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Abstract

Original Article

IntroductIon

Plasma cell neoplasm and/or plasma cell myeloma (PCM) is 
a group of mature B‑cell disorders characterized by a clonal 
expansion of plasma cells (a type of white blood cell [WBC] 
called a plasma‑B cell) that secretes a single homogeneous 
immunoglobulin called paraprotein or M‑protein.[1] Clinical 
diagnostic criteria include hypercalcemia, renal insufficiency, 
anemia, and bone lesions (CRAB criteria).[2]

Background: Plasma cell neoplasm and/or plasma cell myeloma (PCM) is a mature B‑cell lymphoproliferative neoplasm of plasma cells 
that secrete a single homogeneous immunoglobulin called paraprotein or M‑protein. Plasma cells accumulate in the bone marrow (BM) 
leading to bone destruction and BM failure. Diagnosis of PCM is based on clinical, radiologic, and pathological characteristics. The 
percent of plasma cells by manual differential (bone marrow morphology), the white blood cell (WBC) count, cytogenetics, fluorescence 
in situ hybridization (FISH), microarray, and next‑generation sequencing of BM are used in the risk stratification of newly diagnosed PCM 
patients. The genetics of PCM is highly complex and heterogeneous with several genetic subtypes that have different clinical outcomes. 
National Comprehensive Cancer Network guidelines recommend targeted FISH analysis of plasma cells with specific DNA probes to 
detect genetic abnormalities for the staging of PCM (4.2021). Recognition of risk categories through training software for classification of 
high‑risk PCM and a novel way of addressing the current approaches through bioinformatics will be a significant step toward automation 
of PCM analysis. Methods: A new artificial neural network (ANN) classification model was developed and tested in Python programming 
language with a first data set of 301 cases and a second data set of 176 cases for a total of 477 cases of PCM at diagnosis. Classification 
model was also developed with support vector machines (SVM) algorithm in R studio and interactive data visuals using Tableau. Results: 
The resulting ANN algorithm had 94% accuracy for the first and second data sets with a classification summary of precision (PPV): 0.97, 
recall (sensitivity): 0.76, f1 score: 0.83, and accuracy of logistic regression of 1.0. SVM of plasma cells versus TP53 revealed a 95% 
accuracy level. Conclusion: A novel classification model based only on specific morphological and genetic variables was developed using 
a machine learning algorithm, the ANN. ANN identified an association of WBC and BM plasma cell percentage with two of the high‑risk 
genetic categories in the diagnostic cases of PCM. With further training and testing of additional data sets that include morphologic and 
additional genetic rearrangements, the newly developed ANN model has the potential to develop an accurate classification of high‑risk 
categories of PCM.

Keywords: Artificial neural network, cytogenetics, fluorescence in situ hybridization, machine learning, microarray, National 
Comprehensive Cancer Network, Next Generation Sequencing, plasma cell myeloma, support vector machines kernel trick
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PCM accounts for 1.8% of all cancers and 17% of hematological 
malignancies in the United States and is most frequently 
diagnosed among adults aged 65–74 with a median age of 
69 years.[3] The American Cancer Society estimated 32,270 
new cases (17,530 in men and 14,740 in women) and close to 
12,830 deaths (7,190 in men and 5,640 in women) in 2020.[4] 
The median survival rate is usually 5 years with only 10% of 
patients that live 10+ years.[5,6] Survival rates depend mostly 
on the level of serum‑2‑macroglobulin, albumin, M‑protein, 
calcium, creatinine, and presence or absence of bone lesions.[3]

PCM is a complex disease with different clinical phases and 
various risk levels.[2‑10] Clinical phases consist of monoclonal 
gammopathy of undetermined significance (MGUS), smoldering 
multiple myeloma and plasma cell.[2‑10] Plasma cells accumulate in 
bone marrow (BM) leading to bone destruction and marrow failure.
[10‑16] Diagnosis is based on clinical, radiologic, and pathological 
characteristics.[7‑8] For risk stratification, prognosis, and treatment 
efficacy, PCM is classified into high, standard, and low‑risk 
clinical categories based on serum M‑protein concentration, 
percent of plasma cells in the marrow (extent of bone marrow 
involvement), and identification of genetic abnormalities.[9‑16] 
The genetic abnormalities usually reflect various underlying 
pathways of clonal heterogeneity and subsequent evolution.[8‑11] 
The genetic alterations are critical for prognosis, risk stratification, 
expected patient outcome, survival rate, and in selecting an 
appropriate therapeutic strategy.[9] High‑risk cytogenetics and 
persistent minimal residual disease (MRD) by flow cytometry 
may predict relapse after autologous stem cell transplant (ASCT; 
National Comprehensive Cancer Network [NCCN] 4.2021). DNA 
sequencing, microarray, cytogenetics, and fluorescence in situ 
hybridization (FISH) studies on BM require validation before 
clinical use (NCCN).[3] Recommendations of NCCN include 
metaphase cytogenetic analysis of bone marrow, as well as FISH 
probes on plasma cells to detect abnormalities of del(1p32), 1q21 
amplification, del(13q), t(4;14), t(11;14), t(14;16), t(14;20), and 
del(17p) at the time of diagnosis [Table 1]. High‑risk abnormalities 
include multiple mutations in different pathways, including 
missense, nonsense, splice‑site mutations and deletion of TP53 
locus (in this paper referred to as 17p and/or TP53 or P53), t(4;14), 
t(14;16), t (14;20), and hypodiploidy. Deletion of chromosome 

1p, gain of copy number or amplification of chromosome 
1q, and abnormalities of TP53 locus have been reported to 
indicate PCM disease progression.[12‑17] Genetic aberrations 
observed in standard to low‑risk PCM include t(11;14), t(6;14), 
deletion or loss of chromosome 13, and hyperdiploidy.[10,17‑20] 
Deleted 13q is a negative prognostic indicator when observed 
in metaphase (dividing cells) cytogenetic analysis. Secondary 
genetic events consist of additional numerical and structural 
chromosomal abnormalities.[17] Exome sequencing study of more 
than 1000 samples revealed heterogeneity (20%) and frequent 
mutations (25%) involving KRAS and NRAS genes.[10] The gene 
expression profile (GEP) signature is an emerging technology 
with 16‑, 70‑, and 92‑gene panel models for interrogation of 
molecular aberrations in PCM; however, GEP is still not currently 
available in clinical practice for diagnostic workup.[3] Currently, 
FISH analysis is being used in clinical diagnostic laboratories to 
identify genetic rearrangements. [10,17‑20]

Related work
The outcome and median survival rate of PCM patients has 
significantly improved by minimizing cytotoxic chemotherapies 
through the use of autologous stem cell transplantation 
(ASCT), immunomodulatory therapy (thalidomide, stem 
cell transplantation (ASCT) and immunomodulatory therapy 
proteasome inhibitors‑bortezomib, ixazomib, and carfilzomib), 
monoclonal antibody therapy (elotuzumab, daratumumab) 
and molecularly targeted histone deacetylase inhibitors 
(HSP90 inhibitors, AKTinhibitors, and KSP inhibitor).[21] 
However, high‑risk patients have shorter progression‑free 
survival.[21] Therefore, earlier identification of genetically 
high‑risk patients to initiate therapy with modern therapeutic 
agents is one of the important factors in the overall survival.

Identification of chromosomal abnormalities through metaphase 
analysis has limitations due to the low proliferation of plasma 
cells in bone marrow cultures. Genetic abnormality is detectable 
in only 10%–30% of cases due to the low percent of plasma cells 
and/or low proliferation rate of plasma cells.[12] Currently, targeted 
FISH is a recommended diagnostic modality for the identification 
of genetic abnormalities and risk stratification at the time of 
diagnosis.[3] An increase in the abnormal detection rate was 

Table. 1 Correlation of various genetic abnormalities with high and standard risk status in PCM 

Gene Loci/
Ploidy 

Chromosome band Type of 
abnormality 

Mutations Risk 
status

TP53 17p13 Deletion Missense, Nonsense and Splice‑site High
IGH/FGFR3 t (4;14)(p13;q32) Fusion genes N/A High
IGH/MAFA t (14;16) Fusion genes N/A High
IGH/MAFB t (14;20) Fusion genes N/A High
CKS1B 1q21 Amplification N/A High
CDKN2C 1p32 Deletion N/A High
Monosomy? Loss resulting in monosomy of several chromosomes Hypodiploid N/A High
CCND1/IGH t (11;14)(q13;q32) Fusion genes N/A Standard
CYCLIND2/IGH t (6;14)(p21;q32) Fusion genes N/A Standard
RB1 Chromosome 13 Deletion/monosomy N/A Standard
CN LOH? Gain of odd‑numbered chromosomes is distinct Hyperdiploid N/A Standard 
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reported by many laboratories through purification or enrichment 
of plasma cells from BM specimens by the use of RoboSep™ 
from Stemcell Technologies, Canada [Figure 1]. RoboSep™ is an 
automated cell processing and enrichment method that involves 
the use of anti‑CD138‑coated magnetic beads (immunomagnetic 
bead technology) to enrich CD138+ plasma cells in patient 
samples followed by targeted FISH.[20]

In our laboratory, an increase from 30% to 80% was 
observed in the detection rate of abnormal cases by 
enrichment of bone marrow plasma cells and subsequent 
FISH analysis [Figures 2 and 3]. However, the CD138 
enrichment procedure is technically challenging as there is no 
reimbursement (CPT code) for the enrichment procedure for 
laboratories, can add additional overhead cost to institutions for 
processing of the specimens for enrichment, and maintenance 
of reagents. BM specimens obtained from patients need to be 
processed for critical diagnostic hematopathology procedures 
including morphology and flow cytometry. As such, bone marrow 

specimens received in the cytogenetics/molecular laboratory 
can be limited for CD138 enrichment and downstream FISH, 
chromosome analysis, chromosomal microarray (CMA), and/or 
GEP. Cell pellets obtained from CD138 enrichment are usually 
small with poor cellular morphology and/or may have weak 
hybridization signals with targeted FISH probes; thus, FISH 
needs to be repeated for those probes. Some laboratories may not 
be able to report a particular FISH probe result due to depletion of 
the enriched pellet. In our laboratory, we have to choose between 
high‑ and low‑risk gene rearrangement detection probes or to 
count a lower number of cells than ideal if the cell pellets are 
small (in a diagnostic setting, 200 interphase cells are required 
for each probe) and not report or bill the results. Therefore, 
recognition of risk categories through training software for 
classification of high‑risk stratification will be a significant 
step toward automation of PCM analysis for prognostic and 
therapeutic decisions.

Problem space and motivation
With the emergence and growth of personalized medicine, 
artificial intelligence (AI) has become an important technology 
to bring new opportunities in the practice of medicine.[22] 
Machine learning (ML) and/or deep learning, a subfield of AI, 
is increasingly used for diagnosis and prediction of diseases 
such as cancer, diabetes, neurological disorders, and 
cardiovascular diseases through interrogation of genomic data 
and turning the data into actionable insights. Current literature 
on machine learning in PCM is based mostly on clinical trials 
for predicting treatment benefit, multilevel drug response, 
ICD‑9‑CM diagnosis codes, administrative data using 
Surveillance, Epidemiology, and End Results‑NCI (SEER) 
registry, and distinguishing smoldering versus symptomatic 
multiple myeloma.[22‑29] The application of AI techniques in 
PCM diagnosis is still at an early and unexplored stage. The 
purpose of this paper is to explore an ANN algorithm for 
classification of the PCM data at initial diagnosis into normal 

Figure 2: Tableau – Cohort 1 – Abnormal versus normal cases based on age in males and females

Figure 1: RoboSep™ stem cell technologies Canada
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and abnormal categories based on results of morphological, 
flow, and genetic variables of certain high risk alterations 
included in the study.

Research question
An artificial neural network (ANN) is a mathematical model 
that is inspired by the way the biological nervous systems, such 
as the human brain, processes information. ANN’s ability to 
learn quickly is what makes it a powerful and useful tool for 
a variety of tasks such as classification, pattern recognition, 
and modeling.[28] This paper aims to introduce bioinformatics, 
especially ANN to PCM researchers. In the current study, 
we explored the PCM data to find if hidden patterns in 
hematological and genetic variables at diagnosis can provide 
a suitable input for ANN to classify normal and abnormal 
results. Our research question for this study was:
1. Can a subset of PCM data including age, WBC, and 

percentage of plasma cells at initial diagnosis through 
the morphological study of bone marrow, in addition to 
known high‑risk cytogenetic alterations, be used to design 
a predictive algorithm for identification of risk status?

2. If so, could a classification model aid the critical variables 
in the disease management initiatives?

3. Would such an approach represent a promising tool for 
diagnosis and/or follow‑up of PCM patients?

Herein, we describe a novel tool using ANN, a deep learning 
model for a prognostic classification of PCM patients. The data 
described in this paper was collected only after Institutional 
Review Board (IRB) approval, was de‑identified, and was 
generated based on the tested hematological and genetic 
variables at our academic medical center.

MaterIals and Methods

Sample collection and preparation
Bone marrow samples of the possible PCM cases were received 
in the hematopathology laboratory at our academic medical 
institution. Samples were processed for flow cytometry and 
BM morphology according to standard hematopathology 
laboratory procedures and the diagnostic results were reported 
by pathologists. Concurrent bone marrow samples received in the 
cytogenetics laboratory were processed for cytogenetic analysis 
and targeted FISH PCM panel following CD138 enrichment with 
magnetic bead separation technique [Figure 1]. FISH technique 
involves hybridization of a complimentary DNA sequence probe 
with a fluorescent tag to the region of interest. The resulting hybrid 
FISH signal can be visualized under a fluorescence microscope. 
The FISH probe (Abbott Molecular, Downers Grove, IL) panel 
set used for the testing consisted of t(4:14), t(11;14), RB1/
LAMP1 (13q14/13q34), and TP53/centromere 17 [17p13/17 
centromere; Figure 3] in our cytogenetics laboratory. FISH slides 
were processed and analyzed according to standard cytogenetics 
laboratory procedures. Two hundred cells per probe were scored 
by two technologists under the Nikon Fluorescence microscope 
and micrographs were taken under x100 magnification. Results 
of all probes were tabulated and were reported by pathologists. 

The data was collected from samples at initial diagnosis, of 
which a small number had a TP53 deletion. Mutations of TP53 
were not tested for.

PCM cases included in this study were diagnosed at our 
academic medical institution. WBC count was determined 
by complete blood cell count at the time of bone marrow 
biopsy. Plasma cell percentage was based on manual cell 
count (bone marrow morphology of at least 200 cells ). All 
the data, including FISH, were de‑identified and collected 
retrospectively only after approval by the IRB. The data 
consisted of two cohorts, collected at two different time points. 
The first cohort (cohort 1) consisted of 301 cases collected 
from July 20, 2017, to August 31, 2018 (IRB # 182023). The 
second cohort (cohort 2) consisted of 176 cases collected from 
September 1, 2018, to May 31, 2019 (IRB # 191662). The 
variables included in the dataset were age, gender, percent of 
BM plasma cells, WBC, and results of PCM FISH analysis.

Data collection and preprocessing for analysis
Both Cohort 1 and Cohort 2 datasets collected at diagnosis 
had relatively fewer number of high‑risk category variables 
compared to low‑ or standard‑risk categories [Figure 4]. Another 
difference between the two datasets is the total number of 
cases in each dataset. Both the datasets had similar types of 
variables (results of morphology, flow, tested fish probes, and 
demographics) except that Cohort 1 was qualitative with a binary 
numerical value of 0 or 1 for results of various variables and the 
risk status. The risk status was represented as 1 for normal and 2 
for abnormal. Cohort 2 data was quantitative with a percentage of 
abnormal cells for different variables and binary numerical value 
for risk status representing 0 for normal and 1 for abnormal.

Cohort 1
• Step 1: Cohort 1 data set consisted of 20 columns with 

variables corresponding to the result (normal versus 
abnormal) of each FISH probe

Figure 3: Fluorescence in situ hybridization with myeloma‑specific probes (a) 
13q14 (red)/13q34 (green) probes with normal pattern (b) CCND1 (red)/
IGH (green) probes with normal pattern. (c) FGFR3 (red)/IGH (green) 
probes with rearranged (fusion of red and green) pattern. (d) TP53 (red)/
centromere17 (green) with deletion (loss of on red) of TP53 locus

dc

ba
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• Step 2: Data required data preprocessing steps including 
conversion of the gender (categorical) column into a 
numerical value (male = 1, female = 2)

• Step 3: Scores for each probe and case result were 
converted into numerical values of 1 or 2 (normal = 1, 
abnormal = 2)

• Step 4: The Excel file was converted to a Comma 
Separated Value (CSV) file to be imported into Python 
and R studio.

The columns with 20 variables such as case number, gender, 
age, WBC, percent of BM plasma cells
•  Step 5: In addition to the original data set with 20 

variables, subsets were also created with a combination 
of variables

• Step 6: The original data set contained all variables; 
subsets contained mostly high‑risk variables

• Step 7: CSV file containing a subset of cohort 1 data was 
also imported into Tableau for data visualization and into 
R studio for SVM with Kernel trick.

Cohort 2
Cohort 2 data set was similar to cohort 1 except that the normal 
result for a specific FISH probe was left empty, whereas the 
abnormal result was represented as a numerical percentage of 
abnormal cells in the respective columns for the variables. The 
last result column was converted into numerical values of 0 or 
1 (normal = 0, abnormal = 1).

Preprocessing and steps involved in the analysis of cohort 2 
data were performed as in cohort 1.

results and dIscussIon

Our research questions again were:
1. Can a subset of the PCM data including age, WBC, and 

percentage of plasma cells at diagnosis, in addition to 

known high‑risk cytogenetic alterations, be used to design 
a predictive algorithm for identification of PCM risk 
status?

2. If so, could a classification model based on the critical 
variables aid in disease management initiatives?

3. Will a comprehensive collection of PCM genomic 
rearrangements data that impact the progression and 
treatment efficacy of PCM help in understanding the 
complexity of PCM and ultimately improve the survival 
of patients?

To answer the above questions, we designed a predictive 
algorithm for the identification of risk status by collecting a 
total of 301 and 176 cases with 20 variables in cohorts 1 and 
2, respectively. Subsets were also created from cohorts 1 and 
2 for deep learning analysis through Python, R studio, and 
Tableau to design the models.[30,31] In this paper, we discuss the 
results of Python‑designed ANN models and Tableau analysis.

Selection of network architecture, training/evaluation, 
and hyperparameters
ANN or NN are a family of computational algorithms with a 
trainable subfamily of models that can be optimized for several 
different functions.[24,29,30] Advantages of NN include their 
high tolerance to noisy linear and nonlinear data and ability 
to learn quickly and classify patterns on which they have not 
been trained.[24,29,30] The main advantage of ANN is that it is 
not based on assumptions, it allows detection of connections 
between factors in a wide range of problems, and it has given 
superior results to conventional statistical models in many 
instances.[24,29,30]

Our intention was to generate NNs and build a predictor for 
risk status that can be used with test data at time of initial 
PCM diagnosis. We divided data into two datasets of several 
combinations: (1)  a learning set to build the models and (2) a 
testing set for the evaluation. For our data which involve risk 
classification with many variables, we choose NN. Briefly, 
NN or ANN consists of interconnected layers of algorithms 
called neurons (nodes or perceptron that feed data into each 
other) with an activation function, one or more weighted input 
connections, and a transfer function that combines the inputs 
and an output connection. The input for each layer is the 
output of the previous layer. NN is a feedforward network that 
takes the data points (variables) and classifies the data points. 
When the model is learning or is being trained, patterns of 
information from the dataset get fed into the network through 
the input neurons. This triggers the layers of hidden neurons, 
and these, in turn, activate the output neuron, with the output 
of the preceding layer being the input of the subsequent layer. 
This process of feedforward network is a popular algorithm 
of ANN. Every neuron adds up all the inputs it receives. If 
the sum is more than a certain threshold value, the neuron 
fires and triggers neurons that are connected to its right side. 
NNs learn exactly the same way the neuronal structure of the 
mammalian cerebral cortex learns but on a much smaller scale 
by a feedback process called back‑propagation, the next most 

Figure 4: Tableau visual of Cohort 1 data: Male and female cases with 
low, standard, and high risk, low and standard risk: males higher than 
females, high risk: males and females similar in number
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popular ANN algorithm. In backpropagation, the algorithm 
processes data backward from the output through the hidden 
neurons to the input neurons (goes backward) and causes the 
network to learn through the difference (also called as error 
rate or cost function) that is between the predicted and actual 
outputs. The network then modifies weights of the connections 
between the neurons and tries to learn the correct output (the 
category a specific data point belongs to) for classification.

Building the artificial neural network
We built a three‑layer network with an input layer corresponding 
to the selected variables for generating various models. The 
first hidden layer varied from 4 to 19 nodes depending on the 
number of input variables and an activation function ReLU and 
the second hidden layer with 4–8 nodes and ReLU activation 
function. The number of neurons of the hidden layer was also 
determined according to the number of variables. The output 
layer had one node with a sigmoid activation function and 
one linear output unit to ensure that the network output was 
between 0 and 1, a binary risk outcome. Weights and biases of 
NNs were determined by training with a two‑phase procedure. 
The first phase of backpropagation had a moderate training 
rate and the second phase was a gradient descent, another 
powerful algorithm of NN. To interpret the network output as 
probabilities and to make them comparable to the results of 
logistic regression, we used a cross‑entropy error function to 
adjust weights. Optimization algorithm Adam was used for 
stochastic gradient descent to train the classifier (model). The 
model was trained with fit function and trained over 100–1000 
epochs with each epoch split into batches. Finally, the model 
was evaluated on the training dataset with evaluate function 
to generate a prediction for each input and output accuracy.

ANN was developed in Python programming language 
using TensorFlow 2 (tensorflow.org) backend and the Keras 
library (keras.io). The cohort data were divided into “training” 
and “test,” for training and testing the NN model, respectively.

Stepwise procedure of artificial neural network model 
design of cohort 1 and cohort 2 data
Since the model was to be used for prediction, a simple and 
stepwise variable selection procedure was implemented in 
designing various models. The stepwise procedure included 
creating subsets with the addition or removal of independent 
variables that were noisy and/or reduced the accuracy for 
building the model while keeping the variables that fit the 
data best. In other words, the quality criterion considered 
was the size of the model (small models that fit well) while 
eliminating the correlation between predictor variables that 
can have undesirable effects on models. We built close to 200 
models in Python and R studio using the entire dataset of 20 
variables and a combination of subset of a number of variables 
of cohort 1 data. The subsets’ names were created randomly. 
For example, MM1, MM2, MM3, MM4, and MM411 were 
all combinations of different variables of cohort 1 dataset. 
Cohort 1 – NN models were built with training and testing 
data in various combinations of ratios consisting of 90/10, 

80/20, 75/25, 70/30, 60/40, and 40/60, respectively. The models 
including size (number of nodes in the model, width (number of 
nodes in a specific layer), depth (number of layers in a NN), and 
various activation functions such as ReLU, Leaky ReLU, and 
Tanh resulted in slightly different accuracy levels. However, 
discussion of every model designed is beyond the scope of 
this paper due to the breadth and complexity. Therefore, only 
a few models that led to the high accuracy are discussed here. 
The data set cohort 1 was labeled as MM1 and subsets were 
labeled as MM10, MM2, MM31, MM411 (cohort 1), and 
PCMQ3 (subset of cohort 2) for ANN. A brief review of a 
few of the failed and successful models was discussed below.

Our findings
Cohort 1 and subsets
• MM1 data – Cohort 1 data set with 20 columns, variables 

were case number, gender, age, WBC, BM percent of 
plasma cells. The algorithm did not work with or without 
Tensorflow 2 after the compile ANN step even with 
different activation functions or with different training 
and test percentage ratios

• MM10 data – 10 columns, gender, age, WBC, or BM 
plasma cell percentage were excluded. FISH variables 
that were considered noisy based on the MM1 data 
processing (e.g., multiple copies of specific genetic loci) 
were also excluded. ANN accuracy was 27% and accuracy 
did not change with either different activation functions 
or different training or test percentage ratio. TensorFlow 
2 did not work either

• MM2 data – 13 columns, age, WBC, and percentage of BM 
plasma cells were included. Of note, gender at this point 
was causing several failed models and was excluded at this 
point. ANN accuracy was 45% and accuracy remained the 
same with different activation functions and/or different 
training or test percentage ratio

• MM31 – 6 columns, age, WBC, BM plasma cell 
percentage, TP53, and FGFR3/IGH. Gender was excluded. 
ANN accuracy reached 90% with a ratio of 60/40; however, 
predictions had several false negatives [not included in 
Figure 5]

• MM411 – At this point, the authors recognized that age and 
gender were noisy in building the algorithm. Therefore, in 
the next set MM411, only five columns with WBC, BM 
plasma cell percentage, TP53 deletion, FGFR3/IGH, and 
results were used. When the data was divided into 60/40 
percent training and test sets, respectively, ANN accuracy 
reached 99%, but several false positives and FN were 
classified as true positives (TP) or true negatives.

In the next step, ANN with train/test ratio of 40/60 ratio was 
built with a 94% accuracy and was effective in building the 
ANN model [Figures 5 and 6].

Cohort 2 and subsets
PCMQ3: Five columns (the same as in MM411), with WBC, 
BM plasma cell percentage, TP53 deletion, and FGFR3/IGH. 
The total number of cases was 176. ANN model that worked 
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with MM411 was secondarily validated with the same train/
test ratio of 40/60 percent, respectively, and 94% accuracy 
was obtained for PCMQ3. Of note, 40/60 percent train/test 
algorithm seems to be the most effective algorithm for this type 
of study [Figures 5 and 6].

Evaluation of artificial neural network model
Model using MM411 dataset with 60/40 ratio was able to 
predict only the value of the majority of the class variable for 
classification. This accuracy problem (also known as accuracy 
paradox) was probably due to the fact that our data had a slight 
imbalance for variable distribution (total number of cases that 
had an abnormal result for high risk was lower than the cases 
with a normal result). Of note, imbalanced data distribution 
was not due to inaccurate collection of data but rather due to 
the fact that the two high‑risk categories we have taken into 
consideration in designing the algorithm are infrequent in PCM 
cases. This could be attributed to selection bias. Furthermore, 
the imbalance is probably expected in real‑time data with 
high‑risk variables in the population. Additional studies fitting 
the criteria of high‑risk categories that contribute to a better and 

final weighted average will certainly help clarify this aspect 
in future.

Classification summary
For MM411 and PCMQ3 datasets, the classification summary 
with a training and testing ratio of 40/60 revealed the following 
values: precision (PPV): 0.97, recall (sensitivity): 0.76, and f1 
score: 0.83, and accuracy of logistic regression: 1.0. The 40/60 
ratio model seems to be a better model with better predictive 
ability [Figure 5].

Tableau visualizations
Tableau (2020.3) is an interactive visualization platform 
to create analytics models using data sets. Visualization 
with Tableau analytics of cohort 1 data set for the high‑risk 
categories precisely unveiled valuable insights into how and 
why the ANN worked with the data set.

A comparison of the enriched and unenriched cases indicated 
that the number of abnormal cases increased with CD138 
enrichment; this was true for both males and females [Figure 2]. 
More cases with increased plasma cells were observed in males 

Figure 5: Python predictive models summary table

Figure 6: PCMQ3 with TensorFlow 2 and ReLU with a ratio of 40/60 training and testing respectively. (a) Receiver operating characteristic curve in 
logistic regression to determine the best cutoff value for predicting whether a new observation is 0 or 1. (b) Classification report

ba
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between age 65 and 70, whereas in females, it was between 
75 and 80 years of age. Cohort 1 data (all enriched samples) 
indicated that low‑ and standard‑risk occurred more frequently 
in males, while in the high‑risk category, the number of males 
and females was similar [Figure 4]. In addition, we observed 
that high‑risk cases with t(4;14) and TP53 loss were relatively 
associated with lower BM plasma cell percentages and 
WBC [Figure 7]; forecast indicator (projection) revealed the 
same [Figure 8]. However, additional studies are necessary to 
confirm this finding.

Support vector machines
SVM is a labeled training data (supervised learning) 
algorithm. The objective of SVM is to find a decision 
boundary (hyperplane) in N‑dimensional space (where N is 
the number of features or variables) and distinctly classify 
data points. MM4 data set with plasma cell percentage and 

TP53 status was used to create SVM Kernel trick in R studio 
using both 75/25 and 60/40 ratio split. The SVM accuracy was 
95% [Figures 9‑12].

Addressing the research questions and future work
1. Can a subset of PCM data including age, WBC, and 
percentage of BM plasma cells at diagnosis through 
morphological study of bone marrow, in addition to known 
high‑risk cytogenetic alterations, be used to design a predictive 
algorithm for identification of risk status?

Response: We analyzed and built close to 200 models in 
Python and R studio using the entire dataset of 20 variables 
and a combination of subset of variables of the of PCM data 
including age, WBC, and percentage of BM plasma cells at 
initial diagnosis, in addition to known high‑risk cytogenetic 
alterations to design a predictive algorithm for identification 
of risk status at the time of diagnosis.

Figure 7: Tableau Cohort 1 data: TP53 and t(4;14) versus plasma call percent and white blood cell at zero‑no deletion, peaks are number of cases 
with deletion

Figure 8: Tableau Cohort 1 data – Forecast indicator
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2. If so, could a classification model aid the critical variables 
in the disease management initiatives?

Response: Although preliminary, the models by ANN seem 
to identify that lower percentage of BM plasma cells and 
lower WBCs may be indicative of the two high‑risk genetic 
abnormalities described above.

3. Would such an approach represent a promising tool for 
diagnosis and/or follow‑up of PCM patients?

Response: If the model proves to be accurate, additional studies 
fitting the criteria of high‑risk categories could be examined.

conclusIon

Morphology of BM and the diagnosis of genetic abnormalities 
by FISH, microarray, and/or DNA sequencing are critical 
for prognosis, risk stratification, selection of an appropriate 
therapeutic strategy, and persistent MRD by flow 
cytometry (NCCN) for PCM. Due to an increased interest 
in enrichment and downstream testing of PCM across the 

clinical laboratories, research was initiated with a machine 
learning approach to identify if a relationship exists between 
different variables identified in the high‑risk categories of 
PCM. Research articles published on machine learning in PCM 
are based mostly on clinical trials for predicting treatment 
benefit, multilevel drug response, ICD‑9‑CM diagnosis codes, 
administrative data using SEER registry, and distinguishing 
smoldering versus symptomatic multiple myeloma.[22‑29] 
Application of AI techniques in PCM diagnosis is still at an 
early and unexplored stage.

Although the genetics of PCM is highly complex and heterogeneous 
with various clinical outcomes, an opportunity to categorize the 
disease into genetic subtypes for an effective treatment strategy 
is possible.[7‑32] In this paper, we describe a novel classification 
model based only on specific morphological and genetic variables 
tested at our institution, using a machine learning algorithm, the 
ANNs. We identified a relationship of WBC and BM plasma cell 
percentage with two of the high‑risk genetic categories at the 

Figure 9: Support vector machine with MM4 data of cohort 1 between 
TP53 and plasma cell percentage, training 75% and test 25%

Figure 10: Support vector machine with MM4 data of cohort 1 between 
TP53 and plasma cell percentage, training 75%, test 25%

Figure 11: Support vector machine with MM4 data of cohort 1 between 
TP53 and plasma cell percentage, training 60%, test 40%

Figure 12: Support vector machine with MM4 data of cohort 1 between 
TP53 and plasma cell percentage, training 60% and test 40%
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time of diagnosis in PCM. Visualization with Tableau analytics 
of the first data set for the high‑risk categories precisely unveiled 
valuable insights into how and why the ANN worked with this 
data set. Our data analysis indicates that cases with high‑risk 
abnormalities seem to be associated with low WBC and low 
BM plasma cell percentage. With further training and testing of 
additional data sets that include morphological and additional 
genetic rearrangements for high‑risk category, ANNs have 
the potential to develop an accurate classification of high‑risk 
categories of PCM at the time of diagnosis.

Exploration through ANN is not currently being utilized 
to assess the risk status of PCM patients at diagnosis. 
By uncovering these important diagnostic indicators, we 
believe that these insights can aid in early risk stratification, 
thus positively impacting the efficacy of future disease 
management. By discovering the correlation between WBC, 
BM plasma cell percentage, and genetic risk factors, actionable 
programs could be developed and targeted to high‑risk groups. 
The tremendous potential of AI is that it can provide tools to 
explore massive data sets to identify the causal relationships 
of clinical findings, morphologic characteristics, and genetic 
alterations, thus being able to demonstrate useful and practical 
contributions to our knowledge in this domain.
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