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Time-restricted feeding induces Lactobacillus- and
Akkermansia-specific functional changes in the rat
fecal microbiota
Antonio Palomba 1,4, Alessandro Tanca 1,2,4, Marcello Abbondio 2, Rosangela Sau2, Monica Serra3, Fabio Marongiu3,
Cristina Fraumene1, Daniela Pagnozzi1, Ezio Laconi3 and Sergio Uzzau 1,2✉

Diet is a key factor influencing gut microbiota (GM) composition and functions, which in turn affect host health. Among dietary
regimens, time-restricted (TR) feeding has been associated to numerous health benefits. The impact of TR feeding on the GM
composition has been mostly explored by means of metagenomic sequencing. To date, however, little is known about the
modulation of GM functions by this dietary regimen. Here, we analyzed the effects of TR feeding on GM functions by evaluating
protein expression changes in a rat model through a metaproteomic approach. We observed that TR feeding has a relevant impact
on GM functions, specifically leading to an increased abundance of several enzymes involved in carbohydrate and protein
metabolism and expressed by Lactobacillus spp. and Akkermansia muciniphila. Taken together, these results contribute to
deepening our knowledge about the key relationship between diet, GM, and health.
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INTRODUCTION
Lifestyle interventions, including changes in diet and increased
exercise, result in many health benefits able to prevent (and
enhance treatment of) various metabolic diseases. Among dietary
interventions, caloric restriction (CR) has been most intensely
investigated. CR consists in a reduction of total daily calories
intake without changing the macronutrient composition nor
causing malnutrition. Studies in animals and humans have
repeatedly reported that CR leads to an extension of both lifespan
and healthspan1,2. However, the applicability of the CR regimen is
limited, due to the difficulties to be maintained over a long time
and to be used in the management of chronic conditions3.
An alternative dietary approach, that is being actively explored

for its potential benefits, is intermittent fasting (IF). IF regimens
were studied both in human subjects and animal models and
proved to ameliorate a variety of pathological conditions,
including obesity, impaired glucose tolerance, dyslipidemia,
hypertension, fertility problems, liver impairment, and neurode-
generative diseases4,5. IF has been recently categorized in whole-
day fasting, every other day fasting, and time-restricted (TR)
feeding6. In the TR feeding protocol, food consumption is not
randomly distributed across the 24 h, but it is limited to a daily
interval of 3–47, 7–98, or 10–12 h9, allowing daily fasting duration
greater than 12 h. A basic rationale of this dietary regimen is that
the feeding time period should be aligned with internal circadian
rhythms, in order to synchronize with the active phase of animal
or human metabolism10,11. The benefits of this feeding regimen
appear to be proportional to fasting duration6. It is important to
note that during the TR feeding regimen the quality and quantity
of nutrients is comparable to that of ad libitum (AL) controls. In
fact, after a short training period (usually lasting less than one
week) under controlled experimental conditions, animals exposed
to TR feeding are able to eat ≥90% of the food ration consumed
by AL-fed controls12. TR feeding, unlike CR, can be well tolerated

by humans for long periods, also at repeated intervals, as noted in
the Islamic fasting during the month of Ramadan13. An increasing
number of studies have indicated that TR can reproduce at least
some of the effects associated with CR14, including stimulation of
autophagy, increased mitochondrial respiratory efficiency, mod-
ulation of reactive oxygen species, and changes in the profile of
inflammatory cytokines15. Furthermore, TR was shown to reduce
body fat mass16, to decrease plasma levels of triglycerides and
low-density lipoproteins6,17, and to increase lifespan in mice18.
Diet is a key factor influencing gut microbiota (GM) composi-

tion and functions, which in turn affect host health19. It is well-
known that GM composition varies in response to isocaloric diets
differing in macronutrient composition, as well as to diets with
identical macronutrient composition differing in caloric content20.
Recently, a few studies specifically investigated the possible
impact of TR feeding on GM composition. Ren et al. found
alterations in the GM caused by TR feeding linked to recovery
from hepatic ischemia-reperfusion injury21. Zeb et al. reported
that a TR diet can impact the GM, influencing in turn host
metabolism and nutritional status22. The same research group
also showed that TR feeding can enhance GM richness
(specifically Prevotellaceae and Bacteroidaceae diversity). Hu
et al. demonstrated that a TR feeding regimen in juvenile mice
has long-term effects on the GM, leading to a disturbed
microbiota-host relationship that can hardly be solved in later
life23,24, suggesting that TR-derived effects might be influenced
by the age at which the dietary changes occur.
GM metabolic processes exert a significant impact on the host

physiology, affecting gut mucosa homeostasis and being key to
the dynamic reciprocal relationship established between the gut
and other host systems. In this respect, metaproteomics (unlike
metagenomics) can provide reliable information on which
biological processes are actually activated (or repressed) by the
GM in response to host or environmental stimuli25, by measuring
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variations occurring in microbial protein abundance and in the
corresponding biochemical pathways. Furthermore, metaproteo-
mics can infer which members of the GM are involved in specific
molecular functions. However, no studies to date have investi-
gated the influence of TR feeding on GM through a metapro-
teomic approach.
In the present study, we aimed to investigate the effects of

long-term TR feeding on GM protein expression in a rat model, by
exploiting an established fecal metaproteomic approach allowing
a taxon-specific functional characterization of the GM. In parallel,
samples were analyzed by 16S rRNA gene sequencing, to provide
a gold-standard evaluation of GM taxonomic structure. Taxon-
specific processes and pathways possibly influenced by TR feeding
were examined and discussed.

RESULTS
Experimental design and general metrics
Figure 1 shows the experimental design of the study. After
8 weeks of AL feeding, 16 rats were divided into two groups of 8
rats each: the first group was kept on an AL regimen, whereas the
second shifted to TR feeding. Food intake and body weight
curves regarding an experiment based on the same dietary
regimens and carried out on the same type of rats have been
previously published12.
After 48 weeks of dietary regimen, stool samples were

collected from each rat and divided into two fractions. The first
stool fraction was subjected to DNA extraction and 16S rRNA
gene amplification and sequencing, for a preliminary investiga-
tion of GM taxonomic composition through a widely established
approach. The second stool fraction underwent protein extrac-
tion and filter-aided sample preparation (FASP) protocol for
clean-up, alkylation, and digestion; the so obtained peptide
mixtures were then analyzed by liquid chromatography coupled
with high-resolution mass spectrometry, according to a shotgun
metaproteomics approach, to carry out a functional character-
ization of the GM.
Concerning 16S rRNA gene sequencing data (for details see

Supplementary Data 1), a total of 961,072 reads were obtained
from rat fecal samples (60,067 on the average per sample),
corresponding to 1510 amplicon sequence variants (ASVs). These,
in turn, were taxonomically assigned to 51 families, 88 genera, and
43 species (of which 25 with complete binomial nomenclature), as
described in Supplementary Data 2.
Concerning metaproteomic data (for details see Supplementary

Data 3), we selected four different sequence databases for peptide
search (see Methods for further details), namely two collections of
rat metagenomic sequences (DB1, containing in-house generated
sequences, and DB2, a publicly available database), a rat reference
proteome (DB3) and a food database (DB4). A total of 37,341
different peptide sequences were identified and quantified
(21,300 on average per sample), distributed as follows among
the four databases: 41% in common between DB1 and DB2, 29.5%
exclusively from DB1, 20.5% exclusively from DB2, 7.5% from DB3
and 1.5% from DB4. Initially, we aimed at identifying the best
performing approaches for taxonomic and functional annotation

of the rat metaproteome, as shown in Supplementary Data 4. First,
we compared the performance of Unipept (tryptic peptide-,
UniProt-based tool) and MEGAN (protein BLAST-, NCBI-based tool)
regarding taxonomic annotation. Annotation yields reached by
MEGAN were almost double than those reached by Unipept at all
levels (e.g., 28.4% vs. 12.8% of peptide sequences annotated at the
genus level), although Unipept led to much higher richness levels
(e.g., 312 vs. 39 different taxonomic genera detected in the study).
Based on the better annotation yield, we chose MEGAN as a
taxonomic annotation tool for this study. According to the MEGAN
taxonomic classification, 30,331 peptide sequences (17,331 on the
average per sample) were assigned to microbial taxa, while 2709
peptide sequences (1695 on the average per sample, correspond-
ing to 527 proteins) were assigned to the host (rat).
Then, we compared the performance of two functional

annotation approaches: (i) alignment of protein sequences against
a Swiss-Prot database and retrieval of “protein family” information
from UniProt, and (ii) processing of protein sequences with the
eggNOG-mapper tool and retrieval of “KEGG Orthology Groups”
(KOGs). The latter approach provided the best performance, with
69% of peptide sequences annotated vs. 57% with the former
approach. Therefore, KOGs were chosen as the main category
for functional annotation, with 1387 KOGs detected in total in
the study. Other levels of functional annotation, such as the more
generic “Cluster of Orthologous Groups” (COGs) and the more
specific “Carbohydrate-Active enzymes” (CAZy) and “metabolic
pathways”, were also used in various points of this study.
Statistics of combined taxonomic-functional annotations are

provided in Supplementary Data 5.

Taxonomic changes induced by TR feeding in the rat fecal
microbiota based on 16S rRNA gene sequencing
To verify whether TR diet could affect the structure of the rat GM,
we investigated its taxonomic composition through 16S rRNA
gene sequencing. After a preliminary unsupervised data evalua-
tion through Principal Coordinate Analysis (PCoA; Supplementary
Fig. 1), we compared the GM structures of TR- and AL-fed rats with
the aim of identifying differentially abundant families (Supple-
mentary Fig. 2), genera (Fig. 2) and species (Supplementary Fig. 3).
We found the lineage Akkermansiaceae/Akkermansia/A. mucini-
phila, as well as Prevotellaceae (among families), Anaerovorax and
Marvinbryantia (among genera) and Ruminococcus flavefaciens
(among species, although the corresponding genus went in the
opposite direction, as stated below), among taxa enriched in the
GM of TR-fed compared to AL-fed rats. On the other hand, several
taxa resulted higher in AL-fed compared to TR-fed rats, such as

weeks 8 320 2416

ad libitum (AL)

stool collection

40 48

AL time-restricted (TR)

56

Fig. 1 Experimental design. Schematic representation of the
experimental design of the study.
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Fig. 2 Changes in taxonomic genus composition in the fecal
microbiota of TR- vs. AL-fed rats according to 16S rRNA gene
sequencing results. Heatmap illustrating genera with significantly
differential abundance between AL and TR groups (FDR < 0.1).
A single or double asterisk refers to FDR < 0.01 or <0.001,
respectively. Each dot indicates a different sample. The color
gradient is based on the relative abundance of the genus.
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Atopobiaceae, Erysipelotrichaceae and Ruminococcaceae among
families, Adlercreutzia, Enterorhabdus, Bilophila, Lactococcus, Rom-
boutsia, Ruminiclostridium, and Ruminococcus among genera, as
well as two species belonging to the genus Bacteroides (namely,
B. rodentium and B. thetaiotaomicron). Complete results of
differential analysis based on 16S rRNA gene sequencing data
are shown in Supplementary Data 6.

Taxonomic changes induced by TR feeding in the rat fecal
microbiota based on metaproteomic data
The fecal samples analyzed by 16S rRNA gene sequencing were
further investigated to characterize the rat GM metaproteome.
Initially, we focused on the taxonomic data, performing a

preliminary unsupervised data evaluation via PCoA (Supplemen-
tary Fig. 4) and then a differential analysis between the two
experimental groups at the family (Supplementary Fig. 5), genus
(Fig. 3), and species (Supplementary Fig. 6) level. Among taxa
enriched in the GM of TR-fed compared to AL-fed rats, we found
again Akkermansia/A. muciniphila, together with Lactobacillaceae/
Lactobacillus/L. reuteri, Oscillospiraceae/Oscillibacter, Desulfovibrio-
naceae, Acetatifactor/A. muris, Faecalibaculum/F. rodentium and
Treponema succinifaciens. The only taxon being more abundant in
AL-fed compared to TR-fed rats was Eubacterium plexicaudatum.
Complete results of differential analysis based on metaproteomic
taxonomic data are shown in Supplementary Data 7.

Taxon-specific functional changes induced by TR feeding in
the rat fecal microbiota
Next, we focused on the key output of metaproteomics, i.e., the
functional analysis of the GM. Specifically, we combined functional
(KOG) and taxonomic (family, genus, or species) information
assigned to each peptide sequence. After the PCoA unsupervised
evaluation (Supplementary Fig. 7), a differential analysis between
the two experimental groups was performed, which led to the
identification of numerous taxon-specific differential functions,
listed in Supplementary Fig. 8 (family-specific functions), Fig. 4
(genus-specific functions), and Supplementary Fig. 9 (species-
specific functions). As shown in the Figures, most of the differential
functions were expressed by mucus colonizers Lactobacillus and
Akkermansia members.

Fig. 4 Changes in the functional profile of the fecal metaproteome of TR- vs. AL-fed rats. Heatmap illustrating genus-specific functions
with significantly differential abundance between AL and TR groups (FDR < 0.1). A single or double asterisk refers to FDR < 0.01 or <0.001,
respectively. Each dot indicates a different sample; the color gradient is based on the relative abundance of functions. Functions are ordered
sequentially: (i) according to the group of rats in which they are significantly more abundant, indicated in the bottom; (ii) according to their
COG category, indicated close to the left margin of the heatmap (C, Energy production and conversion; D, Cell cycle control, cell division,
chromosome partitioning; E, Amino acid transport and metabolism; G, Carbohydrate transport and metabolism; I, Lipid transport and
metabolism; J, Translation, ribosomal structure and biogenesis; L, Replication, recombination and repair; N, Cell motility; O, Posttranslational
modification, protein turnover, chaperones; V, Defense mechanisms); (iii) according to the taxonomic genus to which they were assigned,
indicated close to the right margin of the heatmap; (iv) in alphabetical order.
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Fig. 3 Changes in taxonomic genus composition in the fecal
metaproteome of TR- vs. AL-fed rats. Heatmap illustrating
microbial genera with significantly differential abundance between
AL and TR groups (FDR < 0.1). Each dot indicates a different sample.
The color gradient is based on the relative abundance of the genus.
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Specifically, numerous Lactobacillus/Lactobacillaceae enzymes
were detected as significantly more abundant in the GM of TR-
fed rats, involved in glycolysis (phosphoglycerate mutase,
enolase, 6-phosphofructokinase), galactose metabolism (galac-
tokinase, alpha-galactosidase), pentose and glucuronate inter-
conversions (arabinose isomerase), fatty acid oxidation (long-
chain acyl-CoA synthetase) and glycan degradation (6-phospho-
beta-glucosidase, belonging to the glycosyltransferase family
GT1). Moreover, the list of microbial functions induced by TR
feeding included proteins involved in cell division (cell division
protein FtsZ), carbohydrate transport (mannose PTS system
components), and peptide transport (oligopeptide transport
system substrate-binding protein).
Furthermore, the following protein functions are expressed by

Akkermansiaceae/Akkermansia/A. muciniphila were found higher
in TR-fed rats: several enzymes, including succinyl-CoA synthetase
(TCA cycle), phosphoenolpyruvate carboxykinase (gluconeogen-
esis), N-acetylglucosamine-6-phosphate deacetylase (aminosugars
metabolism/peptidoglycan recycling), and protein deglycase
(protein/nucleotide repair), as well as histone-like (DNA-binding
protein HU-beta) and ribosomal proteins.
Interestingly, the only two functions higher in AL-fed rats were a

beta-lactamase class A from Candidatus Arthromitus and a GTPase
from Eubacterium. Noteworthy, no significant differences in abun-
dance could be found concerning host (rat) protein functions.
Aggregating data at a more general annotation level, namely

“metabolic pathway”, we found that several Lactobacillus-specific
pathways, including L-arabinose degradation via L-ribulose,
galactose metabolism and peptidoglycan biosynthesis, resulted
as significantly more abundant in TR-fed rats.
Complete results of differential analysis based on metaproteo-

mic functional and combined taxonomic-functional data are
shown in Supplementary Data 8 and 9, respectively.

Proteomic profiles of the main fecal microbiota members in
rats subjected to TR feeding
To gain insight into the contribution of specific members to the
functional activity of the GM in TR- and AL-fed rats, we
investigated the proteome profile expressed by the two most
represented Lactobacillus species, namely L. murinus and L. reuteri.
As shown in Fig. 5, the two species-specific functional patterns
differed considerably, with filamentous hemagglutinin being the
only common protein, L. murinus being more involved in
carbohydrate transport and metabolism, and L. reuteri mostly
exerting functions related to amino acid and nucleotide metabo-
lism. To have a broader picture, the complete Lactobacillus
proteome (genus-specific functions detected in all the samples) is
presented in Supplementary Fig. 10, with differentially abundant
functions in bold (in common with Fig. 4).
Furthermore, Akkermansia-specific functions are listed in

Supplementary Fig. 11. Of note is the presence of enzymes
involved in aminosugar metabolism, citric acid cycle, and response
to oxidative stress.

TR feeding promotes the expression of galactose metabolism
enzymes in Lactobacillus
Examining enzymatic functions showing abundance changes
associated with TR feeding and assigned to lactobacilli, we
noticed that a group of them belong to the galactose metabolism
pathway. Therefore, we decided to inspect the abundance data of
all enzymes potentially involved in the degradation and biosynth-
esis of galactose-containing glycans, with a special focus on the
Leloir pathway (as shown in Fig. 6).
Interestingly, all enzymes converging on this pathway,

identified in this study and attributable to lactobacilli (taxonomic
levels from order Lactobacillales down to genus Lactobacillus are

Lactobacillus reuteri

Lactobacillus murinus

0.0 10.0 14.0 5.61 0.12

ALTR

glycine hydroxymethyltransferase
L-arabinose isomerase

sucrose phosphorylase
filamentous hemagglutinin

large repetitive protein

two-component system, chemotaxis family, sensor kinase CheA
rod shape-determining protein MreC

multiple sugar transport system ATP-binding protein

Ca-activated chloride channel homolog

IgA-specific serine endopeptidase

pyruvate dehydrogenase E1 component alpha subunit
urease subunit beta
arginine deiminase
glutamine synthetase

purine nucleosidase
xylulose-5-phosphate/fructose-6-phosphate phosphoketolase
filamentous hemagglutinin
general secretion pathway protein B
choloylglycine hydrolase
HSP20 family protein
starvation-inducible DNA-binding protein

pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase)
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Fig. 5 Lactobacillus murinus/reuteri-specific functions detected in fecal metaproteome samples of TR- and AL-fed rats. Functions in bold
are differentially abundant between the two groups (FDR < 0.1; see Supplementary Fig. 9). Each dot indicates a different sample. The color
gradient is based on the relative abundance of functions. Functions are ordered sequentially: (i) according to their COG category, indicated
close to the left margin of the heatmap (C, Energy production and conversion; E, Amino acid transport and metabolism; F, Nucleotide
transport and metabolism; G, Carbohydrate transport and metabolism; M, Cell wall/membrane/envelope biogenesis; O, Posttranslational
modification, protein turnover, chaperones; P, Inorganic ion transport and metabolism; T, Signal transduction mechanisms; Z, Cytoskeleton);
(ii) according to their average relative abundance.
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presented), exhibited a higher mean abundance in the meta-
proteome of TR-fed rats together with a non-adjusted p-value <
0.05, even if the false-discovery rate (FDR) threshold (0.1) was
passed in only two cases. This suggests the existence of a
differential galactose metabolism-related trend induced by TR
feeding.

DISCUSSION
Diet is known as one of the most important factors influencing
GM. Recently, some research groups have explored the impact of
TR feeding on GM structure, but no information is available about
its effect on GM functions. Fasting, per se, is associated with
increased gastrointestinal transit26. When fasting is extended for
up to 12 h, gastrointestinal transit of ingested food is expected to
be completed before the intake of new food27. Hence, the small
intestine, cecum, and proximal colon are expected to be relatively
free of dietary nutrients for about 12 h a day. Endogenous
substrates available for microbes colonizing the distal ileum,
cecum, and colon are mainly derived from host secreted proteins
and peptides, exfoliated cells, and mucins (of salivary, gastric,
bronchial, hepato-biliary, small intestinal, and colonic origin).
While secretions from the pancreas and other glands are
stimulated by the entry of the acidic chyme into the duodenum,
mucins are produced continuously and represent a continuous
source of proteins and carbohydrates for the “fasting” GM. In this
scenario, although challenging, metaproteomic analyses have the
potential for a more complete understanding of the GM
ecosystem than sequencing alone. Metaproteome data include
both taxonomic and functional annotations of proteins, enabling
the characterization of the main metabolic pathways activated in
the most abundant GM members. Here, using fecal samples
obtained from a rat model, we investigated the variation of
microbial protein expression in rats subjected to long-term TR
feeding. On the other hand, the choice of the fecal sample might

be considered as a limit of this study, since fecal microbiota
strongly resembles large intestine microbiota, whereas it differs
from small intestine microbiota28. This sample should be therefore
regarded as a reliable proxy for investigating colonic microbial
communities; however, considerably different data might be
obtained as far as small intestine samples are analyzed.
Differential composition of the GM in TR- vs. AL-fed rats was

initially assessed in this study by 16S rRNA gene sequencing. This
approach highlighted significant changes in several taxa, includ-
ing bacteria that are well-known members of the mucosa-
associated microbiota (MAM): Akkermansia, Bacteroides (i.e., B.
rodentium and B. thetaiotamicron), Bilophila, Marvinbryantia, and
Ruminiclostridium29,30. Two species, A. muciniphila and B. roden-
tium, showed the highest relative abundance fold changes (in
absolute terms) when comparing TR- and AL-fed rats. Noteworthy,
the increased abundance of A. muciniphila in TR-fed rats (log2FC=
7.3; FDR= 0.0001) is consistent with its mucin-degrading capacity,
outperforming other members of the MAM in growth and
replication during fasting periods, when mucins are the sole
source of nutrients31; on the other hand, B. rodentium, as well as B.
thetaiotamicron, is a glycan generalist and mucus degrader and its
growth and replication might be fueled more efficiently when a
more complex and abundant assortment of diet-derived glycans
are available at the mucosa surface for longer periods, as expected
in AL-fed rats (log2FC=−5.46; FDR < 0.000001)32,33.
A. muciniphila increased abundance in TR-fed rats is of particular

interest. This species is considered a keystone member of the
MAM, affecting metabolisms of other commensals34. Further, A.
muciniphila is one of the most relevant species reported to be
involved in the complex relationships between diet and meta-
bolic/inflammatory diseases35–38. Long-term, high-calorie diets
have been already demonstrated to promote the reduction of
Akkermansia relative abundance and the increase of pathobiont
Bilophila39. An opposite trend by Akkermansia and Bilophila was
observed also in our TR-feeding rat model, suggesting that, while

galactose-containing glycan

β-galactose

α-galactose

galactose-1P

glucose-1P

galactose mutarotase

UDP-glucose

UDP-galactose
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α-galactosidase β-galactosidase

galactokinase

galactose-1P uridyltransferase

UDP-glucose-4-epimerase

phosphoglucomutase

enzyme taxon p-value FDR LR (TR/AL)

α-galactosidase

all 0.01522 0.29538 1.04
Lactobacillales 0.00349 0.07723 2.81
Lactobacillaceae 0.00546 0.09753 2.81
Lactobacillus 0.01110 0.14832 2.81

β-galactosidase

all 0.34329 0.76343 0.36
Lactobacillales 0.04555 0.31693 1.31
Lactobacillaceae ND ND ND
Lactobacillus ND ND ND

galactose mutarotase

all 0.38952 0.78406 0.10
Lactobacillales ND ND ND
Lactobacillaceae ND ND ND
Lactobacillus ND ND ND

galactokinase

all 0.00201 0.07745 1.28
Lactobacillales 0.00086 0.03323 1.80
Lactobacillaceae 0.00086 0.03354 1.80
Lactobacillus 0.00086 0.03240 1.80

galactose-1P uridyltransferase

all 0.16223 0.60371 0.05
Lactobacillales ND ND ND
Lactobacillaceae ND ND ND
Lactobacillus ND ND ND

UDP-glucose-4-epimerase

all 0.24296 0.68189 0.35
Lactobacillales 0.00859 0.11940 2.38
Lactobacillaceae 0.01185 0.16825 2.38
Lactobacillus 0.01919 0.21072 2.38

phosphoglucomutase

all 0.28648 0.72744 0.25
Lactobacillales 0.01938 0.19946 2.26
Lactobacillaceae 0.02097 0.22777 2.26
Lactobacillus 0.02410 0.24435 2.26

Fig. 6 Leloir pathway, galactose metabolism, and lactobacilli in the fecal microbiota of TR- vs. AL-fed rats. Left, schematic representation
galactose metabolism enzymes (bold) and metabolites, with focus on the Leloir pathway. Right, taxonomic annotation of Leloir pathway/
galactose metabolism enzymes detected in the samples analyzed in this study. p-value, FDR, and log-ratio (LR) value obtained upon TR vs. AL
differential analysis are reported for each enzyme-taxon combination. p-values < 0.05, FDRs < 0.1 and LRs > 1 are shown in red; FDR values <
0.1 are also in bold. ND, not detected (or not passing the filters).

A. Palomba et al.

5

Published in partnership with Nanyang Technological University npj Biofilms and Microbiomes (2021)    85 



TR feeding might protect against metabolic diseases6,8,11,16, its
impact on the GM composition might recapitulate that obtained
with a balanced host metabolic state.
Our metaproteomic analysis showed that TR feeding is able to

induce changes in GM metabolic pathways. Most of the
differential functions identified in this study were expressed by
members of the mucus colonizers Akkermansia and Lactobacillus.
TR-feeding increased the relative abundance of a specific set of
Akkermansia-specific proteins, including several metabolic
enzymes, such as succinyl-CoA synthetase, phosphoenolpyruvate
carboxykinase, N-acetylglucosamine-6-phosphate deacetylase,
and protein deglycase. Although no enzymes directly and
explicitly involved in mucin degradation could be detected
(possibly due to an abundance level lower than the detection
limit of the analytic pipeline used), N-acetylglucosamine-6-
phosphate deacetylase is known to be implicated in reactions
linking mucin degradation to glycolytic/gluconeogenetic path-
ways, as well as to peptidoglycan biosynthesis40. In addition, some
of the differential enzymatic functions were not even detectable in
the GM of AL-fed rats, suggesting that they might be tightly
regulated when the influx of dietary compounds occurs in
continuous. Strikingly, the differential abundance of the DNA-
binding protein HU-beta might be part of this control in TR-fed
rats, given its role in active DNA metabolic transactions41,42. This
protein stabilizes DNA conformations required to promote and
sustain the regulation of many enzymes involved in energy
metabolism and catabolism pathways43. We hypothesize that the
growth of A. muciniphila in TR-fed rats may be sustained
prevalently by mucin, leading to a blooming of this species. A.
muciniphila might exploit the advantage of continuous availability
of mucin as a nutritional source by a tight (HU protein-dependent)
control over the expression of metabolic unnecessary functions, in
response to the energy requirement in the fasting gut environ-
ment. Furthermore, according to the recently reported ecological
co-exclusion behavior of the Akkermansia species44, we believe
that the TR feeding-dependent increase of Akkermansia genomic
copies and protein functions, observed side by side in the present
study, are referred uniquely to strains belonging to A. muciniphila.
A further interesting finding of our metaproteomic analyses was

the increased abundance of functions expressed by L. reuteri and,
overall, by the Lactobacillus/Lactobacillaceae taxa in the fecal
microbiota of TR-fed rats. However, in this case, sequencing
analyses showed no differential distribution of Lactobacillus
species between the two groups of rats. The lack of consensus
between 16S rRNA gene sequencing and metaproteomics GM
data has already been widely acknowledged as probably due to
the different methods of molecular target extraction, differences
in the sequences database chosen, and amplification/identifica-
tion biases45–47. Nonetheless, previous DNA sequencing studies
reported an increase in the relative proportion of Lactobacillus
spp. in the GM of rodents subjected to CR or IF26–30. Probably, the
16S rRNA gene sequencing pipeline used in this study was less
sensitive than the metaproteomic pipeline and did not allow us to
confirm previous reports. Lactobacilli are the most numerous and
diverse group among lactic acid bacteria that inhabit mucosal
surfaces of the oral cavity and the gastrointestinal tract in many
animal species, including humans and rodents27,48. Lactobacilli are
also known to adhere to the intestinal surface through the
interaction with mucins, as well as to be able to induce mucin
production49. In addition, lactobacilli possess inducible proteolytic
activity enabling digestion of mucin backbones, and their relative
abundance was found to be significantly decreased in Muc2−/−

mice50. Consistently, sequencing of numerous Lactobacillus
genomes has revealed a wide assortment of genes encoding
glycoside hydrolases active on carbohydrate moieties of host
mucins and oligosaccharides51. Of note, the presence of mucin-
degrading bacteria in the GM, when combined with a fiber-rich
diet, has been associated to an increased gut health52–54. This

might lead to hypothesize a link between TR feeding, mucin
degradation, and intestinal homeostasis. In addition to the A.
muciniphila-specific differential functions described above, we also
observed that several Lactobacillus-specific enzymes are involved
in the metabolism of galactose (likely, in the degradation of
galactose-containing glycans) and taxonomically assigned to
lactobacilli were clearly more abundant in the animals subjected
to TR diet. Since TR- and AL-fed rats were administered the same
(low-fat) diet, we can speculate that the higher expression by
lactobacilli of enzymes involved in galactose metabolism in the
GM of fasted rats might be induced by a relatively increased
access to the main endogenous source of galactose, namely, gut
mucins. Furthermore, monosaccharide and oligopeptide transpor-
ters were found as significantly more expressed by Lactobacillus
spp. colonizing TR-fed rats, possibly related to the uptake of
carbohydrates and peptides originated from catabolism. Other
differential Lactobacillus-specific functions identified in this study
can shed light on further biological mechanisms associated to TR
feeding. Cell division protein FtsZ resulted among the Lactoba-
cillus-specific functions more abundant in the GM of TR-fed rats
compared to AL-fed rats. Given its rapid degradation, the
dynamics of FtsZ concentration have been elegantly shown to
predict cell division rate, particularly in environments where non-
dividing microbes receive nutrients in small quantities, such as in
the gut55. Therefore, the higher abundance of cell division protein
FtsZ might account for an increased rate of Lactobacillus
replication in TR-fed rats. Another of the enzymes varying their
abundance in TR-fed animals was arabinose isomerase, which
catalyzes the conversion of L-arabinose (usually produced by other
microbes able to degrade plant polysaccharides) to L-ribulose,
confirming the existence of cross-feeding mechanisms. Interest-
ingly, previous studies reported the ability of some Lactobacillus
strains to secrete this enzyme, causing an anti-hyperglycemic
effect in mice56.
Besides Akkermansia and Lactobacillus, this study reports other

(less abundant and less known) GM members as possibly
influenced by TR feeding. Namely, Faecalibaculum abundance
was significantly increased in TR-fed rats according to metapro-
teomic data. Previously, in a mouse model of Alzheimer’s disease,
Faecalibaculum was found as more abundant in CR-fed animals
compared to AL-fed ones; moreover, in the same animals, both
Faecalibaculum and Lactobacillus have been strongly associated
with a protective effect, i.e., a reduction of amyloid-beta plaque
deposition57. As for Lactobacillus and A. muciniphila, TR-dependent
changes in the gut mucosal ecosystem (i.e., the extended
availability of host mucus as the main source of nutrients) might
be one of the main causes of the relatively increased abundance
of Faecalibaculum. In a recent study, Faecalibaculum rodentium has
been found to be strongly depleted during tumorigenesis and to
be able to reduce tumor growth through the production of short-
chain fatty acids58; intriguingly, its depletion occurs together with
mucus changes. Expansion of Faecalibaculum in TR-treated rats
might thus occur as this genus belongs to GM members whose
survival and growth appear to be warranted by availability of host
mucus, rather than of substrates from the diet. Prevotellaceae
were also found to increase in the TR-fed group of rats according
to 16S rRNA gene sequencing results. This finding is consistent
with the recent observation of Wang et al. in swine, where TR
feeding-dependent increase of Prevotellaceae abundance was
negatively correlated to 2-amino-butyrate, a metabolite previously
associated with high cardiovascular risk59. Finally, beta-lactamase
encoded by Candidatus Arthromitus was detected in higher
abundance in AL-fed than in TR-fed rats. While antibiotic-
resistant genes, as part of the GM resistome, have been detected
in subjects with no history of antibiotic treatment, their
abundance is reported to increase in individuals (obese and
overweight) with increased calorie intake60,61.
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In conclusion, we observed that TR feeding has a relevant
impact on GM functions, according to our rat model. This fasting-
associated dietary regimen appears to specifically boost next-
generation probiotic A. muciniphila and several biological activities
exerted by other GM members (in particular, proteolytic and
galactose metabolism enzymes expressed by Lactobacillus spp.).
As mucin-degrading activity has been often related to gut
homeostasis, a mechanism linking TR feeding, an increase of
beneficial A. muciniphila and Lactobacillus protein functions,
degradation of mucin, and intestinal health can be hypothesized.
Further investigations integrating DNA sequencing, metaproteo-
mics, and metabolomic analyses, as well as mechanistic and
functional studies, are needed to confirm this hypothesis and to
deepen our knowledge about molecular aspects of diet-induced
changes in the host-microbiota relationship.

METHODS
Animal intervention and sampling
This study has been performed with a colony of DPP-IV—Fischer 344 male
rats bred in-house at the Department of Biomedical Sciences, University of
Cagliari. Rats were maintained on an alternating 12-h light/dark cycle (light
on at 7 p.m., light off at 7 a.m.), in a temperature- and humidity-controlled
environment, with water available AL, and housed two for each cage.
Animals were fed AL until the age of 8 weeks with Purina Rodent Lab Chow
4RF21 diet (percentage composition: water 12%, protein 18.5%, fat 3%,
fiber 6%, ash 7%, nitrogen-free extract 53.5%; Mucedola srl, Settimo
Milanese, Italy). After 8 weeks, rats were divided into 2 groups (each of 8
animals, with 2 rats per cage): the AL control group and the TR feeding
group. More specifically, the AL group had AL access to food during both
light and dark phases, while the TR group had AL access to food for 8 h
during the dark phase, namely from 11 a.m. to 7 p.m. (4 h after lights off).
Fecal samples were collected after 48 weeks of diet regimen. Rats were
individually placed in a separate cage for fecal sample collection and feces
were immediately harvested and stored at −80 °C. Rats received humane
care according to the criteria outlined in the National Institutes of Health
Publication 86-23, revised 1985. Animal studies were reviewed and
approved by the Institutional Animal Care and Use Committee of the
University of Cagliari and were performed in accordance with the relevant
ethical guidelines and regulations (authorization of the Italian Health
Ministry No. 840/2016-PR).
Fecal samples (N= 16) were immediately stored at −80 °C until use. At

the time of the analyses, stool samples were thawed at 4 °C and divided
into two portions, for DNA and protein extraction, respectively.

DNA extraction and 16S rRNA gene sequencing
Sixteen fecal samples, collected from rats belonging to AL and TR groups,
were subjected to DNA extraction with the QIAamp Fast DNA Stool Mini Kit
(Qiagen, Hilden, Germany). The extracted DNA was purified according to
E.Z.N.A.® Soil DNA Kit (Omega Bio-Tek, Norcross, GA, USA). DNA quality and
yield were evaluated via agarose gel and QubitTM Fluorometer (Life
Technologies, Carlsbad, CA, USA, now Thermo Fisher Scientific). Libraries
were constructed using Illumina’s recommendations as implemented in
the 16S Metagenomic Sequencing Library Preparation guide.
The variable region 4 (V4) of the gene encoding the 16S rRNA was

amplified using the 515F and 806R primers (GTGCCAGCMGCCGCGGTAA
and GGACTACHVGGGTWTCTAAT, respectively), modified to contain
adaptors for MiSeq sequencing (Illumina, San Diego, CA, USA). Two
separate gene amplification reactions were performed for each sample,
and the products were pooled together and cleaned up using Agencourt
AMPure XP Beads (Beckman Coulter Genomics, MA, USA). The next PCR
attached dual index barcodes using the Illumina Nextera XT kit so that the
PCR products may be pooled and sequenced directly. The final quality
control and quantification were conducted using the BioAnalyzer 2100
instrument (Agilent Technologies, Santa Clara, CA, USA). Libraries (average
size 440 bps) were quantified with the QubitTM Fluorometer, normalized,
and then pooled equimolar, including 10% PhiX as an internal control.
DNA sequencing was performed on the Illumina MiSeq platform, using v3
chemistry (following the manufacturer’s specifications), to generate paired-
end reads of 201 bases in length in each direction.

Analysis of 16S rRNA gene sequencing data
Primers spanning the V4 region (515F and 806R) were removed from the
generated fastq files by cutadapt62. Reads were further analyzed with the
Quantitative Insights Into Microbial Ecology 2 (QIIME2) pipeline (v.2-
2021.2)63. Initially, DADA264 was used to inspect reads quality and create
sequencing error profiles, truncate (both forward and reverse reads to
180 bp), assemble read pairs, remove chimeras, and infer the ASVs present.
Taxonomy was assigned using pre-formatted SILVA 138 SSURef NR9965

full-length reference sequence and taxonomy files, processed using the
RESCRIPt plugin and q2-feature-classifier66, provided in the QIIME2 data
resources (https://docs.qiime2.org/2021.2/data-resources). A supervised
classification method was applied to classify the representative sequences
from our V4 dataset, training the Naïve Bayes classifier67 using SILVA 138
reference sequences.
Pre-processing of the ASV table was performed using phyloseq68

package (v.1.28.0) in R (v3.6.3; https://www.R-project.org). Filtering was
done by removing ASVs classified as chloroplast, mitochondria, or without
kingdom-level classification from sequencing data. In addition, taxa with
unconventional nomenclature were manually filtered out for the
differential analysis. The taxa for which a binomial nomenclature was not
available are marked in red in Supplementary Data 1.

Protein extraction and digestion
Sixteen fecal samples were subjected to an established protocol for protein
extraction from stool69. Specifically, fecal samples (mean weight 102mg)
were resuspended in extraction buffer (2% sodium dodecyl sulfate,
100mM DTT, 20 mM Tris-HCl pH 8.8), adding 250 μl of buffer per 100mg of
feces. Samples were incubated at 95 °C for 20min in agitation (500 rpm) in
a Thermomixer Comfort (Eppendorf, Hamburg, Germany) and then
subjected to bead beating as follows, after adding a steel bead (5 mm
diameter; Qiagen) to each sample. Sequentially, samples were: incubated
at −80 °C for 10min; subjected to bead beating for 10min (30 cycles/s in a
TissueLyser LT mechanical homogenizer, Qiagen); incubated at −80 °C for
10min; incubated at 95 °C for 10min; subjected to bead beating for 10min
(30 cycles/s); centrifuged at 20,000 × g for 10 min at 4 °C. The final
supernatant was collected as the fecal protein extract.
Protein extracts were processed according to a modified FASP

protocol70–72. Twenty microlitres of each protein extract were diluted to
400 μl with UA solution (8 M urea in 100mM Tris-HCl, pH 8.8), filtered using
an Ultrafree-MC centrifugal filter (0.22 µm; Merck Millipore, Billerica, MA,
USA), according to manufacturers’ instructions, and loaded onto an
Amicon Ultra-0.5 (cutoff 10 kDa) filtration device (Merck Millipore) and
centrifuged at 14,000 × g for 15 min. Then, sequentially, each sample was
subjected to addition of 200 μl of UA solution and centrifugation (as
described above); addition of 100 μl of 50 mM iodoacetamide in UA
solution, incubation at RT for 20min, and centrifugation; addition of 100 μl
of UA solution and centrifugation (twice); addition of 100 μl of 50 mM
ammonium bicarbonate and centrifugation (twice); addition of 100 μl of
trypsin solution (1 μg in 50mM ammonium bicarbonate) and incubation at
37 °C overnight. Peptide mixtures were collected by centrifugation,
followed by an additional elution with 100 μl of a 20% acetonitrile, 0.2%
formic acid solution. Finally, peptide mixtures were brought to dryness and
reconstituted in 0.2% formic acid. Peptide mixtures concentration was
estimated by measuring absorbance at 280 nm with a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MS, USA),
using dilutions of the MassPREP E. coli Digest Standard (Waters, Milford,
MA, USA) to generate a calibration curve.

Liquid chromatography-mass spectrometry analysis
Liquid chromatography (LC)–tandem mass spectrometry (MS/MS) analyses
were performed on an LTQ Orbitrap Velos mass spectrometer (Thermo
Fisher Scientific), operating with an EASY-spray source, interfaced with an
UltiMate 3000 RSLCnano LC system (Thermo Fisher Scientific). Each sample
was run once and analyses were run in a randomized order.
Peptide mixtures (4 μg per run) were loaded, concentrated, and desalted

on a trapping pre-column (Acclaim PepMap C18, 75 μm× 2 cm nanoViper,
3 μm, 100 Å, Thermo Fisher Scientific), using 0.2% formic acid at a flow rate
of 5 μl/min. The peptide separation was performed with a C18 EASY-spray
column (PepMap RSLC C18, 75 μm× 50 cm, 2 μm, 100 Å, Thermo Fisher
Scientific) at 35 °C with a flow rate of 250 nL/min for 247min, using the
following two-step gradient of eluent B (0.2% formic acid in 95% ACN) in
eluent A (0.2% formic acid in 5% ACN): 2.5–37.5% for 242min and
37.5–99% for 5min.
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The mass spectrometer was set up in a data-dependent MS/MS mode,
where a full scan spectrum (from 375 to 2000m/z) is followed by MS/MS
spectra, under the direct control of the Xcalibur software (v.2.2 SP1). The
instrument operated in positive mode. The temperature of the ion transfer
capillary and the spray voltage were set to 250 °C and 1.85 kV, respectively.
Full scans and MS/MS spectra were acquired in the Orbitrap with
resolutions of 60,000 and 7500 at 400m/z, respectively. The automatic
gain control was set to 1,000,000 ions, and the lock mass option was
enabled on a protonated polydimethylcyclosiloxane background ion as an
internal recalibration for accurate mass measurements. Peptide ions were
selected as the 10 most intense peaks of the previous scan; the signal
threshold for triggering an MS/MS event was set to 500 counts, and
dynamic exclusion was set to 30 s. Higher-energy collisional dissociation
was used as the fragmentation method, by applying a 35% value for
normalized collision energy, an isolation width of m/z 3.0, a Q-value of 0.25,
and an activation time of 0.1 ms. Nitrogen was used as the collision gas.

Peptide identification and annotation
Peptide identification was carried out using the Proteome Discoverer
informatics platform (v.2.4.1.15; Thermo Fisher Scientific), with Sequest-HT
as a search engine and Percolator for peptide validation (FDR < 1%). Search
parameters were set as follows: precursor mass threshold 350–5000 Da;
minimum peak count 6; signal-to-noise threshold 2; enzyme trypsin;
maximum missed cleavage sites 2; peptide length range 5–50 amino acids;
precursor mass tolerance 10 ppm; fragment mass tolerance 0.02 Da;
dynamic modification methionine oxidation; static modification cysteine
carbamidomethylation.
Quantification was carried out using the Proteome Discoverer nodes

“Minora Feature Detector”, “Feature Mapper”, and “Precursor Ions
Quantifier”. The integrated peak area of the most abundant peak at the
apex of the chromatographic profile was used as a quantitative measure,
after being subjected to a normalization step based on the total peptide
intensity of the samples, based on the results of a recent comparison
among MS1-based label-free protein quantification tools73.
The identification node was built on a combination of databases. Two

microbial sequence databases were used: (i) a collection of metagenomic
sequences obtained in house from rat fecal samples (13,163,507 sequences;
file name: DB1.fasta); (ii) a publicly available rat metagenomic dataset
(ftp://ftp.cngb.org/pub/SciRAID/Microbiome/rat/GeneCatalog/rat_geneset.
pep.gz; 5,130,167 sequences; file name: DB2.fasta)74. Moreover, two
additional databases, containing host (reference proteome for Rattus
norvegicus; https://www.uniprot.org/proteomes/UP000002494 release
2021_01; 29,936 sequences; file name: DB3.fasta) and food (reference
proteome for Glycine max; https://www.uniprot.org/proteomes/UP000008827
release 2020_12; 74,863 sequences; file name: DB4.fasta) protein sequences,
were employed.
The file named PeptideGroups.txt (available in the ProteomeXchange

repository, see “Data availability statement” for details) was used as input
for statistical analyses.
Taxonomic annotation was obtained according to the following steps:

first, protein sequences were subjected to a DIAMOND (v.0.8.22) search
against the NCBI-nr database (2021/05 update), using the blastp command
with default parameters75; then, DIAMOND outputs were loaded on
MEGAN (v.6.19.9)76 using default parameters. Only species annotated with
binomial nomenclature were considered for differential analysis; the
species for which a binomial nomenclature was not available are marked in
red in Supplementary Data 3.
Functional characterization allowed the classification of protein

sequences according to UniProt protein families and metabolic path-
ways77, COG of proteins78, KOG79, and CAZy80.
Protein families and metabolic pathways were obtained through the

following steps: first, the identified protein sequences were aligned against
a database containing all bacterial sequences from UniProtKB/Swiss-Prot
(release 2021_05) using DIAMOND (blastp module, e-value threshold 10−5);
then, UniProtKB/Swiss-Prot accession numbers were exploited to retrieve
specific information from the UniProt website (https://www.uniprot.org)
via the “retrieve” tool. COG, KOG, and CAZy information was achieved
using the eggnog-mapper package (v.2.0.1)81 available in a Galaxy server
(https://proteomics.usegalaxy.eu)82, according to the following parameters:
eggnog database v.2.0; min e-value threshold 0.001; min bit score
threshold 60. In the case of the assignment of a single peptide sequence
to multiple protein entries, the first protein entry in the list having a valid
blastp output was selected.

Statistical analysis and graph generation
PCoA plots were generated using the MicrobiomeAnalyst web application
(https://www.microbiomeanalyst.ca), which also calculates the statistical
significance of group clustering through a PERMANOVA test83.
Differential analysis of 16S rRNA gene sequencing data was performed

on count data at various taxonomic levels, obtained by aggregating ASVs
based on their taxonomy assignment, through the MicrobiomeAnalyst
web application. Features with valid values in less than six samples in at
least one of the compared groups were filtered out. Count data were
transformed prior to statistical testing according to the Relative Log
Expression method84. Differential abundance analysis was then carried out
using the edgeR algorithm85. The p-value correction for multiple tests was
performed by calculating an FDR86, and results were considered as
significant for FDR < 0.1.
Differential analysis of metaproteomic data was performed using the

Perseus computational platform (v.1.6.15.0)87, using as inputs peptide area
values (aggregated based on the functional and taxonomic annotation
levels), according to the following steps: (i) data log-transformation:
abundance data were subjected to binary logarithmic transformation to
approximate a normal distribution, subsequently verified using the
Shapiro–Wilk test; (ii) protein filtering: features not reaching 75% valid
values in at least one group were filtered out; (iii) missing value (MV)
replacement: MVs were replaced with a constant value, calculated for each
comparison as the binary logarithm of the minimum of the distribution
(approximated to the nearest integer) minus 1; (iv) differential analysis:
differential protein abundances between groups were tested with a two-tail
Student’s t test; (v) correction for multiple testing: FDR was calculated
based on permutation-adjustment considering q= 0.1 as the threshold of
significance. An abundance log-ratio (LR) was also computed using Microsoft
Excel (Redmond, WA, USA) as a quantitative measure of the change in
abundance of a feature between the two sample groups. The LR was
calculated for each feature, starting from its original abundance data, as the
binary logarithm of the ratio between the mean abundances measured in
the two sample groups (after summing a background correction factor equal
to 1000 to the mean abundances) for that feature.
Heatmaps were generated using the web application Morpheus (https://

software.broadinstitute.org/morpheus/). The galactose metabolism path-
way was reconstructed based on the corresponding KEGG pathway map,
available at http://www.genome.jp/kegg/pathway.html79, and further
refined based on recently reviewed data concerning galactose metabolism
in lactic bacteria88.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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