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Abstract: To classify between normal and sleep apnea subjects based on sub-band decomposition of
electroencephalogram (EEG) signals. This study comprised 159 subjects obtained from the ISRUC
(Institute of System and Robotics—University of Coimbra), Sleep-EDF (European Data Format), and
CAP (Cyclic Alternating Pattern) Sleep database, which consists of normal and sleep apnea subjects.
The wavelet packet decomposition method was incorporated to categorize the EEG signals into five
frequency bands, namely, alpha, beta, delta, gamma, and theta. Entropy and energy (non-linear) for
all bands was calculated and as a result, 10 features were obtained for each EEG signal. The ratio
of EEG bands included four parameters, including heart rate, brain perfusion, neural activity, and
synchronization. In this study, a support vector machine with kernels and random forest classifiers
was used for classification. The performance measures demonstrated that the improved results
were obtained from the support vector machine classifier with a kernel polynomial order 2. The
accuracy (90%), sensitivity (100%), and specificity (83%) with 14 features were estimated using the
data obtained from ISRUC database. The proposed study is feasible and seems to be accurate in
classifying the subjects with sleep apnea based on the extracted features from EEG signals using a
support vector machine classifier.

Keywords: EEG signals; wavelet packet decomposition; brain perfusion; neural activity; support
vector machine

1. Introduction

Sleep disorder is categorized into sleep apnea, narcolepsy, insomnia, and nightmare
syndrome. Sleep apnea is a serious disorder and one of the major causes of cardiovascular
disease, stroke, and heart disease. ET health world reported that in India, 93% of men
and 82% of women have untreated sleep apnea [1]. Early diagnoses and treatment can
improve the health conditions of subjects with sleep apnea. According to the guidance of
American Academy of Sleep Medicine (AASM), the conventional polysomnography (PSG)
method is used for diagnosing sleep apnea from electrocardiography (ECG), electroen-
cephalography (EEG), electromyography (EMG), electrooculography (EOG), respiratory
effort, nasal airflow, and oxygen levels [2]. The 30 s epochs are utilized to score the PSG
recordings. Apnea is the complete cessation of oronasal flow (≥10 s), whereas hypopnea is
a reduction in the respiratory airflow (≥30%). The severity of obstructive sleep apnea (OSA)
is measured using the apnea–hypopnea index (AHI) or respiratory disturbance index (RDI).
The AHI index is defined as the sum of apnea and hypopnea episodes divided by the total
sleep time. This index varies into normal (<5/h), mild OSA (5–14.9/h), moderate OSA
(15–29.9/h), and severe OSA (≥30/h) [3]. The difference between PSG and the respiratory
polygraphy (RP) method was investigated by Tan et al. [4]. Lab respiratory polygraphy
uses the same equipment and procedure as PSG does except for the recording montage
(EEG, EMG, and EOG signals). The thermistor and nasal pressure transducer signals are
deviated in home-based respiratory polygraphy. In conclusion, the performance of PSG is
high compared with home-based respiratory polygraphy. As the PSG method is complex
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and time-consuming, numerous studies focused on an ECG-based diagnosing system [5,6].
EEG signal processing is required to analyze the activity of the brain and diagnose the
normal and abnormal activities of any disease. Few research works carried out sleep
stage classification using EEG signals. Cui et al. [7] propounded the convolutional neural
network (CNN) and fine-grained segments for automatic sleep stage classification. This
method consists of max-pooling layers and two convolutional layers with unique designed
features.

Another study used degree distribution, a horizontal visual graph, and difference
visual graph features and portrayed an improvement with an accuracy of 87.5% in six
stages of sleep classification from EEG signals [8]. A three-band time-frequency localized
(TBTFL) wavelet filter bank has been utilized for sleep stage classification from EEG signals
using the features such as sample entropy, signal fractal dimensions, and log energy.
Support vector machine (SVM), K-nearest neighbor (KNN), and complex tress classifiers
were used for classification. The three-level wavelet decomposition method segregated
the EEG signals into seven sub-bands. [9]. Tzimourta et al. [10] proposed a five-stage
classification method using EEG signals and obtained promising results from a random
forest (RF) classifier compared with other classifiers such as KNN, SVM, decision tree,
and Naive Bayes (NB). Another study suggested a sleep stage classification from the EEG
signal using stock well transform. This study utilized SVM, KNN, and ensemble bagged
tree classifiers [11]. Savareh et al. [12] performed a sleep stage classification from wavelet
tree features using SVM and an artificial neural network (ANN). A recent literature review
demonstrated more suitable preprocessing techniques, feature selection, and classification
methods for sleep stage classification [13]. The sleep stages were explored by Hertenstein
et al. [14] in healthy subjects. The investigation was performed using the spectral analysis
of EEG signals based on age and gender. Furthermore, the sleep quality was examined
using EEG signals from healthy subjects [15]. The results demonstrated that the beta range
is high in adults. The limitation of the current study is the subject selection without any
validation, and assumes the sleep apnea and normal subjects as the categories already
mentioned in the existing database.

Elwali et al. [16] designed a screening method for OSA using anthropometric features
and tracheal breathing sounds with the support of an RF classifier. Few existing studies
have significantly applied the EEG signals and machine learning approaches for sleep
apnea detection. In addition, the EEG signal band segregation was accomplished for better
performance. Consequently, EEG signals were classified into alpha, beta, delta, gamma,
and theta. The frequency range of each band was different, and was given as follows:
the delta lay below 4 Hz, theta lay between 4 Hz and 8 Hz, alpha lay between 8 Hz and
13 Hz, beta lay between 14 Hz and 32 Hz, and gamma lay above 32 Hz. The WPD method
was used for EEG signal band segregation and achieved results with better accuracy [17].
Almuhammadi et al. [18] demonstrated a classification approach using SVM, ANN, NB, and
linear discriminant analysis (LDA) methods. The infinite impulse Butterworth bandpass
filter was used for preprocessing. Energy and variance were calculated for each band to
classify normal and sleep subjects. Zhao et al. [19] used SVM, KNN, and RF for OSA, central
sleep apnea (CSA), and normal breathing classification. Sample entropy and variance were
manipulated and fed into classifiers. Furthermore, the inter-band energy ratio was used to
diagnose sleep apnea using SVM, KNN, LDA, and NB classifiers [20]. The energy ratios
were delta-theta (δ-θ), delta-alpha (δ-α), delta-theta (δ-σ), delta-beta (δ-β), and theta-alpha
(θ-α). Nagendra et al. [21] investigated the effects of yoga practice in young normal subjects
using the parameters of ECG and EEG bands. The measurement was performed using the
EEG frequency band ratios and better outcomes were achieved using various cognitive
functions.

Most of the existing research studies have demonstrated sleep stage classification
from EEG signals using machine learning approaches. Multiple types of literature works
have utilized ECG signals for sleep apnea detection and demonstrated the potential results.
Only a few studies discussed the detection of sleep apnea based on EEG signals, which
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motivated us to use EEG signals for sleep apnea detection with SVM and RF classifier
for classification. The proposed method consists of the notch filter for preprocessing and
WPD for EEG signal band segregation. In addition, this study includes the non-linear
and ratios of frequency band parameters for feature extraction. Here, the features are
calculated using EEG bands and applied to the input for both SVM and RF classifiers.
Finally, the proposed work demonstrated the classification comparison between three
publicly available databases and documented the significant performance analysis.

2. Materials and Methods
2.1. Database Description
2.1.1. ISRUC Sleep Database

This study comprised a total of 89 subjects from the publicly available database of the
Institute of System and Robotics—University of Coimbra (ISRUC). There was an assortment
of three subgroups. Group 1 and group 2 consisted of both sleep apnea and normal subjects.
Group 3 had the normal subjects. In this study, EEG signals were acquired from the C3-A2
electrode location [22]. A total of 57 sleep apnea subjects and 32 normal subjects from
group 1 and group 3 were utilized in this study, which involved 45 male and 44 female
subjects. Adults between 20 and 85 years (mean—51, standard deviation—16) were in
three groups.

2.1.2. Sleep—EDF Database

A total of 40 subjects were used in this study, 20 from sleep cassette and 20 from
sleep telemetry, including 31 female and 9 male subjects aged between 26 and 51 years
(mean—36.8 years, standard deviation—14.68). The EEG signals were recorded using the
locations of both Fpz-Cz and Pz-Oz electrodes at 30 s epochs [23].

2.1.3. CAP Sleep Database

A total of 20 subjects were used in this study, which involved 16 normal subjects and
4 sleep disorder subjects. Nine females and 11 males aged between 25 and 78 years (mean—
51.5, standard deviation—37.47) subjects classified as both normal and sleep disordered
were utilized in this study [24]. The EEG signals were recorded from C3-A2 and C4-A1
locations.

Figure 1 shows the proposed architecture diagram to classify normal and sleep ap-
nea subjects. The demographic characteristics of the ISRUC, Sleep-EDF, and Cap Sleep
databases are represented in Table 1.
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Table 1. Demographic characteristics of the ISRUC, Sleep-EDF, and CAP Sleep databases.

ISRUC Sleep-EDF Cap Sleep

Subjects (M:F) Age (Years) Subjects (M:F) Age (Years) Subjects (M:F) Age (Years)

Sleep subjects 57(33:24) 55 ± 14 20(15:5) 39 ± 18.54 4(4:0) 71.25 ± 7.22

Normal subjects 32(18:14) 45 ± 17 20(16:4) 33.15 ± 9.37 16(7:9) 32.18 ± 5.55

Training set 79 - 30 - 16 -

Testing set 10 - 10 - 4 -

Note: Data are represented as mean ± standard deviation, M:F—male:female.

2.2. Pre-Processing and Band Separation

This study used a 50 Hz notch filter to suppress the unwanted AC voltage line from
30 s epoch raw EEG signals. Furthermore, the WPD method was used to decompose the
EEG signals into approximation and detail coefficients at a higher level. The Daubechies
mother wavelet (dbN) was used for EEG frequency band partitioning [25]. WPD generates
2n coefficients for n levels of decomposition. WPD was calculated using Equation (1).

Cn,j
p =

∫ ∞

−∞
x(t)ψn

(
2−j − p

)
dt (1)

where x(t) is the EEG signal, C is the coefficient of WPD, p is the position parameter, ψn
is the wavelets, n is the channel number, and j is the number of decomposition levels. In
addition, the approximation and detail coefficients were calculated for all EEG bands: alpha
(α), beta (β), theta (θ), gamma (γ), and delta (δ). Here, three-level WPD was performed
to develop a binary tree (23 = 8) [26]. The proposed study used the detail coefficients to
calculate the feature values.

2.3. Feature Extraction Method of the Proposed Study

This study attempted to use features such as entropy, energy, heart rate (HR), brain
perfusion, neural activity, and synchronization, which manipulate the ratios of the fre-
quency band and develop a suitable set of values for classifiers. Entropy and energy are
the most familiar features utilized for sleep apnea classification [27–29]. The entropy and
energy features were calculated for five EEG bands in both approximation and detail
coefficients. Entropy (H) was computed by Equation (2). The energy (E) was calculated
using Equation (3).

H = −
N−1

∑
i=0

(pi)
2 log(pi)

2 (2)

E =
N−1

∑
i=0

p2
i (3)

where pi is the wavelet detailed coefficients at level i and N is the total number of decom-
position levels. The EEG frequency band ratios were interpreted, including heart rate,
brain perfusion, neural activity, and synchronization, in Equations (4)–(7) [20,21]. The heart
rate is the ratio corresponding to the physiological condition of the relaxed state, whereas
the brain perfusion indicates the relaxed state, which increased in parietal and temporal
and decreased in frontal and occipital lobes. Similarly, the neural activity elaborates the
representation of improvement in cognitive skills and the synchronization is for analyzing
the correlation of deactivated cortical [30].

Heart rate = θ/α (4)

Brain perfusion = α/δ (5)

Neural activity = β/θ (6)

Synchronization = δ/θ (7)
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Ten features were computed using entropy and energy for each EEG band, and four
features from the EEG band ratios. In comparison with recent literature, this study obtained
a maximum of 14 features for each EEG signal and provided results with better accuracy.
The extracted feature values of sleep apnea and normal subjects for five EEG bands were
demonstrated using a box plot obtained from the ISRUC, Sleep-EDF, and CAP Sleep
databases.

2.4. Classification Module
2.4.1. Support Vector Machine Classifier with Kernels

In this study, the normal and sleep apnea subjects were the two classes of input. The
SVM is a binary classifier used to separate the two classes using the hyperplane with the
highest margin. It utilizes a large set of points to develop a decision boundary, which are
support vectors [31]. Different kernel types are used, such as sigmoid, linear, polynomial,
and radial basis function (RBF). The proposed study consisted of the linear, RBF, and
polynomial order 2 and 3 kernels for classification and obtained improved accuracy in
polynomial order 2. The experimental setup consisted of training and testing algorithms,
and each kernel had separate training and testing data. The report demonstrates that the
increased training data (90%) and decreased testing data (10%) provided results with better
accuracy [7]. This study followed a similar percentage of data for performance analysis.

2.4.2. Random Forest Classifier

Another method utilized in this proposed work was the RF classifier. It is a fast feature
selection method among multiple feature sets. The measurement of this classifier is made
when the out-of-bag (OOB) values of features are permuted using the misclassification
rate [32]. The OOB error is measured when each classification tree has been built. It
measures the error of overall trained classification trees. As mentioned above for SVM,
the features are segregated into training and testing data. It is a supervised learning
algorithm that develops a decision tree on the randomly preferred database. The results of
the multiple decision trees are combined by bootstrap-aggregated decision trees to reduce
overfitting, which improves the generalization error. A prediction is made for each tree
and the best one is selected by voting [33]. This classifier seems to be an efficient method
because it is suitable for large databases. To validate the performance of the classifier, this
study used a 10-fold cross-validation method, which is a robust model that has a minimum
amount of redundancy and overfitting.

2.5. Performance Analysis

To evaluate the performance metrics, the accuracy, specificity, and sensitivity were
calculated in this study (Equations (8)–(10)) [17].

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Specificity =
TN

TN + FP
(9)

Sensitivity =
TP

TP + FN
(10)

where True Positive (TP) is the correct number of subjects recognized as sleep apnea, False
Positive (FP) is the normal subjects wrongly recognized as sleep apnea, True Negative (TN)
is the number of subjects recognized as normal, and False Negative (FN) is the number of
sleep apnea subjects wrongly recognized as normal.
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3. Results

The analysis deployed a MATLAB tool for processing the EEG signals. Figure 2a–c
shows the raw EEG signal with a sampling frequency of 200 Hz obtained from the ISRUC,
100 Hz from the Sleep-EDF, and 512 Hz from the CAP Sleep database. The signal was then
filtered by a notch filter that performed efficient noise removal. The outcome of the filtered
EEG signal is depicted in Figure 3a–c.
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After the preprocessing, the Daubechies wavelet (db8) was used to partition the
filtered EEG signals into approximation and detail coefficients for five bands, including
alpha, beta, delta, gamma, and theta. Each database was processed by a different sampling
frequency, which is given as follows: for the ISRUC database the signal processed at
a frequency of 200 Hz [22], the Sleep-EDF database at 100 Hz [23], and the CAP Sleep
database at 512 Hz [24]. The compressed representation of EEG signal is demonstrated by
the extracted wavelet coefficients shown in Figure 4a–c. The approximation coefficients
and detail coefficients for the five bands were obtained and each band of detail coefficients
was considered for feature extraction.

A total of 14 features for each subject were evaluated. Comparing different training
and testing subjects, mere accuracy changes were noted. Among SVM kernels, the polyno-
mial 2 order kernel provided results with better accuracy (90%), sensitivity (100%), and
specificity (83%) for the ISRUC database. The variation between sleep apnea and normal
subjects is represented in the box plot, which shows the representation of the entropy fea-
ture for gamma, beta, alpha, theta, and delta bands from the ISRUC database (Figure 5a–e).
Figure 6a–e shows the energy feature variation. Meanwhile, the heart rate, neural activity,
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brain perfusion, and synchronization feature variations are shown in Figure 7a–d. The pro-
posed study documents that the finest features and increased database provided improved
performance analysis compared to the existing literature [5,10,18].

Furthermore, this study used a total of 150 trees for the RF classifier. Two thirds
of the data were used for the training set and one third of the data were used for OOB
validation. The accuracy, sensitivity, and specificity for the ISRUC, Sleep-EDF, and CAP
Sleep databases obtained using this classifier were 66%, 100%, and 100%; 75%, 100%, and
100%; and 50%, 100%, and 100%, respectively. Most importantly, this study attempted
the same experiments with the subjects of three databases and obtained improved results
for the Sleep-EDF database. The RF classifier produced low-performance results when
compared to the SVM classifier. The classification of normal and sleep apnea subjects using
the SVM with a polynomial order 2 kernel from the ISRUC database is shown in Figure 8.
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4. Discussion

A self-administered questionnaire was developed to analyze age, gender, smoking
habits, and working hours to diagnose sleep apnea. In conclusion, the young, male adults,
smokers, and those long working hours seemed to be highly affected by sleep apnea [34].
The diagnosis of sleep stages and sleep-related disorders were analyzed using the standard
questionnaires from the analysis of age and gender. The power spectral density of different
EEG frequency bands was measured in healthy individuals to assess sleep stages [15].
Recent literature has discussed the other EEG spectral parameters, i.e., the arousal index,
central nervous system arousal, desynchronization, cognitive performance index, executive
load index, performance enhancement index, LF-to-HF (low frequency to high frequency)
ratio, task load index, and vigilance index to assess the dynamic workload condition for
fighter pilots. [30].
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In past decades, multiple studies have demonstrated the detection of sleep apnea using
ECG signals with different classifiers. Contactless capacitive-coupled electrocardiography
(ccECG) signals were used to detect sleep apnea by various signal quality indicators.
Significant results were computed from HR and heart rate variability (HRV) features [2].
Another study used a single channel ECG-based OSA computer-aided design (CAD) using
an optimal biorthogonal antisymmetric wavelet filter bank [5]. EEG signals are time-
variable and noisy, which detects the electrical activity of the brain. In this proposed study,
the classification of sleep apnea and normal subjects was performed using EEG signal
analysis. Hence, extracting features from EEG signals was a challenging task that was
accomplished by multiple conventional transforms. In comparison with conventional
transforms, the WPD method is very competent at extracting the features from EEG signals.
Ting et al. [35] emphasized the WPD method with an autoregressive model. Moreover,
they concluded that results with better accuracy are obtained with the WPD method.

Rachim et al. [36] propounded a method that extracts features using the principal
component analysis and SVM classifier. This method has been used in the fifth-level
wavelet decomposition of features from ECG signals to detect sleep apnea. Ali et al. [37]
performed level 4 WPD with an HRV signal to detect OSA. With the motivation of the
existing literature, in this work, the WPD seemed to be used for band segregation and
feature analysis and obtained an accuracy of 90%. This study validated the results with
ratios of frequency band parameters that were explained by Nagendra et al. [21]. The
yoga and control group was effectively reported with sub-band decomposition of EEG
signals. Furthermore, frequency band ratios such as β/α, β/(α+ θ), and 1/αwere used
to analyze the engagement task [38]. The results established improved performance results
for utilizing such ratios in the proposed method.

In recent years, there has been little research focused on robust classifiers such as
SVM and RF classifiers for an improved level of accuracy. Among the methods, SVM and
ANN have been yielding promising results. Al-Angari et al. [39] demonstrated the SVM
approach based on HRV, oxygen saturation, and respiratory signals to detect sleep apnea.
The study results strongly recommend the SVM classifier with a kernel-based approach to
improve performance results. Hence, better accuracy is achieved by the polynomial order
2 kernel. In addition, some of the literature provided better classification results using an
RF classifier. Janbhakshi et al. [31] suggested using the HR and respiration rate from ECG
signals to diagnose sleep apnea. The SVM and RF classifiers were used, which yielded 82%
accuracy. With the motivation of the abovementioned literature, the proposed approach
used the non-linear and ratio of frequency band parameters, which were significant and
obtained enhanced results. In addition, this study utilized the SVM and RF classifiers for
performance analysis and concluded that the SVM results in greater performance compared
to the RF classifier. The novelty of the proposed approach is comparing the results among
the three databases. The comparison result indicates that better improvement was achieved
in subjects from the ISRUC database. An important limitation encountered in this approach
is subject selection. The sleep apnea and normal subjects were directly chosen from the
existing databases without any validation. Table 2 shows the summary of the existing
literature related to this proposed study.



Diagnostics 2021, 11, 1571 12 of 14

Table 2. Summary of the performance comparison of existing literature.

Authors Signals Used Feature Used Database Subjects Used Classifier Used Event Accuracy

Castro et al. [2] ECG Heart rate Heart
rate variability Volunteers 15 Signal quality

indication Sleep apnea 91.0%

Shrama et al. [5] ECG Fuzzy entropy,
Log energy Apnea ECG 27 Least square SVM Sleep apnea 90.0%

Wang et al. [6] ECG RR intervals Apnea ECG 35 Residual network Sleep apnea 94.0%

Cui et al. [7]
EEG (F3-A2,

C3-A2, O1-A2,
F4-A1, C4-A1,
and O2-A1)

Entropy ISRUC 116 Convolutional neural
network

Sleep stage
classification

(Wake, stage N1,
stage N2, stage
N3, and stage

REM)

92.2%

Zhu et al. [8] EEG (Pz-Oz)

Degree
distribution,
Horizontal

visual graph,
Difference visual

graph

Sleep-EDF 8 Support vector machine Sleep stage
classification 87.5%

Tzimourta et al.
[10]

EEG (F3-A2,
C3-A2, O1-A2,
F4-A1, C4-A1,
and O2-A1)

Energy ISRUC 100 Random forest

Sleep stage
classification

(Wake, stage N1,
stage N2, stage
N3, and stage

REM)

75.3%

Savareh et al.
[12]

EEG (Fpz-Cz
and Pz-Oz)

Wavelet tree
features Sleep-EDF 61

Support vector machine,
Artificial neural

network

Sleep stage
classification

90.3%
ANN

Boostani et al.
[13] ECG Entropy Sleep-EDF 20 Random forest Sleep apnea 87.1%

Elwali and
Moussavi [16] ECG Optimized set of

breathing sounds

PSG Sleep
database at

Misericordia
Health Center

(Winnipeg,
Canada)

199 Random forest Sleep apnea 81.4%

Aluhummadi
et al. [18] EEG Energy, Variance MIT-BIH 18

Support vector machine,
Linear discriminant

analysis, Naive Baiyes,
Artificial neural

network

Sleep apnea 97%
SVM

Zhao et al. [19] EEG (C3-A2 and
C4-A1)

Sample entropy
Variance

Tianjin Chest
Hospital 30

Support vector machine,
K nearest neighbor,

Random forest
Sleep apnea 88.99% SVM

Saha et al. [20] EEG (C3-A2 and
C4-A1)

Inter band
energy ratio

δ-θ
δ-α
δ-σ
δ-β
θ-α

St. Vincent’s
University Hos-
pital/University
College Dublin

sleep apnea
database

5

K nearest neighbor,
Support vector machine,

Linear discriminant
analysis

Naïve Bayes,

Sleep apnea 91.6%
KNN

Tripathy et al.
[32] ECG

Heart rate
Respiration

signals
Apnea ECG 31 Support vector machine,

Random forest Sleep apnea 77.8%
SVM

Rachim et al. [36] ECG

Heart rate
Respiration

signals
ECG-derived

respiration

Apnea ECG 35 Support vector machine Sleep apnea 95.0%

Ali et al. [37] ECG Heart rate
variability

Sultan Qaboos
University

Hospital (SQUH)
80 Support vector machine Obstructive

sleep apnea 95.0%

Al-Angari et al.
[39] ECG

Respiration rate
Oxygen

saturation

Sleep
Heart Health

Study
100 Support vector machine Obstructive

sleep apnea 95.0%

Proposed study
EEG (C3-A2,

Fpz-Cz, Pz-Oz,
and C4-A1)

Entropy
Energy

Heart rate
Synchronization
Neural activity
Brain perfusion

ISRUC,
Sleep-EDF,
CAP Sleep

159 Support vector machine,
Random forest Sleep apnea 90.0% SVM
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5. Conclusions

The normal and sleep apnea subjects were classified using SVM and RF classifiers with
non-linear and sub-band decomposition of EEG signals. The classification was performed
using SVM with three kernels: linear, radial basis function, and polynomial orders 2 and 3.
From the analysis, it can be seen that SVM was the prominent method and outperformed
with better accuracy using polynomial kernel (order 2) (90%). In conclusion, this study
demonstrated that the chosen features seem to be effective between sleep apnea and normal
subjects. Furthermore, this study can be used with real-time EEG signals for the detection
and classification of sleep apnea.
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