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REVIEW

Autonomic nervous system activity changes 
in patients with hypertension and overweight: 
role and therapeutic implications
Paul Valensi* 

Abstract 

The incidence and prevalence of hypertension is increasing worldwide, with approximately 1.13 billion of people 
currently affected by the disease, often in association with other diseases such as diabetes mellitus, chronic kidney 
disease, dyslipidemia/hypercholesterolemia, and obesity. The autonomic nervous system has been implicated in the 
pathophysiology of hypertension, and treatments targeting the sympathetic nervous system (SNS), a key component 
of the autonomic nervous system, have been developed; however, current recommendations provide little guid‑
ance on their use. This review discusses the etiology of hypertension, and more specifically the role of the SNS in the 
pathophysiology of hypertension and its associated disorders. In addition, the effects of current antihypertensive 
management strategies, including pharmacotherapies, on the SNS are examined, with a focus on imidazoline recep‑
tor agonists.
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Introduction
Hypertension is one of the leading causes of premature 
death worldwide with 1.13  billion people having hyper-
tension. It is associated with an increased risk of cardio-
vascular diseases (CVD; e.g., stroke, angina, myocardial 
infarction, heart failure, peripheral artery disease, and 
abdominal aortic aneurysm) as well as end-stage renal 
disease [1, 2]. Hypertension often co-occurs with other 
CVD risk factors such as diabetes mellitus, dyslipidemia/
hypercholesterolemia, obesity and chronic kidney dis-
ease [1, 3, 4]. Despite several actions set up to improve 
diagnosis, management and awareness about hyperten-
sion, the incidence and prevalence are still increasing [5, 

6]. The prevalence of hypertension is higher in low- and 
middle-income countries [5] and increases with age [1].

The autonomic nervous system has been implicated 
in the pathophysiology of hypertension [7, 8] and treat-
ments targeting the sympathetic nervous system (SNS) 
have been developed [9, 10] although largely forgotten or 
ruled out in international recommendations [1, 2]. The 
aim of this review, therefore, is to examine the patho-
physiology of hypertension, in particular the role of the 
autonomic nervous system (ANS) and medications that 
target the SNS to help control hypertension. A search 
of PubMed was conducted using search terms such as 
“hypertension”, “blood pressure”, “sympathetic nervous 
system” and “SNS”, with no restrictions on date of pub-
lication. Supplemental, focussed ad-hoc searching was 
conducted where necessary.
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Hypertension
According to the ESC/ESH guidelines, hyperten-
sion is defined as office systemic blood pressure 
values ≥ 140 mmHg and/or diastolic blood pressure val-
ues ≥ 90 mmHg [2].

The aetiology of hypertension is currently still poorly 
known, although several risk factors have been identified 
for its development such as overweight, diet (e.g., sodium 
intake), physical activity, and alcohol consumption [11, 
12]. Its pathogenesis is multifactorial and highly com-
plex, involving multiple organ systems and numerous 
independent and interdependent pathways [13]. Known 
systems involved in blood pressure control include car-
diovascular, renal, neural, and endocrine systems, as well 
as local tissues, with the kidneys playing a central role 
[13]. In addition, genetic factors, and activation of neu-
rohormonal systems are involved in the pathogenesis of 
hypertension. The neurohormonal system is responsible 
for maintenance of cardiovascular homeostasis, with the 
sympathetic nervous system (SNS) and the renin–angio-
tensin–aldosterone system (RAAS) being two key com-
ponents [14]. RAAS is involved in the maintenance of 
arterial blood pressure, plasma sodium concentration 
and extracellular volume, and needed for the function 
of the heart and kidneys. RAAS dysfunction can lead to 
chronic diseases development as hypertension or heart 
failure [15, 16].

While animal studies have demonstrated extensive and 
reciprocal interactions between SNS and RAAS impor-
tant to cardiovascular regulation and the development of 
hypertension, supportive evidence in humans is currently 
lacking [17, 18].

The sympathetic nervous system
Physiological role of the sympathetic nervous system
Maintenance of cardiovascular homeostasis requires 
continual redirection of blood flow to ensure adequate 
blood supply to active tissues. Under normal function-
ing, the autonomic nervous system, comprising the sym-
pathetic, parasympathetic and enteric nervous systems, 
makes unconscious adjustments in regional blood flow 
and cardiac output, and coordinates with the central res-
piratory network in order to respond to varying meta-
bolic and thermoregulatory demands [19]. The SNS is 
activated when baroreceptors, specialised stretch recep-
tors located within thin areas of blood vessels and heart 
chambers, sense changes in pressure [20]. When arterial 
pressure drops, the SNS is immediately activated result-
ing in increased cardiac output and vasoconstriction of 
peripheral vessels (Fig.  1) [20]. Subsequent constriction 
of renal afferent arterioles results in activation of the 
renin–angiotensin–aldosterone system and secretion of 
renin [14].

Fig. 1  Control of blood pressure by the sympathetic nervous system (SNS) and the renin–angiotensin–aldosterone system (RAAS)
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The SNS plays an important role in the regulation of 
liver metabolic processes, with the sympathetic and para-
sympathetic systems working in tandem to respectively 
stimulate and suppress hepatic gluconeogenesis, and 
insulin stimulating glycolysis and lipogenesis, and sup-
pressing gluconeogenesis [21]. Overall, the SNS enhances 
the production of glucose by the liver and mobilises met-
abolic fuels for use by the tissues [21]. In the pancreas, 
Langerhans islets are innervated by autonomic nervous 
system fibres resulting in modulation of insulin secretion 
with parasympathetic nerves stimulating insulin secre-
tion and sympathetic nerves having the opposite effect 
[22, 23]. Enhanced lipolysis in adipose tissue by the SNS 
is part of a control mechanism designed to break down 
fats [24].

SNS overdrive in hypertension
The consequences of sympathetic overdrive leading to 
hypertension are numerous and include cardiovascular, 
renal and metabolic effects (Fig.  2) [25–27]. A state of 
sympathetic activation is associated with increased heart 
rate, and appears to promote cardiac and vascular altera-
tions [25, 28], contributing to the development of major 
complications of hypertension such as arrhythmia, left 

ventricular hypertrophy and increased arterial stiffening 
[25–29]. The SNS also appears to affect haemostasis, with 
acute activation of the SNS resulting in hypercoagulabil-
ity due to increased platelet aggregability [29, 30].

Sympathetic activity is increased in hypertension and 
heart failure, and is responsible for initiation and devel-
opment of the diseases [7, 8, 31]. While specific causes 
of this increase are mostly unknown, genetic influences, 
behavioural and lifestyle factors appear to be involved [7, 
8]. Increased SNS activity is believed to contribute to the 
pathophysiology of heart failure through multiple mecha-
nisms, including desensitization of cardiac β-adrenergic 
receptors, adverse effects on excitation–contraction cou-
pling, and fibrosis [16, 32].

The effects of the SNS activation are mediated by adr-
energic neurotransmitters (norepinephrine, epineph-
rine and dopamine) having vasoconstriction properties 
[18]. It has been shown that the norepinephrine spillo-
ver is increased in patients with high blood pressure, 
and this increase is mainly seen in the heart and the 
kidneys, both tightly involved in blood pressure control 
[18]. The release of these adrenergic neurotransmitters 
induces action on cardiovascular and metabolic systems 
by targeting organs involved in homeostasis control as 

Fig. 2  The role of the sympathetic nervous system (SNS) in energy balance and metabolic regulation, and in blood pressure control in overweight 
patients. FFA Free fatty acids, OSA obstructive sleep apnea, RAAS renin–angiotensin–aldosterone. Red crosses designate a disruption
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the heart, kidneys, veins, and arterioles, and leading to 
renin release, sodium retention, increase in heart rate, 
arrhythmias, and left ventricular hypertrophy. Thus, 
these targets of the SNS contribute to increase blood 
pressure. Regarding the metabolic effects, the adrener-
gic neurotransmitters are responsible for action on dif-
ferent organs and tissues: on fat cell to increase lipolysis 
resulting in an increase in fatty acid release, on the liver 
to increase gluconeogenesis, on pancreatic β-cells to 
decrease insulin secretion. Conversely, free fatty acids 
may enhance sympathetic activity [33]. If the sympathetic 
activity is raised chronically, it may lead to development 
of insulin resistance and hypertension, increasing the risk 
of cardiovascular diseases. The role of therapeutic inhi-
bition of sympathetic overdrive in the prevention of the 
metabolic disorders and the associated adverse outcomes 
requires adequate testing in properly sized randomised 
controlled trials [8, 21, 24, 31, 34–38].

In contrast to increased sympathetic activity, para-
sympathetic activity is decreased in patients with hyper-
tension, suggesting a sympathetic/parasympathetic 
imbalance [39–41].

A higher prevalence of hypertension is found in dia-
betic patients with a defective parasympathetic control. 
Moreover, there is an association between this defect and 
hypertension profile and vascular complications [42].

As well as being involved in hypertension, abnormal 
activation of the SNS has been implicated in metabolic 
syndrome, known risk factors for hypertension [4, 43].

Obesity, obesity‑related hypertension and SNS overdrive
Hypertension is common in obese individuals. It is esti-
mated that about 75% of hypertension incidence is 
directly linked to the presence of obesity (defined by a 
body mass index ≥ 30 kg/m2).

A dysfunction of the SNS activity leads to weight gain. 
Indeed the SNS plays a critical role in controlling energy 
expenditure in response to certain physiological stimuli 
(e.g., changing energy states, food intake, carbohydrate 
consumption, hyperinsulinemia, and exposure to cold) 
via regulation of the resting metabolic rate and initiation 
of thermogenesis by action on the brown adipose tissue 
[43, 44].

However, obesity is associated with SNS overdrive 
which is considered as a compensatory mechanism for 
the increase in energy expenditure, thus allowing to 
restore the energetic balance [45]. In particular SNS 
activity was shown to correlate with visceral adiposity 
[46]. Such SNS overdrive may contribute to metabolic 
disorders as insulin resistance with subsequent hyperin-
sulinemia, impaired glucose metabolism, diabetes, dys-
lipidemia [47, 48]. Obesity is also often linked to resistant 
hypertension, characterized by an incapacity to control 

blood pressure despite the prescription of at least three 
anti-hypertensives agents, including a diuretic [48].

However, some data suggest that sympathetic response 
to various stimuli may be blunted in obese patients com-
pared to lean individuals. For instance, sympathetic 
activity was reported in obese patients to be less stimu-
lated after a meal rich in carbohydrates or oral glucose 
intake despite a higher insulin response [49–51], and 
they exhibit a lower hemodynamic response during iso-
metric or heterometric exercise [52], and a lower vaso-
constrictive response to sympathetic activation during 
breathing-in [53]. Such a blunted sympathetic response 
or sympathetic reserve may promote weight gain and 
aggravate insulin resistance and subsequent hyper-
insulinemia, and thus maintain the vicious circle of 
weight gain—insulin resistance—sympathetic activa-
tion with blunted response—weight gain, etc. Increased 
leptin secretion by the adipocytes in patients with obe-
sity contributes to vascular and systemic insulin resist-
ance and SNS dysfunction [3, 4]. In addition to being 
an important regulator of fat accumulation, food intake, 
neuroendocrine outflow and metabolism, leptin, an adi-
pocyte-derived hormone, plays a role in the development 
of hypertension by increasing SNS activity in tissues 
involved in cardiovascular regulation such as the kidneys 
and blood vessels [54, 55]. Leptin has a key role in energy 
expenditure regulation through SNS, as it targets the 
arcuate nucleus to activate the concerned signalling path-
ways [47]. Impaired adiponectin secretion in patients 
with obesity is also thought to be involved in SNS acti-
vation and the promotion of insulin resistance [4]. Also, 
insulin-induced inhibition of lipolysis has been reported 
in obese patients with type 2 diabetes following modula-
tion of SNS activity [37]. Results of animal and human 
studies suggest that central sympathetic overactivity is 
involved in the aetiology and complications of metabolic 
syndrome and its associated components (i.e., abdominal 
obesity, insulin resistance, hyperglycaemia, dyslipidemia, 
hypertension, systemic inflammation) [43].

Increased urinary noradrenaline and metabolite lev-
els, and elevated plasma noradrenaline spill over, have 
been demonstrated in obese adults compared with lean 
individuals [56, 57]. Also, obese adults display increased 
resting sympathetic nerve activity in skeletal muscle 
[58–60]. Obesity is also associated with increased SNS 
activity to various tissues, in particular the kidneys, lead-
ing to increased vasoconstriction and fluid retention, and 
activation of the renin–angiotensin–aldosterone system, 
promoting increase in arterial blood pressure [55]. It 
is believed that these changes are mediated by elevated 
serum leptin levels due to increased fat mass combined 
with selective leptin resistance [55]. There is evidence 
that a reduction in body weight, induced by lifestyle 
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changes, can improve lipid profile, glucose metabolism, 
insulin sensitivity, and result in lowering systolic and 
diastolic blood pressure [61]. Some specialised diets 
have also been shown to reduce sympathetic activity, and 
improve baroreflex and insulin sensitivity [61]. In addi-
tion, both SNS and parasympathetic nervous system 
(PNS) activities are improved when dietary measures are 
combined with exercise [62]. Nevertheless, for patients 
with obesity-related hypertension (OHT) dietary meas-
ures are not sufficient to control blood pressure, and 
pharmacological strategies must be initiated [48].

OHT is often associated with diabetes mellitus, meta-
bolic syndrome and dyslipidemia. Sympathetic over-
drive in patients with OHT is often enhanced in those 
with a sleep apnea syndrome. Leptin, insulin and RAAS 
may contribute to increase SNS activity. Indeed, clamp 
studies in healthy and obese individuals have shown 
that hyperinsulinemia may activate the SNS and reduce 
PNS activity [63, 64], and so may promote OHT, and 
that hyperinsulinemia and inappropriate SNS activation 
contributes to increased renal sodium reabsorption [4]. 
Besides, in case of insulin resistance, a vascular resist-
ance to the vasodilative effect of insulin is also observed 
promoting development of hypertension [64]. Similarly, 
endothelial dysfunction associated with obesity may 
impair the vasodilative effect of leptin and also contribute 
to hypertension [65] (Fig. 2).

In addition to sympathetic alterations, a cardiac vagal 
defect may be detected in more than one third of patients 
with metabolically healthy obesity [66], suggesting that 
vago-sympathetic imbalance is an early disorder in obe-
sity which may play a role in subsequent hypertension. 
Indeed, rats with lesions of ventromedial hypothalamus 
do not exhibit hypertension despite massive obesity, 
increased plasma catecholamines and normal heart beta-
adrenoceptivity. In this model, increased heart vagal tone 
was suggested to be protective against the development 
of hypertension [67].

GLP‑1 and SNS overdrive
The SNS has also been implicated in the control of heart 
rate via glucagon-like peptide 1 (GLP-1), an incretin 
hormone released by the gut in response to food intake, 
which has receptors in peripheral tissues and central 
nervous system [47, 68, 69]. It is known that GLP-1 has 
beneficial effects on metabolic parameters in patients 
with type 2 diabetes such as increase in insulin release, 
replenishment of insulin stores, pancreatic β-cells pro-
liferation, improvement of insulin sensitivity in skeletal 
muscle, inhibition of glucagon secretion, decrease in liver 
gluconeogenesis, decrease in gastric emptying, increase 
in thermogenesis, reduction of appetite and body weight 
[70, 71]. As well as glycemic control, GLP-1 plays a role in 

heart rate control [72, 73], with animal studies suggesting 
that this GLP-1-mediated heart rate control is associated 
with sympathetic activation and/or depression of para-
sympathetic modulation [74–76] and that GLP1-receptor 
agonists induce an increase in heart rate [69]. In addition, 
animal studies suggest that GLP-1-enhances sympathetic 
activity and increases thermogenesis of brown adipose 
tissue [70]. However, a slight blood pressure decrease is 
observed during treatment by GLP1-receptor agonists, 
as a result of weight loss and possibly due other mecha-
nisms including an improvement of endothelial function 
[77].

Sleep apnea and SNS overdrive
It has been suggested that activation of the autonomic 
system caused by baroreflex dysfunction, predisposes 
to hypertension in people with sleep apnoea, with more 
markedly impaired baroreceptor reflex sensitivity being 
significantly associated with increased blood pressure 
and hypertension in generally healthy elderly individu-
als with sleep apnea [78]. It has been postulated that the 
cardio-protective effects of parasympathetic activity are 
reduced by acute sympathetic activation related to the 
induction of a downwards resetting of baroreceptor by 
sleep apnoea [78]. Impaired baroreceptor reflexes and 
sympathetic hyperactivity have also been observed in 
heart failure, which is also closely associated with sleep 
apnea [79].

The increased sympathetic activity is seen in patient 
with sleep apnea even when they are awake, and the 
apneic episodes are associated with further increases in 
sympathetic nerve activity and blood pressure during 
sleep [80].

It has been shown that an increase in SNS activity 
is also responsible for an increase in insulin resistance 
and central adiposity, which are associated with higher 
rates of sleep apnea [81]. In obese patients with resistant 
hypertension and sleep apnea, a decrease in sympathetic 
overdrive leads to a significant weight loss and decrease 
in blood pressure [81]. Thus, it is justified to screen for 
sleep apnea in diabetic patients with resistant hyperten-
sion, even in absence of symptoms to optimize blood 
pressure reduction [82].

Evaluation of SNS activity
Several methods are available to measure SNS hyperac-
tivity including sympathetic nerve recording, radiotracer-
derived measurements of regional sympathetic neuronal 
activity or heart rate and blood pressure variability.

Microneurography
Microneurography consists in measurement of sym-
pathetic nerve activity in the skin or in skeletal muscle 



Page 6 of 12Valensi ﻿Cardiovasc Diabetol          (2021) 20:170 

(MSNA) [83]. It is known that sympathetic outflows hap-
pen in bursts, so measuring sympathetic activity is based 
on detection of these bursts. Microneurography is an 
invasive method, needing a skilled technician to be per-
formed [84].

The analysis can be made in three ways: measurement 
of the burst frequency (count of the number of bursts 
occurring/minute), measurement of burst incidence 
(number of bursts occurring per 100 heart beats) or 
measurement of the total neural activity (sum of bursts 
amplitude in 1 min) [31, 84, 85].

Radiotracer‑derived measurements
As heart and kidneys are out of reach for microneurog-
raphy, radiotracer-derived measurements have been 
developed. This method is based on the measurement of 
noradrenaline outflow to the circulation. Tritiated I-nor-
epinephrine is infused in the patient’s circulation, allow-
ing to measure organ-specific noradrenaline spill over to 
plasma by isotope dilution [86, 87]. 123I-metaiodoben-
zylguanidine (123I-MIBG) is a norepinephrine analogue 
that can be used for non-invasive cardiac sympathetic 
neuronal activity assessment [88, 89].

Other methods
SNS activity can also be measured by indirect methods 
such as heart rate variability, blood pressure variability or 
arterial baroreflex sensitivity.

Heart rate variability
Heart rate variability (HRV) is the variation in time of the 
heart rate around the mean value of the patient between 
two heart beats. A decrease in the HRV is seen during 
SNS hyperactivity and is correlated with an increased 
risk of cardiac mortality and is a predictor risk factor for 
cardiovascular events [40].

It can be measured through a few-minutes or 24-h ECG 
recordings that can accurately sense RR intervals, and 
calculated using several indexes: Time domain indexes, 
Frequency indexes or nonlinear indexes [90]. HRV is also 
used to assess cardiac vagal tone [89, 91].

Blood pressure variability
Variability in blood pressure is classified as short-term, 
mid-term and long-term variability and increases accord-
ing to conditions depending on sympathetic activity. 
Mid- and long-term variability can be measured through 
ambulatory BP monitoring [92] while short-term varia-
bility can be measured by spectral analysis of blood pres-
sure measured using finger plethysmographic devices 
[93].

Arterial baroreflex sensitivity
Baroreflex sensitivity determines the capability of the 
SNS to respond to changes in blood pressure sensed at 
the level of the carotid sinus and aortic arch [94]. It can 
be measured by application of a neck chamber (stimu-
lation of carotid baroreflex), the use of vasoactive drugs 
(detection of systemic pressure changes), and the Val-
salva maneuver (to detect bradycardic responses). To 
determine baroreflex sensitivity, physicians must analyse 
the relation between diastolic blood pressure and MSNA 
[95, 96].

The neck chambers measure baroreflex sensitivity 
stretching and compressing the baroreceptors via nega-
tive and positive pressures applied to the anterior neck 
[97]. Injection of a vasoactive drug (angiotensin or phe-
nylephrine) allows a recording of ECG and beat-to-beat 
arterial pressure [98].

Multiple studies have analysed cross-correlation 
between HR and BP variabilities, which may account for 
changes in the autonomic nervous activity [99, 100].

Effects of hypertension management strategies 
on the SNS
Recommendations for the treatment of hypertension 
include lifestyle changes (i.e., diet, weight loss, exercise) 
either alone or in combination with pharmacotherapies 
[1]. Reduction in sympathetic overdrive is expected to 
trigger a series of favourable cardiovascular and meta-
bolic consequences [28], as shown with several of these 
hypertension management strategies.

Lifestyle modifications
Lifestyle changes are the first line of treatment for hyper-
tension [1]. While exercise reduces blood pressure and is 
protective against CVD, it does not appear to affect blood 
pressure, lipid levels or risk of diabetes [39]. A high-pro-
tein specialised eating plan, the Dietary Approach to Stop 
Hypertension (DASH), with an emphasis on fruit and 
vegetables, low-fat dairy, wholegrain cereals, vegetables 
and nuts, lean meats, poultry and fish, has been shown 
to reduce blood pressure and lipid levels, and improve 
metabolic markers when used as part of a weight-loss 
program [38]. Additionally, weight loss has been shown 
to depress SNS activity, with resultant improvements in 
insulin clearance, and reduced peripheral vascular resist-
ance [38]. Central sympathetic outflow has also been 
implicated in the physiology of salt-sensitive blood pres-
sure changes [101], and high sodium intake is associ-
ated with parasympathetic inhibition, dyslipidemia and 
inflammation in patients with mild hypertension [102].

In the CALERIE trial (Comprehensive Assessment of 
Long-term Effects of Reducing Intake of Energy) [62], 



Page 7 of 12Valensi ﻿Cardiovasc Diabetol          (2021) 20:170 	

patients were divided in three groups: calorie restriction 
(decrease of 25% of energy intake), calorie restriction and 
exercise (decrease of 12.5% associated with an increase 
of 12.5% in energy expenditure) or low-calorie diet until 
decrease of 15% of weight, followed by weight main-
tenance. After 6  months of trial, in all groups, the SNS 
activity was decreased whereas the PNS was increased 
but the changes reached significance only in the second 
group. Therefore, the results suggest that weight loss is an 
important factor to improve the SNS/PNS balance, espe-
cially when calorie restriction is combined with exercise.

Catheter‑based renal denervation
Catheter-based renal denervation has been explored as 
a treatment for drug-resistant hypertension [103, 104]. 
Renal denervation decreased blood pressure and reduced 
cardiovascular morbidity [105 106]. As well as the effects 
on blood pressure, renal denervation has demonstrated 
a decrease in muscle sympathetic nerve activity with a 
reduction of SNS-mediated effects such as improved gly-
caemic control and insulin resistance, and decreased total 
peripheral resistance [103, 104, 107]. Observed positive 
effects of renal denervation on the cardiovascular system 
include reduced arterial stiffness (lower pulse wave veloc-
ity), reduced left ventricular mass, improved heart failure 
symptoms and diastolic function, and increased left ven-
tricular ejection fraction [103, 107]. Heart rate is also sig-
nificantly reduced through renal denervation [108]. With 
regards to the effects on the kidney, renal denervation has 
been shown to reduce renal noradrenaline spill over and 
plasma renin release [109]. Interestingly, a recent paper 
showed that a baseline 24-h heart rate above the median 
(73.5 bpm), suggesting a higher sympathetic activity, pre-
dicted greater BP reductions after renal denervation and 
may allow physicians to select patients likely to respond 
to the procedure [108].

Pharmacological strategies
Several pharmacological strategies can be set up to 
decrease blood pressure, targeting either RAAS (angio-
tensin converting enzyme inhibitors (ACEis)/angiotensin 
receptor blockers (ARBs)), cardiac output (β-blockers), 
peripheral vascular resistance (calcium channel blockers 
(CCB) or sodium reabsorption (diuretics).

Pharmacological therapies for the management of 
hypertension via inhibition of the SNS include beta-
blockers and imidazoline receptor agonists, targeting 
beta-adrenergic and imidazoline I1 receptors, respec-
tively [9, 10]. While ACEis and ARBs act by antagonising 
the renin–angiotensin–aldosterone system, they appear 
to have little or no effect on the SNS [110, 111].

Beta‑blockers
Beta-blockers, also indicated for the treatment of heart 
failure [79, 112], decrease SNS activation by antagonizing 
beta-adrenergic receptors [10], and have potential ben-
eficial effects on cardiac fibrosis. While they reduce SNS 
activation and cardiovascular outcomes in patients with 
heart failure and reduced LV ejection fraction, they also 
have unwanted negative metabolic effects including insu-
lin resistance, dyslipidemia and reduced glycaemic con-
trol [10, 31, 113]. They also increase weight gain [2, 48].

Selective imidazoline receptor agonists.
Imidazoline receptor agonists (e.g., clonidine, moxoni-
dine, rilmenidine) act on the imidazoline I1 receptor [9]. 
Concentrated within the rostral ventrolateral medulla 
(RVLM), a part of the brainstem involved in sympathetic 
control of blood pressure, imidazoline I1 receptors are 
important for the regulation of sympathetic drive [114, 
115]. It is believed that the I1 receptor may belong to the 
neurocytokine receptor family, since its signalling path-
ways are similar to those of interleukins [114]. Of the 
imidazoline agonists, clonidine stimulates both α2 recep-
tors and imidazoline I1 receptors, whereas moxonidine 
and rilmenidine are considered as selective imidazoline 
receptor agonists (SIRAs), activating only imidazoline I1 
receptors within the RVLM [9, 116], avoiding thus side 
effects seen with clonidine (mainly tiredness, drowsiness 
and sedation). Increased neuronal activity in the RVLM 
by direct stimulation of I1 receptors by imidazoline ago-
nists decreases sympathetic outflow, resulting in a fall in 
blood pressure (Fig. 3) [115]. I1 receptors are also local-
ized on the plasma membrane of the neurons of the adre-
nal medulla, renal epithelium, pancreatic islets, platelets, 
and the prostate [114, 117]. In line with these findings, 
rilmenidine has demonstrated inhibition of cardiac 
baroreflex sympathetic activity, with subsequent reduc-
tion in heart rate [118], and beneficial effects of moxo-
nidine include enhanced sodium excretion, improved 
insulin resistance (clamp study) [119] and glucose toler-
ance and protection against hypertensive target organ 
damage (e.g., kidney disease, cardiac hypertrophy) [120]. 
Moxonidine was also shown to decrease kidney failure 
progression, reduce left ventricular hypertrophy and to 
improve endothelial function (first step to atherosclero-
sis development) in hypertensive patients [116, 120]. In 
the MERSY study [121] administration of moxonidine 
daily (0.2–0.4  mg) for 6  months as monotherapy or in 
combination with another antihypertensive treatment 
in hypertensive patients with a metabolic syndrome was 
shown to improve blood pressure control, to reduce the 
body weight and to act on metabolic parameters as lipid 
fractions and fasting plasma glucose (Fig.  4). Recently, 
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an international real-world medical research shown that 
in the surveyed countries, physicians considered SIRAs 
as a useful therapeutic option, frequently prescribed for 
hypertensive patients with metabolic outcomes [122].

Conclusions
Hypertension is a multifactorial disease process that is 
a well-established cardiovascular risk factor. Overacti-
vation of the SNS plays a central role in the aetiology of 
hypertension and has also been linked to several comor-
bidities commonly associated with hypertension, as 

metabolic syndrome, diabetes mellitus, dyslipidemia or 
sleep apnea syndrome. Some of the treatments for hyper-
tension, particularly selective imidazoline receptor ago-
nists, target the SNS and have demonstrated beneficial 
cardiovascular, renal, and metabolic effects in addition to 
lowering blood pressure.

Abbreviations
SNS: Sympathetic nervous system; CVD: Cardiovascular diseases; ANS: Auto‑
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