation and heavy metals
(Flores et al., 2009; Ordoñez et al., 2009, 2013; Demergasso
et al., 2010; Castro-Severyn et al., 2017; Strahsburger et al.,
2017). Interestingly, results regarding the phylogenetic analysis
of the phylotype represented by strain SH31 (Supplementary
Figure S1) show similarity with the Exiguobacterium strain,
AC-CS-C2 isolated from Salar de Aguas Calientes, Chilean
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FIGURE 5 | Compatible solutes synthesis and transport genes in sequenced Exiguobacterium strains. The first column indicates Vishnivetskaya et al. (2009)
grouping, and colors indicate the copy number of genes.

Altiplano (Demergasso et al., 2010). However, our group recently
revealed that the Exiguobacterium strain, S17, was the most
similar isolate to strain SH31 using ANI analysis with available
Exiguobacterium genomes (Castro-Severyn et al., 2017). Strain
S17 was isolated from the Argentinian Altiplano (Lake Socompa),
which had similar environment conditions to Salar de Huasco
(Ordoñez et al., 2013). Moreover, Exiguobacterium strains that
were isolated in this work have ranges of tolerance to NaCl
between 0–50 g/l (Table 2), which is the highest described to
date. It is important to note that the response to salt has not
been previously studied in this group of microorganisms, only
salt tolerance values have been mostly reported in type-strains
description studies (Supplementary Table S1). In this way, these
recurrent Exiguobacterium strains are candidates to relate saline
adaptations with the viability of growth in a wide range of salt
concentrations, analogous to the salinity values measured in Salar
de Huasco.

The morphology shown by the SH31 strain corresponds
with the one described in Collins et al. (1983), for this genus.
However, it has been stated that the Exiguobacterium genus
has morphological diversity (ovoid, rods, double rods, and
chains), which depends on the species, strain, and environmental
conditions (Vishnivetskaya et al., 2007, 2009). The strain SH31
presents a polar flagellum (Figure 1), which has also been
observed in E. marinum that is isolated from the Yellow Sea in

Korea (Kim et al., 2005). On the contrary, most of the described
strains-types present with peritrichous flagellation; for instance,
E. auriantiacum, Exiguobacterium undae, Exiguobacterium
antarcticum, and Exiguobacterium aestuarii (Collins et al., 1983;
Frühling et al., 2002; Kim et al., 2005). Despite the flagellation
type, all the described strains of the Exiguobacterium genus
are classified as motile (e.g., Collins et al., 1983; Frühling
et al., 2002; López-Cortés et al., 2006), but the effect of
salinity in the presence of flagella and motility have not
been previously studied in these microorganisms. In addition,
the versatile Exiguobacterium genus is a pigmented group of
Gram-positive bacteria (Kasana and Pandey, 2018), and strain
SH31 is not the exception, presenting with orange colonies
(Supplementary Figure S2A) and showing a peak maximum
absorbance in the visible wavelength region, between 400 and
500 nm (Supplementary Figure S2B), which is a typical pattern
of absorption spectrum of a carotenoid (Liakopoulou-Kyriakides
and Kyriakidis, 2002). Moreover, several members of this
genus, which include E. auriantiacum, E. undae, E. antarcticum,
Exiguobacterium sibiricum, E. aestuarii, and E. marinum, have
shown the presence of orange pigmentation that have different
intensities (Collins et al., 1983; Frühling et al., 2002; Kim et al.,
2005; Rodrigues et al., 2006).

Carotenoid biosynthesis in microbes is a well-regulated
mechanism that is dependent on the environmental conditions
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FIGURE 6 | Relative expression of genes related to osmotolerance processes in Exiguobacterium sp. SH31 under different NaCl conditions. Data represent an
average of three independent experiments with three technical replicates each (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).

and stress (Bhosale, 2004). The enzymes phytoene synthase
(crtB), phytoene desaturase (crtI), and lycopene cyclase (crtY)
are essential in the carotenoid biosynthetic pathway, specifically
responsible for the biosynthesis of both acyclic and cyclic
carotenoids (Vachali et al., 2012). Carotenoid synthases appear
to play the role of pathway gatekeeper; however, enzymes that
function downstream in the pathway are less specific and appear
to recognize only a particular motif of the substrate (Umeno
et al., 2005). In the case of the strain SH31, the synthesis
of acyclopenoic lycopene is probable due to the presence of
phytoene synthase (crtB), and two desaturase enzymes (carC
and crtD; Supplementary Figure S2C). The four steps of
conversion of phytoene to lycopene have been demonstrated by
the cooperation of two desaturases enzymes in the gram-negative
bacterium, Myxococcus xanthus (Iniesta et al., 2007). In many
organisms, carotenoids act as an antioxidant by neutralizing
free radicals and thereby prevent oxidative damage to the
cells (Köcher et al., 2009; Vachali et al., 2012). Furthermore,
transcriptional profiles associate with general stress response in
B. subtilis and revealed the expression of genes with a potential
protective function. These include yisP, which is similar to
carotenoid synthases (Price et al., 2001). Pigment biosynthesis has
been extensively studied because of its importance in healthcare
and food industries (Vachali et al., 2012).

Despite that the genus Exiguobacterium is prevalent and
adapted to various environments (from cold environments to hot
springs), most of these studies have focused on describing new
strains and investigating their ability to grow over a wide range

of temperatures (Vishnivetskaya et al., 2009; Kasana and Pandey,
2018). Tolerance to salt has been determined (in a basic way)
in some members of the genus Exiguobacterium, described as
type-strains (Supplementary Table S1). Although several strains
of the genus Exiguobacterium have been isolated from saline
environments, only the work of Rebollar et al. (2012) focused
on studying halophilic properties to explore the influence of
ecological factors on the evolution of bacterial populations. To
date, strain SH31 shows the highest tolerance to salt that is
described for this genus (Figure 2 and Supplementary Table S1);
therefore, it is an interesting candidate to study adaptation
mechanisms against a wide range of salinities.

As mentioned before, the presence of flagellum (polar and
peritrichous flagellation) and motility have been widely described
in Exiguobacterium strains (Vishnivetskaya et al., 2009), but
our results are the first that relate salinity with the presence of
flagellum and motility in this genus (Figure 3). A negative effect
of high salinity (∼70 g/l NaCl) on motility (Steil et al., 2003),
and a repression of genes involved in chemotaxis and motility
were observed in the Gram-positive Bacillus subtilis by using
proteomic and transcriptomic approaches (Hoffmann et al., 2002;
Steil et al., 2003). Conversely, the motility of the moderately
halophilic Gram-positive Halolactibacillus halophilus is strictly
dependent of chloride, and an increase in chloride concentration
led to a simultaneous increase in motility. Moreover, cells grown
in the absence of chloride were lacking flagella; however, it
was restored upon the addition of chloride (Roeßler et al.,
2000). A recent report indicates that the salt concentration is
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dependent on motility in a pigment halotolerant Vibrio strain
isolated from Salar de Atacama, but motility was inhibited
in higher salt concentrations (150 g/l NaCl; Gallardo et al.,
2016). Substantial energy is needed for flagellar biosynthesis
and bacteria are able to inhibit certain processes in response to
stress, motility was reduced, and biofilm formation was seen in
SH31 (Figure 4) a general bacterial response to osmotic stress
found in diverse organisms, as it was shown in Pseudomonas
putida (Bojanovič et al., 2017). Some factors that induce biofilm
maturation, including in Pseudomonas and Shewanella, are
changes in oxygen or carbon substrate concentration, pH, or
other chemical parameters (Gjermansen et al., 2005).

Salt-dependent changes in the cell membranes are reflected
in the types of phospholipids that dominate it and the types
of fatty acid chains present in these lipids. Since the fatty
acid composition is also influenced by temperature, it can
be expected a complex interrelation between salinity and
temperature (Ventosa et al., 1998). Even though changes in
the fatty acid pattern were not observed in strain SH31, due
to the presence of salts (Table 3), the branched-chain fatty
acids, such as 15:0, are dominant in some halophilic Gram-
positive bacteria (Monteoliva-Sanchez et al., 1989). Moreover,
the concentration of these branched-chain fatty acids variates
with salinity (Russell, 1993). On the other hand, the amount of
shorter chains increased and the presence of chains that were
unsaturated were observed in H. halophilus after increases the
salinity in the culture medium. These changes might compensate
for the increase in the arranging and rigidity of the phospholipid
and sulfoglycolipid polar heads in high-salt environment, as a
consequence contributes to the homeostasis of membrane fluidity
and permeability in salt stress conditions (Lopalco et al., 2013).
The remarkable differences between the SH31 strain and other
members of Exiguobacterium genus support the high degree of
variability at genome level between strains of the genus recently
demonstrated; additionally, it was found that SH31 clusters with
the S17 strain that was isolated from an environment with similar
poly-extremophile environment (Castro-Severyn et al., 2017).

Genomic analysis shows that some type of genetic redundancy
related to osmotolerance functions may increase the ability of
some strains (E. marinum DSM 16307, Exiguobacterium enclense
NIO-1109, E. undae 190-11) to tolerate higher concentrations
of salts in their environment. This stems from the identification
of a positive correlation between the genomes that have the
largest number of copies of some genes (opuCA and gltR) and
their reported resistance (Figure 5 and Supplementary Table S1;
Rodrigues et al., 2006; Dastager et al., 2015).

In almost every process evaluated, the relative gene expression
was induced by the presence of the NaCl concentrations: 25
and 50 g/l (Figure 6). Genes were separated into functional
groups; those related to transport systems (opuBA and putP) were
induced in both conditions (25 and 50 g/l NaCl) compared to
the control. putP was, in particular, strongly overexpressed. This
gene product is a high-affinity proline/sodium symporter, which
carries out the uptake of extracellular proline, which can be used
as a source of nitrogen and carbon (Moses et al., 2012); on the
other hand, opuBA is part of a choline transport mechanisms
commonly related to cell osmoprotection (Kappes et al., 1999)

and this gene is also induced, but in a smaller amount. Also, it
seems that for this gene, the condition of 25 g/l caused a greater
effect on its expression compared to the 50 g/l condition. Choline,
a compatible solute transported by the product of this gene and
has been proven to be directly related to the ability of several
bacteria to resist NaCl (Sand et al., 2014; Scholz et al., 2016).

The expression of all measured genes related to compatible
solute biosynthesis turned out to occur in both salt conditions.
We selected a representative gene of several compounds
biosynthesis, like proline (proC), glutamate (gltA), betaine (gbsA),
and glutamine (glnA). glnA was the only that did not show
a significant increase related to the control condition, and it
was only observed in the 50 g/l condition. These compatible
solute strategies allowed the bacteria to cope with high salinity
environments and were widely studied in several organisms
that thrive under adverse conditions (Kempf and Bremer, 1998;
Santos and Da Costa, 2002).

Motility has been reported as a strategy used by different types
of bacteria to cope with adverse conditions (Li et al., 1993). Our
results reveal a significate increase in flagellar assembly chaperon
gene fliS in both NaCl conditions, which is expected because
the product of this gene is necessary during flagella biosynthesis
because it binds to the most abundant protein of the flagellum
(FliC) to facilitate its export to the filament in formation (Auvray
et al., 2001; Muskotál et al., 2006). Also, fliC gene expression
has been reported as induced by the presence of chloride ions
(Roeßler and Muller, 2002). Corresponding to these results, in the
presence of 4% NaCl, Tistlia consotensis cellular proteome showed
that flagellin was being upregulated and was one of the most
abundant proteins in the exoproteome (Rubiano-Labrador et al.,
2015). Our results reveal that fliG gene expression is significantly
increased in the 50 g/l condition of NaCl, which may be due to
the fact that this gene product is less required than FliC or FliS
during flagella biosynthesis (Terashima et al., 2008).

It should be noted that these results do not correspond to those
observed in plate motility experiments, in which this capacity was
totally inhibited at 50 g/l of NaCl; this result may reflect some
type of post-transcriptional regulation (Chatterjee et al., 2010).
This phenomenon has been previously associated as a response
to a variety of stress conditions, specially closely related to biofilm
formation as a protection structure in which the bacteria tend to
seek each other and remain embedded in the substrate (Mitchell
and Kogure, 2006; Mika and Hengge, 2013). Another reason for
this phenomenon could be that flagella transcription is induced
by environmental signals as was observed in bacteria grown in 25
and 50 g/l NaCl; however, biofilm formation was most induced at
50 g/l NaCl this could prevent the bacteria from moving, in turn
increase resistance and saving energy.

Finally, genes related to biofilm (pgaC), cell chemotaxis (bdlA),
and signaling (luxS) were induced in the NaCl conditions; on
the contrary, ywqC or tkm (capsule/biofilm) was found to be
significantly decreased in the 25 g/l condition and was not
changed in 50 g/l of NaCl. It has been found that many of
the reactions related to biofilm formation are upregulated in
response to salinity (Bojanovič et al., 2017). LuxS is a signaling
protein that mediates quorum sensing between certain species, as
well as biofilm formation and motility. Also, its expression has
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been reported as salt dependant in H. halophilus (Sewald et al.,
2007; Hardie and Heurlier, 2008). Biofilm is a resistance strategy
used by many different bacteria to cope against environmental
change or pressures (Hall-Stoodley et al., 2004; Poole, 2012);
this correlates with our findings of significant increases in
pgaC and bdlA gene expression, which participate in biofilm
synthesis and dispersion, respectively (Wang et al., 2004; Morgan
et al., 2006). YwqC (TkmA) is a tyrosine-kinase modulator that
interacts cognately with PtkA allowing it to phosphorylate its
target proteins in post-translational regulation during biofilm
formation (Jers et al., 2010; Gao et al., 2015). This was the only
gene that showed decreased expression in the under 25 g/l NaCl
condition.

CONCLUSION

In sum, our results show that isolated Phylotypes include
strict halophiles and halotolerants, of which Exiguobacterium
is a recurrent halotolerant and cultivable genus from Salar
de Huasco that was able to tolerate up to 50 g/l NaCl (the
highest reported one to date for this genus), showing its best
growth behavior at 25 g/l as well as its highest motility.
Furthermore, it seems that the fatty acid composition is not
altered by salinity; furthermore, biofilm formation is affected,
which has been widely reported as a strategy of resistance to
environmental pressures. Additionally, we have found that gene
expression results are in absolute coherence with phenotypic
results and genomic information in regards to the resistance
capacity. We can conclude that the stress conditions, caused by
the salt on the cell, effectively induce the expression of genes
related to several processes of adaptation to ensure survival.
Moreover, the wide set of strategies presented and used by this
strain to thrive under environmental stress conditions predict
that it would be a suitable model for evolutionary adaptation
studies.
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