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RNA Sequencing: A Potentiator of Discovery-based Research

In 1989, a team of Toronto-based researchers first published
the discovery that mutations of the CFTR (cystic fibrosis
transmembrane conductance regulator) gene led to the
development of CF (1–3). Over the intervening 30 years since that
discovery, incredible advances have been made in CF treatment.
For many patients, a disease that once ensured death in childhood
or early adulthood is now managed well into adulthood as a
chronic illness. The most exciting novel therapies for CF are
undoubtedly the targeted modulator therapies. For those with
amenable mutations, CFTR modulators improve both physiologic
and patient-centered endpoints (4).

Ivacaftor was the first available CFTR potentiator approved by
the U.S. Food and Drug Administration for treatment of CF with the
missense mutation G551D (5). In vitro data showed that ivacaftor
restored the gating function of G551D CFTR (6), rescuing
transmembrane chloride transport. Clinical trials of ivacaftor
demonstrated rapid and durable improvements in lung function,
quality of life as measured by the Cystic Fibrosis Questionnaire
Revised (CFQ-R) score, weight, and frequency of pulmonary
exacerbations (7). Further studies demonstrated effectiveness in
treating a number of mutations similar to G551D (8), and in 2017
the Food and Drug Administration expanded the clinical
indications for ivacaftor to an additional 23 class III (“gating”)
mutations (9). More recently, ivacaftor in combination with other
modulators was shown to be efficacious for the treatment of
patients with Phe508 del homozygous CFTR, the most common
genotype in patients with CF (10, 11). In the face of an increasing
number of CFTR modulators and the option to use varying
combinations of drugs for treating different CFTR genotypes, novel
approaches to predicting response to therapy are needed.

Next-generation sequencing technologies such as RNA
sequencing (RNA-seq) and machine learning (ML) have the
potential to revolutionize translational research. Insights from
next-generation sequencing are currently guiding the generation of
novel hypotheses regarding the pathobiological underpinnings of
disease and facilitating biomarker discovery. Likewise, ML models
integrating biomarker and clinical data are being trained to predict
clinical outcomes and drug response. These technologies are already
driving innovations in CF research, ranging from the identification
of a novel cell type (the ionocyte) that likely contributes to the
pathogenesis of lung disease in CF (12, 13) to the discovery of
biomarkers of CF pulmonary exacerbations based on RNA-seq of
neutrophils (14).

In this issue of the Journal, Sun and colleagues (pp. 643–652)
report on studies investigating the transcriptomic landscape of
CF and how it changes after the initiation of ivacaftor therapy
(15). They performed RNA-seq analysis of peripheral blood
mononuclear cells (PBMCs) from 56 patients with CF carrying at
least one copy of the G551D mutation, using paired blood samples

before and 1 month after initiation of ivacaftor therapy. The
authors estimated differential gene expression (DGE) changes
associated with the initiation of ivacaftor and identified 102 genes
that were significantly different. They applied pathway analysis to
these genes and found enrichment for cellular processes that
regulate innate immunity and inflammation. They used a
consensus clustering algorithm to classify patients as “good” or
“moderate” responders to ivacaftor based on clinical variables
including forced expiratory volume in 1 second (FEV1)% predicted
and CFQ-R score. Compared with moderate responders, good
responders were significantly older (17.3 vs. 28.0 yr), had
significantly lower FEV1% predicted (69.4% vs. 98.3%), and had
significantly lower CFQ-R scores (56.4 vs. 81.7). The authors
performed another DGE analysis comparing pre-ivacaftor PBMCs
between these good and moderate responders, and identified 65
differentially expressed genes, which were enriched for a previously
published set of CFTR modifier genes. Finally, they built a
prospective predictive model for clinical response to ivacaftor using
an ML-based random-forest algorithm trained on combined
clinical data and expression levels of PPARG, one of the genes
with the highest log-fold difference between good and moderate
responders.

Two of the most notable strengths of the report by Sun and
colleagues are the large size of the study population and the focus
on a relatively homogeneous population of patients with at least
one copy of the same mutation. Genetic homogeneity in a disease
locus in human RNA-seq studies is rare and helps to bolster the
expression signal of ivacaftor treatment. Furthermore, the pathway
analysis serves as a nice companion to the established clinical
improvements seen in previous clinical trials, in that it highlights the
salutary effects of improved mucociliary clearance along with
decreased inflammation and infectious burden. Crucially, Sun and
colleagues are committed to making the RNA-seq data described in
this report publicly available. This is essential for maximizing the
value of their work because it enables investigators to increase power
or perform validation studies in future transcriptomic analyses.
Finally, their use of RNA-seq for biomarker discovery and
application of ML-based methods that incorporate both clinical and
genomic variables are promising approaches that may aid in the
generation of predictive models for CF and other disease processes.

This report also has important limitations. Although the
authors noted low expression of CFTR by PBMCs, it is not possible
to determine whether the transcriptomic changes observed in this
study are a direct effect of ivacaftor on these cells or instead reflect
systemic effects of improved CFTR function in stakeholder tissues
such as the lungs. The baseline differences in age, lung function,
and symptoms between patients classified as good or moderate
responders suggest that the patients labeled as good responders
were sicker than the moderate responders, and those labeled as
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moderate responders were close enough to ideal health that they
simply may not have had as much room to improve with ivacaftor
treatment. Finally, the use of ML-based methods on a single
training dataset without confirmation in an independent validation
dataset is vulnerable to overfitting, a form of modeling error
common to ML methods where the predictive power of the
algorithm performs well on the generative dataset but breaks down
when applied more broadly. The authors explain that they
compared model test errors among candidate biomarker genes
from their DGE analysis and selected PPARG alone over a set of
candidate genes because it resulted in the lowest test error for their
model. This approach could actually worsen overfitting because the
gene with the lowest test error in a single training dataset may turn
out to have a higher test error than other genes when the model is
applied more broadly.

Treatment with ivacaftor as part of standard of care for patients
with CF and at least one G551D mutation will probably not change
with this report, but the approach presented here can be adapted to
future prospective studies of CF modulators, including combination
therapies, for patients with different CF genotypes. Thoughtful
experimental designs including large, prospectively defined,
independent training and validation cohorts can yield successful
predictive models of response to therapy that can enter clinical
practice for CF and other diseases. n
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