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Abstract

Cochlear implants (CIs) provide an opportunity for the hearing impaired to perceive sound

through electrical stimulation of the hearing (cochlear) nerve. However, there is a high risk

of losing a patient’s natural hearing during CI surgery, which has been shown to reduce

speech perception in noisy environments as well as music appreciation. This is a major bar-

rier to the adoption of CIs by the hearing impaired. Electrocochleography (ECochG) has

been used to detect intra-operative trauma that may lead to loss of natural hearing. There is

early evidence that ECochG can enable early intervention to save natural hearing of the

patient. However, detection of trauma by observing changes in the ECochG response is typ-

ically carried out by a human expert. Here, we discuss a method of automating the analysis

of cochlear responses during CI surgery. We establish, using historical patient data, that

the proposed method is highly accurate (�94% and�95% for sensitivity and specificity

respectively) when compared to a human expert. The automation of real-time cochlear

response analysis is expected to improve the scalability of ECochG and improve patient

safety.

Introduction

Overview

Hearing loss was the fourth most prevalent disease and the third leading cause of ‘Years Lost

with Disability’ in 2016 according to the Global Burden of Disease report [1]. Its treatment can

prevent downstream effects such as dementia [2] and socioeconomic disadvantages [3]. Dis-

abling hearing loss affected 6.1% of the world’s population in 2017 [4]. A cochlear implant

(CI) is a cost-effective solution [5] because it restores a recipient’s economic and social inde-

pendence. But as yet, as few as 5% of adults who may benefit from this technology receive a CI

[6]. An important reason for this is that many CI candidates fear losing their residual, natural

hearing [7–9] as occurs after 50-70% of CI surgeries. If this natural hearing could be reliably

preserved during CI surgery, more patients would benefit from the advantages a CI can offer.
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Cochlear implantation has until recently been a ‘blind procedure’, where the surgeon was

not able to monitor the condition of the inner ear during implantation. Any damage caused

during the surgery could only be observed 2-3 weeks after the procedure using conventional

hearing tests. However, intra-operative electrocochleography (ECochG) has made it possible

to monitor the response of the cochlea to sound during surgery [10]. Previous studies have

shown that changes in particular ECochG components can be used to predict the preservation

of post-operative residual hearing [11, 12]. The process of trauma detection has so far necessi-

tated the presence of a human expert. This requirement for a human expert’s presence during

cochlear implantation is a significant barrier to the widespread use of intra-operative ECochG

monitoring in clinical practice.

The real-time decisions made by a human expert have been demonstrated to predict hear-

ing preservation in observational studies [13], as well as improve rates of hearing preservation

when used to initiate intervention during implantation [14]. These results provide us with a

validated approach to interventional cochlear implant guidance using electrocochleography.

Here, we aim to automate this validated approach by analysing cochlear responses to achieve

parity with the decisions made by a human expert, using multiple metrics derived from the

ECochG response. We validate this method using historical patient data compared to the per-

formance of a human expert.

Real-time electrocochleography

In real-time ECochG, an acoustic stimulus is delivered to the ear as the CI electrode is being

inserted into the cochlea. The acoustic stimulus is presented with alternating polarity that

reduces (rarefact) or increases (condense) air pressure at stimulus onset. Modern real-time

ECochG systems typically use the electrode itself as a recording device, rather than an extra-

cochlear electrode, as this improves the signal to noise ratio [12]. The electrical potentials

recorded are composed of contributions from both sensory (hair) cells and the auditory

neurons.

The response of the sensory (hair) cells is estimated by taking the difference of the alternat-

ing polarity responses (DIF). This is termed the ‘Cochlear Microphonic’ (CM) [15, 16]. The

CM is primarily generated by receptor currents in outer hair cells (OHCs) [17, 18]. The ampli-

tude (and phase) of the CM is measured by taking the Fast Fourier Transform (FFT) of the

DIF response at the stimulus frequency, as the CM follows the stimulus. The neural response is

estimated by taking the sum of the alternating polarity responses (SUM), which cancels fre-

quency-following responses and leaves an estimation of the phase-locked ‘Auditory Nerve

Neurophonic’ (ANN). As this phase-locking occurs preferentially as inner hair cells depolarize

[19], it results in an asymmetric response which produces a large component of distortion at

twice the stimulus frequency. The amplitude (and phase) of the ANN is therefore measured at

the 2nd harmonic of the SUM [20]. Fig 1 shows an example of the signals measured using

ECochG. Note that this approach to deriving the CM and ANN will not exclusively derive

outer hair cell and neural contributions, and should be considered an estimation.

Manual detection of trauma

Intra-operative detection of trauma using ECochG has so far focused on amplitude changes of

the CM, as the most readily detectable ECochG signal [11, 12]. For example, [11] demon-

strated that a 30% drop in CM amplitude predicts poorer preservation of natural hearing [11].

Fig 2 shows the differences typically observed in the CM amplitudes for patients we define as

having electrophysiological evidence of traumatic or atraumatic CI insertions. Note the sharp
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drop in the CM amplitude that occurred in the traumatic insertion that was indicative of

trauma.

Materials and methods

Database

In order to develop and validate our automatic trauma detection method, we used the intra-

operative ECochG recordings of 77 patients that underwent CI surgery. The 77 patients were

Fig 1. Top panels: left shows the stimulus of alternating polarity and right shows the raw responses recorded for both

condensation and rarefaction stimuli. Bottom panels: DIF response calculated by subtracting rarefaction and

condensation responses is on the left while the SUM calculated by the addition of the responses is on the right.

https://doi.org/10.1371/journal.pone.0269187.g001

Fig 2. Changes in the cochlear microphonic for two patients with presumed electrophysiological evidence of

atraumatic (left) and traumatic (right) CI insertions.

https://doi.org/10.1371/journal.pone.0269187.g002
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drawn from 95 patients who had ECochG recorded in our department over 2017 and 2018. 18

patients were excluded due to low ECochG response amplitudes (<1μV). A 1 μV threshold for

CM amplitude, specifically in the bandpass filtered DIF signal around the stimulus frequency

(15th order digital bandpass filter around the stimulus frequency (0.9�F to 1.1�F)), was used as

this is the minimum amplitude required to exceed the noise floor of our ECochG system by 3

standard deviations. In our experience, once exceeded, this allows sufficient signal to noise

ratio for us to detect a 30 percent drop reliably. Written consent was obtained from each

patient and data was anonymised to remove all identifying information. Ethics approval for

the collection of this data was obtained by the Human Ethics Committee of the Royal Victo-

rian Eye and Ear Hospital (HREC #14/1171H/19).

Our approach to ECochG has been described in detail previously [11]. Briefly, adult sub-

jects with residual low-frequency hearing (hearing threshold� 80dBHL at 0.5kHz) receiving

Cochlear Limited’s Nucleus CI422 or 522 implants were enrolled in this study. ECochG was

recorded using the Cochlear Response Telemetry system. The acoustic stimuli was a tone pip

with a frequency of 0.5kHz and a duration of 12ms with 1ms linear on- and offset ramps, at a

presentation rate of 14 per second. The intensity of the acoustic stimuli was 100-110 dB HL.

The ECochG response was recorded from the electrode at the tip of the array, at recording

windows of 12ms in duration at 20 kHz. Each waveform was averaged from 100 stimulus pre-

sentations. Once recorded, the amplitude of the DIF response was calculated by taking the

magnitude of the DIF response at the stimulus frequency, here 0.5kHz. The amplitude was cal-

culated by (FFT), by first zero-padding to 1000 samples for 20Hz bin size, and then taking the

bin at the stimulus frequency.

An expert in ECochG labelled the data at two levels. First, each recording was labelled as a

‘drop’ or ‘no drop’ depending on whether any drops in the ECochG signal were observed or

not. Second, in the patients whose recording had drops in the ECochG signal, the duration of

each drop (from the time a human expert would start detecting it in real-time to the end of the

drop) was identified. Each time point in each identified duration was then labelled as a ‘drop’

instance and all other time points were labelled as ‘no drop’ instances.

As drops, by definition, have to be on falling edges of the ECochG signal, all time points

where the CM signal was rising or constant were removed from the data, in order to simplify

the classification problem. The remaining patient data was randomly separated into 5 subsets

ensuring each subset included at least one patient with a drop. These subsets were then used in

a 5-fold cross validation for the training and testing of our trauma detection method.

Experimental setup

All methods were implemented in MATLAB R2020a. Classifiers included in the Statistics and

Machine Learning Toolbox were used in the experiments. All experiments were run on a com-

puter with a 2.11GHz Intel Core i5 processor and 8GB of RAM. The operating system was

64-bit Windows 10.

Features

We used features including those used by human experts in detecting drops and/or been

shown in previous work to inform the presence of a drop in the ECochG signal. These features

were derived from the CM at the fundamental frequency, 500Hz, and the corresponding ANN

at 1KHz. The features considered were: the amplitude and phase of the CM and ANN signals,

ratio of the CM and ANN amplitudes, the fraction of the CM amplitude with respect to the

immediate previous peak in the signal, time from the immediate previous peak, and coefficient
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of variation (standard deviation / mean) of the CM amplitude in a window including the cur-

rent instance and 4 immediately prior to that.

In order to determine the 2 peak-related metrics, we developed a real-time algorithm that

detected peaks and troughs in an ECochG signal. First, we identified all local peaks and troughs.

If at time t, the amplitude of the CM signal satisfies the conditions kCMkt−2 < kCMkt−1 and

kCMkt−1� kCMkt, kCMkt−1 is a peak. Similarly, kCMkt−1 is a trough if kCMkt−2� kCMkt−1

and kCMkt−1 < kCMkt. Each peak thus detected and the trough that occurred immediately

before that were paired together. Second, if a peak was detected, we identified if it was an active

peak or a local fluctuation using the following conditions. The current peak was considered to

be an active peak if:

• There were no active peaks detected so far, or

• The signal at the current peak is larger than the last active peak, or

• The signal at the current peak is larger than sa times the last active peak, and the amplitude

difference between the current peak and trough is larger than sb times the current peak,

where sa and sb are scalars defined as 0.5 and 0.1 respectively through trial and error.

Fig 3 shows the results of the peak detection algorithm on the CM signal of a patient in our

dataset. The set of features ft1..8 used to detect drops in the ECochG signal at time t were thus

defined as shown in Eq 1. ϕ denotes the phase of a CM or ANN signal, and pk is the current

Fig 3. Results of the real-time peak detection algorithm. All peaks of the CM signal are shown as red dots. The peaks

detected by the algorithm as those an expert would pick in determining drops are shown in blue circles.

https://doi.org/10.1371/journal.pone.0269187.g003
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active peak.

ft1 ¼ k CM kt

ft2 ¼ �ðCMÞt

ft3 ¼k ANN k

ft4 ¼ �ðANNÞt

ft5 ¼
k CM kt
k ANN kt

ft6 ¼
k CM kt
k CM kpk

ft7 ¼ tpk � t

ft8 ¼
meanðk CMkt� 4!tÞ

stdðk CMkt� 4!tÞ

ð1Þ

In addition to these primary features (derived from the CM at 500Hz and ANN at 1KHz),

we determined the same for their harmonics at different frequencies (CM at 1KHz, 1.5KHz,

and 2KHz and ANN at 2KHz, 3KHz, and 4KHz). We also considered a window of 3 time

points (starting at 2 points prior to the current time point) and used the features calculated at

these points in the feature set in order to test if previous readings would contribute to the

detection of trauma. As such, we considered 96 features in total for each time point.

Data normalisation

The potentials recorded with ECochG vary substantially between patients and are often nor-

malised [21, 22]. We used the values of the initial ECochG readings as a baseline to normalise

amplitude data. To this end, we calculated the mean of the CM/ANN amplitude of the first 5

data points and subtracted this value from every subsequent amplitude reading. We used the

sin value of the phase angle for CM and ANN to ensure continuity of data. For each fold of the

5-fold cross validation, we then normalised each feature (in both training and test sets) to be in

the range [01] using the minimum and maximum values of the corresponding feature in the

training data.

Drop classification

We trained and tested several classification methods using the above features in order to detect

if a drop in the ECochG signal occurred at a given time point. The classifiers thus trained

were: tree ensembles (TE) [23], discriminant analysis (DA) [24], naive Bayes (NB) [25], sup-

port vector machines (SVM) [26], k-nearest neighbours (KNN) [27], and neural networks

(NN) [28].

We used different variants of these classifiers. To create tree ensembles, we used adaptive

boosting (AdaBoost) [29], random under sampling boosting (RUS) [30], and bootstrap aggre-

gation bagging (Bag) [31] algorithms. For discriminant analysis, we used linear and quadratic

functions. In Naive Bayes, we used 2 different ways of calculating the probability density func-

tion: using a normal distribution (Gaussian) and kernel density estimation (Kernel). When

using support vector machines, we employed linear, quadratic, cubic, and Gaussian kernel
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functions. We considered 3 variations of the Gaussian kernel with different σ values (Fine: 1.1,

Medium: 4.5, and Coarse: 18). In k-nearest neighbour classification, we used different num-

bers of neighbours and distance functions (Fine, Medium, and Coarse: Euclidean distance

with 1, 10, and 100 neighbours respectively, Cosine and Cubic: 10 neighbours with Cosine and

Minkowski distances respectively, and Weighted: 10 neighbours with weighted Euclidean dis-

tance). We defined our artificial neural network as a feedforward (FF) network with one hid-

den layer of 10 neurons.

Post processing

To identify obviously misclassified observations, we implemented a post-processing algorithm.

This algorithm compared the current data (and the corresponding classification) to that seen

previously in the same patient. The benefits of this strategy are twofold: 1) it can be imple-

mented in real-time and 2) the variability of the between-patient CM amplitudes due to

variations in natural hearing (which is necessarily present in the classification stage) can be

avoided. The following conditions were used to correct misclassification of points.

• If the previous point on a falling edge (of the kCMk) was classified as a ‘drop’, the current

point is also a ‘drop’.

• If a point on a falling edge is classified as a ‘drop’ but the standard deviation of the kCMk in

a window including that point and 4 previous points is less than sc times the minimum

kCMk in that window, it is a ‘no drop’.

The scalar sc was determined through trial and error to be 0.01. Fig 4 shows the results of

this algorithm for a patient in the test set of one of the folds in our cross-validation dataset.

Fig 4. Results of the post-processing algorithm. The left panel shows the classification results prior to post-processing. The right panel shows how the

post-processing algorithm has removed some of the misclassifications. Drop points detected by the human expert are given as red dots while those

detected by the automated algorithm are given in blue circles.

https://doi.org/10.1371/journal.pone.0269187.g004
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Performance metrics

In order to evaluate the performance of the classification methods, we used the commonly

used metrics of sensitivity (the ability to correctly detect ‘drops’) and specificity (the ability to

correctly detect ‘no drops’) [32]. We also calculated the overall accuracy of the classification.

Eq 2 shows how these metrics were calculated.

Sensitivity ¼
#True ‘Drops’

#True ‘Drops’þ #False ‘No Drops’

Specificity ¼
#True ‘No Drops’

#True ‘No Drops’þ #False ‘Drops’

Accuracy ¼
#True ‘Drops’þ #True ‘No Drops’

#All Falling Edge Points

ð2Þ

Fig 5 shows an example of the different components used in the calculation of performance

metrics. Detecting a drop on a falling edge before a human would is not only acceptable but

also beneficial. However, these points are counted as false ‘No Drops’ when comparing human

and computer generated results. To overcome this issue, we reclassified such points as true

‘Drops’.

Fig 5. Components used in the calculation of performance metrics. B-C and H-I are True ‘Drops’. L-M are False ‘No Drops’. D-E

and J-K are False ‘Drops’. A and F-G are drops identified before the human expert and therefore are considered to be True ‘Drops’.

All other instances are True ‘No Drops’.

https://doi.org/10.1371/journal.pone.0269187.g005
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Results

Feature correlation

We calculated the pair-wise linear correlation between features to determine if there were

any dependencies between them. We observed that the Pearson’s correlation coefficient (r)
between features was negligible (|r|< 0.25) for 22 feature pairs, weak (0.25� |r|< 0.5) for 4

feature pairs, and moderate (0.5� |r|< 0.75) for 2 feature pairs. Fig 6 shows the correlations

between feature pairs. Since there were no strong correlations (|r| > 0.75) between features, we

used all 8 features to train our classifiers.

Selection of a classification method

We first trained the above mentioned classifiers on the primary features at time t (not consid-

ering features derived from the harmonics or those from previous time points) in order to

select the best classifier for our purpose. As the dataset was unbalanced, we biased the training

towards the detection of drops by increasing the penalty for misclassifying drops. As an initial

value for this penalty term, we used the ratio between the number of ‘no drop’ and ‘drop’

instances (�22). Test results of the classification (the average of the 5-fold cross validation) are

shown in Table 1. Four classifiers (AdaBoost tree ensemble, support vector machines with qua-

dratic and Gaussian (σ = 18) kernels, and k-nearest neighbours with Eucledean distance and

100 neighbours) showed high performance levels (>0.9 for all 3 performance metrics). From

Fig 6. Correlation of feature pairs as measured using Pearson’s correlation coefficient. Yellow indicates perfect

correlation (on the diagonal between the same features). Green, light blue, and dark blue show the pairs with

moderate, low, and negligible correlations respectively.

https://doi.org/10.1371/journal.pone.0269187.g006
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these 4 classifiers, we selected the one with the highest accuracy (AdaBoost tree ensemble) to

be used in the next stages of the process.

Refinement of classifier

We observed that when the classifier was trained using the full 94 features (including features

from harmonics as well as the full time window), it did not significantly improve classification

results (0.8971, 0.9563, and 0.9537 for sensitivity, specificity, and accuracy respectively). There-

fore, only the primary features were used in the classification.

We determined the ideal misclassification cost (with respect to sensitivity and specificity)

using an iterative search. Fig 7 shows the results of this search. We selected 41 as the best mis-

classification cost as it maximised both sensitivity and specificity. The final results were 0.9356,

0.9484, and 0.9478 for sensitivity, specificity, and accuracy respectively. The average prediction

time per instance (for peak-detection, classification, and post-processing) was�0.75 ms.

Feature importance

We obtained the importance of the different features for the selected classifier. To this end, we

calculated the average weights across the 5 folds for each feature. The feature that explained

about 47% of the classification results was the ratio of kCMk to the previous peak. The coeffi-

cient of variation of kCMk and time from the previous peak contributed similarly (�19% and

�17% respectively). kCMk kANNk, and kCMk:kANNk attributed for about 6%, 5%, and 4%

respectively. ϕ(CM) and ϕ(ANN) accounted for only�2% and�1% of the results respectively.

Fig 8 shows the cumulative importance of the features.

Table 1. Performance of different classifiers in detecting drops in ECochG.

Model Sensitivity Specificity Accuracy

TE ADABoost 0.9147 0.9520 0.9504

RUS 0.8616 0.9606 0.9563

Bag 0.6900 0.9806 0.9686

DA Linear 0.7670 0.9479 0.9398

Quadratic 0.7736 0.9558 0.9480

NB Kernel 0.8886 0.9411 0.9387

Gaussian 0.7945 0.9485 0.9421

SVM Linear 0.8968 0.9022 0.9020

Quadratic 0.9197 0.9432 0.9421

Cubic 0.7666 0.9684 0.9599

Fine Gaussian 0.6577 0.9788 0.9658

Medium Gaussian 0.9026 0.9445 0.9427

Coarse Gaussian 0.9420 0.9090 0.9105

KNN Fine 0.6139 0.9814 0.9666

Medium 0.8475 0.9524 0.9478

Coarse 0.9122 0.9229 0.9224

Cosine 0.8299 0.9598 0.9542

Cubic 0.8430 0.9530 0.9481

Weighted 0.8475 0.9529 0.9483

NN FF 0.7755 0.8529 0.8491

The results are the average of the 5-fold cross validation. Classifiers with all 3 metrics above 0.9 are shown in bold.

https://doi.org/10.1371/journal.pone.0269187.t001
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Discussion

Intra-operative monitoring of inner-ear health during cochlear implantation is a rapidly

advancing method for predicting the preservation of residual hearing [11, 12]. Thus far, these

methods have been largely observational, and when used to modify surgical approach, have

been done as ad-hoc, surgeon-driven processes without consistency of approach or a dedicated

tool [33]. The common end-goal of clinical research into intra-operative ECochG is to auto-

matically and rapidly provide feedback in the operating theatre, removing the need for an

expert observer. To advance this approach, we introduced here a framework for automatically

detecting insertion trauma using a machine learning algorithm.

Prior attempts at improving the sensitivity and specificity of trauma detection with intra-

operative ECochG have used human-picked features (for example, Weder et al. [34]), with a

maximum sensitivity and specificity of 89% and 69% respectively. The approach used here is

sensitive and specific at matching these drops (�94% and�95% respectively), which will pro-

vide a clinical foundation for use of the algorithm in the clinic. The precise features of the com-

plex ECochG signal that provide the highest accuracy in detecting trauma are under evolving

debate, with some improvements shown when including features such as CM latency [35] and

ANN:CM ratio [36]. In the model developed here, including these features resulted in only a

small improvement in detection rate (<10%).

In earlier studies optimising trauma detection, for example, in [36], typically an observa-

tional approach was used, comparing the peak CM response immediately prior to a drop to

Fig 7. Effect of drop misclassification cost on performance results. Changes in sensitivity and specificity when the

drop misclassification cost is increased is shown in blue and red respectively. The black dashed line indicates the cut-

off level of 0.9 which was deemed acceptable for both metrics.

https://doi.org/10.1371/journal.pone.0269187.g007
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that at the nadir of the drop. However, at this point, it may be too late to initiate intervention.

The goal of the present study was to facilitate the provision of rapid, intra-operative feedback

as and when a drop occurs. The speed of detection of the proposed method is suitable for this

purpose (�0.75ms on a computer with a 2.11 GHz processor). Rapid real-time feedback not

only leads to quicker intervention but also assists in consistent and smoother insertion, which

has been proven to reduce trauma [37].

While this study improved the accuracy of CM drop detection over a basic assessment of

CM amplitude, it still relied on human assessment as the ground truth. It remains to be seen if

methods based on classification such as that explored here, or other machine learning methods

(such as change detection and recurrent neural networks), could be utilsed to surpass the

human observer in detecting traumatic events.

Although the use of cross-validation ensured the robustness of the models, they were

trained/tested on a relatively small dataset. To ensure their applicability on a wide range of

patients, they need to be retrained on larger datasets as and when they become available. Also,

limits of performance where the models may fail need to be explored and safeguards imple-

mented to handle such situations, prior to practical use in the operating theatre.

Conclusion

In this paper, we introduced a framework for detecting trauma during cochlear implant sur-

gery using ECochG data. The process thus discussed consisted of 3 steps: feature detection,

Fig 8. Feature importance in drop classification. The feature numbers refer to those defined in Eq 1. The horizontal

axis shows the features sorted in descending order of importance (or weight). The vertical axis shows the cumulative

sum of the feature weights.

https://doi.org/10.1371/journal.pone.0269187.g008
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classification, and post-processing. All algorithms were specifically designed to enable real-

time trauma detection. We achieved high performance results:�94% and�95% sensitivity

and specificity respectively. The average prediction time was less than�0.75ms, indicating its

viability to be used during surgery. We anticipate that the inclusion of automatic trauma detec-

tion in ECochG will improve its utility and scalability.
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