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Abstract

In a context of pesticide use reduction, alternatives to chemical-based crop protection strategies are needed to control
diseases. Crop and plant architectures can be viewed as levers to control disease outbreaks by affecting microclimate within
the canopy or pathogen transmission between plants. Modeling and simulation is a key approach to help analyze the
behaviour of such systems where direct observations are difficult and tedious. Modeling permits the joining of concepts
from ecophysiology and epidemiology to define structures and functions generic enough to describe a wide range of
epidemiological dynamics. Additionally, this conception should minimize computing time by both limiting the complexity
and setting an efficient software implementation. In this paper, our aim was to present a model that suited these constraints
so it could first be used as a research and teaching tool to promote discussions about epidemic management in cropping
systems. The system was modelled as a combination of individual hosts (population of plants or organs) and infectious
agents (pathogens) whose contacts are restricted through a network of connections. The system dynamics were described
at an individual scale. Additional attention was given to the identification of generic properties of host-pathogen systems to
widen the model’s applicability domain. Two specific pathosystems with contrasted crop architectures were considered:
ascochyta blight on pea (homogeneously layered canopy) and potato late blight (lattice of individualized plants). The model
behavior was assessed by simulation and sensitivity analysis and these results were discussed against the model ability to
discriminate between the defined types of epidemics. Crop traits related to disease avoidance resulting in a low exposure, a
slow dispersal or a de-synchronization of plant and pathogen cycles were shown to strongly impact the disease severity at
the crop scale.
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Introduction

In agriculture, growers have to compete with harmful organisms

(animal pests, plant pathogens and weeds), collectively called pests

[1]. These pests have different ways to injure plants [2] and cause

crop losses (quantitative or qualitative damages), causing economic

losses. Among pathogens, diseases related to fungi can severely

impair plant physiology by lowering light interception or reducing

photosynthetic rate.

Thus, yield increases in the last decades resulted essentially from

genetic progress and massive use of pesticides. However, current

practices in crop protection generate a set of issues: (1) economical,

as the cost of chemical treatments lowers margins when crop prices

or yields are low; (2) durability, as the use of pesticides causes

strong environmental risks: some pathogen populations can adapt

and gain resistance rapidly (around 4 years); (3) technical, as the

integration of alternative methods of crop protection (genetic,

chemical, physical, biological and cultural control) is hard to

achieve in a farm and finally (4) scientific, as the joint management

of plant and pathogen populations in time (crop rotations) and

space (landscape structure, [3]) is still a research question

(integrated avirulence management, [4,5]).

In a context of pesticide use reduction, alternatives to chemical-

based crop protection strategies are needed to control diseases.

Before the pesticide era, the canopy structure - resulting from the

plant architecture and crop management - was the main natural

lever to try to control disease development in cultivated fields. An

update of this expertise is proposed through a research project

focused on four architecturally contrasted systems and their main

associated diseases: pisum-aschochyta blight, potato-late blight,

vineyard-powdery mildew and yam-anthracnose systems. The first

two systems were choosen as case studies for this paper.

Knowledge in epidemiology tends to be very specific to the

studied system. Modeling can help identify and share similarities

between systems to unravel crop and pathogen interactions on a

wider range of systems. Later, as a more operational step,

modeling could be used to quantify how the canopy structure

affects disease outbreaks and to identify architectural traits or

cropping practices that lower disease severity. Provided that the

model embeds genetic information (genetic basis of phenotypic

parameters) it may later become a tool to design adapted

genotypes [6,7].

This scientific and operational context set several constraints on

the model development. The main objective of this work was to

cross the point of view of ecophysiologists and pathologists on the
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canopy function and structure to design a model with a generic

scope, i.e. based on a single representation for different

pathosystems, to explain contrasted dynamics of epidemics.

Secondly, as the analysis to understand and use the model would

be heavily based on simulation, the model design should minimize

computing time by both limiting the complexity and setting an

efficient software implementation.

Our aim in this paper was to present a model that suited these

constraints so it can first be used as a research and teaching tool to

promote discussions about the control of diseases.

We first present the conceptual design phase (Analysis section)

that defines constraints for the following phase of model design

and implementation (Results section). Model evaluation is present-

ed in the Discussion section before presenting conclusions and

perspectives.

Analysis

Essentially, a crop-pathogen system can be viewed as the

juxtaposition of individual hosts (plants) and infectious agents

(pathogens) whose contacts are restricted through dispersal

network; these three elements evolving under a fluctuating climate.

By adopting a shared point of view on the crop and the pathogen,

this dispersal network is defined by both the crop structure and the

pathogen’s dispersal mode. The properties of the generic objects

defining the system are here detailed and are the conceptual basis

of the model. This conceptual basis merges basic concepts from

epidemiology, crop modeling and graph theory. The structure and

dynamics of the formal model are presented in the Results section.

Merging concepts from basic epidemiology, crop
modeling and graph theory

Brief history of epidemic models in

phytopathology. When observing the evolution of disease

severity at the field scale, the crop leaf area is usually logistically

destructed by the pathogen. As reviewed by Hau [8], two main

approaches assuming different levels of complexity were investi-

gated in the bibliography to model this observation: (1) mecha-

nistic detailed models dealing with small-scale processes to

understand the functioning of the whole system and (2) analytical

models, based mostly on differential equations, with a limited

number of processes and parameters [9]. The detailed approach

tends to be very specific of the system (crop, pathogen species). An

important feature of our approach is to build a model suitable for

different systems, so we focused on the latter approach, based on

simpler dynamics.

In the first models from Vanderplank [9] the evolution of

disease severity (y) can be described by the logistic growth rate

dy=dt~ry(1{y) as a function of time (t) and an infection rate (r).

Such simple growth functions can be used to describe epidemics

but not to explain the underlying biological processes [8].

Customized models could be built from this starting point to

include biological processes such as the partitioning of the diseased

individuals into different compartments (healthy, latent, infectious

and removed) [10], namely SEIR models in human epidemiology.

The interaction between host and pathogen growth could also be

added to simpler models, as initiated by Jeger [11]. The main

hypothesis underneath this model was the potential equilibrium

state between host and pathogen populations. Such model design

could extend to the integration of different organization scales still

without using explicitly spatialized variables [12].

If further complexity is added in theoretical models, represent-

ing a generic behavior of a pathogen class (fungi) is trickier and less

pertinent. Consequently, the computational study of the model is

also more complicated. In analytical models, parameters such as r

in the logistic growth contains information about the contacts

underlying the disease transmission process. In this case, random

contacts are assumed in the population (random mixing network).

Considering non-mobile hosts, the number of contacts that each

individual has is considerably smaller than the population size and,

in such circumstances, random mixing does not occur [13]. It is

thus important to model the contact network that depends not

only on the type of pathogen’s dispersion (wind, splashing, …) but

also on the host’s spatial arrangement.

Representing the canopy structure with a variable scale

object. Plant epidemiology [14] and crop modeling [15,16] are

very active research topics but approaches that link these two

domains are less frequent [2,17,18]. As the case studies for these

models range from improving scientific knowledge to engineering,

finding an appropriate coupling scale is difficult. For example, the

effect of plant architecture on disease dispersal and severity was

modeled by coupling a structural plant model (3D ‘‘virtual plant’’)

and experimental disease inoculations [19]. This organ-scale

model would not be the most appropriate basis for adding

dynamics of host or pathogen growth that would fit different crops,

because of the overwhelming parameters fit needed. In our case

study, we will use modelling concepts from crop models at a broad

scale to allow an easier setup of generic features.

We assume that an approximation of the geometry rather than

a fully detailed 3D plant structure is an acceptable simplification

when considering the crop at an integrative level. When dealing

with processes at crop scale, such as epidemic development, the

underlying complexity could partly be discarded. If complexity is

ignored, the model is able to describe the epidemic (using logistic

growth for example) but significant interactions between elements

of the system will not be highlighted.

We have chosen to keep sub-crop scale objects (plants or organs)

but discard their geometric attributes (size, shape, spatial position

and orientation). The canopy was represented by an object that

was simply named functional unit, the scale of this object was relative

to the epidemic type. It was also more convenient to describe

processes at the level where they are better known for each system.

For example, in dense canopy, where epidemics tend to ascend

from lower crop layers [20], individual plants are less pertinent

than a representation of a mean plant divided in stem segments

(phytomers). In patchy epidemics, individual plants get infected

and disperse infectious agents in their local neighbourhood. These

two epidemic archetypes were taken as a case study. Thus,

functional units can represent either a mean plant, individual

plants or a sub-part of a plant. The canopy architecture was

characterized by a network of functional units. Dynamics of plant

and pathogen growth were described on functional units, meaning

that a homogeneous behavior of plant tissues was supposed within

the unit.

Modeling spore dispersal by using a graph-theory

perspective. Early epidemiological models (logistic growth or

SEIR-derived) have a long and successful history but are based on

population-wide random mixing [13]. In agronomic systems,

where canopy results mainly from interaction between cropping

practices and the environment, there is often a strong spatial

structure of the host population (rows, trellis). In practice, each

individual has a finite set of contacts that they can infect. An

analogy with graph theory, with hosts as graph nodes and

neighbourhood of infection as edges, seems an adapted approach

to deal with these limited contacts [13,21]. In our model, a graph,

namely the network of connections between functional units, was

used to represent the spore dispersal process.

Epidemiological Modelling and Crop Architecture
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Setting up an experiment to determine the real network of

connection is tedious for spore-transmitted infections as relation-

ships between individuals are not observable in field. Therefore,

the representation of the real network results from an a priori point

of view on both crop structure and dispersal mode rather than

direct observation.

Results

Model overview
The epidemiological model consists of individual-based sub-

models for pathogen and leaf area dynamics linked together by a

network that represents the canopy architecture. Figure 1 shows

these two scales, a global one (crop) and a local one (individual

hosts referred to as functional units) which interplay by using

common attributes. This conception allowed individual host

dynamics to be affected by global crop properties that are in turn

dependent of individual attributes. Figure 1 presents a static view

of the model before the beginning of the simulation. As the

simulation progresses, functional units are created and linked

together according to the specifications of the connection network.

The canopy structure and development processes are detailed in

the Unit Construction sub-model. The Functional Units model

describes the dynamics of plant (leaf area) and pathogen (leaf

area injured) growth at local scale as a set of ordinary differential

equations. The environmental effect on pathogen growth is

computed in the Environment sub-model.

The formal model is deterministic with a discrete time-step

(daily). Model’s variables are summarized in table 1. System input

variables are climatic measurements (mean air temperature). Input

parameters are defined in table 2.

Canopy development (Unit Construction sub-model)
In plant models, time scale is frequently coupled with

temperature as most physiological processes are temperature-

dependent. The concept of thermal time [22] implies that time, as

sensed by plants, elapses more rapidly at higher than at lower

temperatures in a given range of temperatures [23] and is stopped

at a base temperature. It is convenient as dates or rates expressed

in thermal time are constant between environments. The main

development stages for the crop (emergence, flowering, maturity)

are expressed as a sum of degree-days (mean air temperature). As a

consequence, calendar time (d, day) and thermal time (t, uC:d )

were defined as different mathematical notations.

In the Unit Construction model, the development process of the

canopy was represented by the creation of functional units. This

structural aspect is distinct from the functioning of each unit. Two

pathosystems were taken as example to test the model genericity:

(1) the pisum-aschochyta system [20], where the description of

epidemics combines a local spore dispersal (splashing, stem-flow)

and organ scale knowledge and (2) the potato late blight system

that with long distance wind-dispersal between individualized

plants [24]. Two corresponding methods, respectively named

‘‘stem’’ and ‘‘grid’’ are presented here to generate these contrasted

canopy archetypes.

Stem method is used to simulate pathosystems

presenting homogeneous canopies where epidemics

follow a vertical dynamic. In this method, a single plant

is represented as a succession of growing stem segments.

The hypothesis of an homogeneous crop in the plot

(mean plant) allowed aggregation at crop scale. The

horizontal plot variability coming from soil, climate or

primary inoculum repartition was not considered. In the

model, functional units are created sequentially and

recursively linked together to mimic stem growth. Thus,

each functional unit represents a layer of organs having

a similar physiological age over the whole canopy. The

dynamic construction of the units was implemented with

a finite state automaton (modelled with an Hortel

statechart [25], a variant of the UML statechart [26]). In

the statechart presented in figure 2, states correspond to

units and the transitions between states are conditioned

by thermal time accumulation. Different phyllochron

values were defined to simulate preformed stem

segments (tu is a vector). The unit construction process

stops at flowering time (tf ), determined at crop level.

This method also defines the relationship between units:

each unit is connected to its upper neighbour (linear

graph).

Grid method is used to simulate patchy epidemics,

with each unit representing an individual plant. In this

case, all units are created simultaneously at the start of

the simulation and are linked according to a network of

connection. This global network is build from an a priori

on the neighbourhood of individual units about both the

pathogen dispersal process and the crop structure. This

neighbourhood, relatively to individual units, is defined

as a deterministic parameter (graph). Examples of

possible individual neighbourhoods are presented in

figure 3. The strength of the dispersal process was

related to the number of plants considered in theses

graphs (i.e graphs A vs B and D vs E). Constraints on

range or direction of the dispersal process are repre-

Figure 1. General model structure. This summary view represents a hierarchical organization of sub-models which describes objects and
processes of the system. Model inputs are shown in dotted frames. Scales (crop and unit) are shown in bold lines. Sub-model Unit Construction acts as
a controller for the dynamically created and individual based models Functional Units.
doi:10.1371/journal.pone.0049406.g001
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sented by defining asymmetric graphs (D, E, F). For

example, graph E is used to simulate long-range

dispersal events occurring at a low frequency. Graphs

C and F are defined to represent row-structured crops,

with a weak inter-row connection for graph F. At the

crop scale, this theoretical network of unit connections is

parameterized by the adjacency matrix of the corre-

sponding graph. The outward edges of each node are

weighted to adjust dispersal rate in relation to the leaf

area development of the emitting unit (porosity attribute,

cf. eq. 6).

Individual dynamics for plant and pathogen growth
(Functional Units sub-model)

The dynamic of functional units, whether they represent plants

or organs, was defined by two interacting equation systems. The

first one is related to healthy plant functioning and the second

depicts disease development on leaf tissues. These two systems

include terms that depend on state variables from linked functional

units, allowing to model disease development at the canopy scale.

Functional units were mainly described by leaf area because it is

a driving variable for light interception (linked to crop productiv-

ity) and a physical support for pathogen development. The units

also included height and porosity attributes. As in SEIR family

models [4,27], total leaf area for each functional unit is divided

into distinct compartments. From the plant point of view, we

defined expanded (E), senescent (S) and photosynthetically active

(A) leaf area. For the pathogen, the healthy (H ), infected (L,

Latent), infectious (I ) and removed (R) compartments. The removed

class combined leaf area destruction caused by natural senescence

and by disease development. If there is no infection, all the leaf

area is thus removed through natural senescence. At each time-

step, the identity HzLzI~A~E{R holds to maintain leaf

area conservation (as for biomass or energy conservation).

Dynamics of plant elongation, leaf expansion and

senescence. Stem height elongation (eq. 1), leaf area expansion

(eq. 2) and leaf senescence (eq. 3) rates were modeled with a

symmetric logistic equation driven by thermal time t and 3

parameters. This formalism is frequently used at the crop scale in

ecophysiology. It was previously adapted at organ-scale [28]. This

approach is similar to ours when considering an analogy between

organs and functional units.

Z(t)~
Zmax

1ze{kz
:(t{tz)

DZ(td )~Z(tdz1){Z(td )

8<
: ð1Þ

E(t)~
Emax

1ze{ke
:(t{te)

DE(td )~E(tdz1){E(td )

8><
>: ð2Þ

S(t)~
Emax

1ze{ks
:(t{ts)

DS(td )~S(tdz1){S(td )

8><
>: ð3Þ

Emax;Zmax the value of asymptote, representing the

potential of the elongation (Zmax), expansion or

senescence (Emax) process whether a whole plant (total

leaf area, plant height) or an organ (phytomer area,

internode length) is considered. These parameters are

measurable on plants growing in healthy conditions and

without environmental stress.

te; ts; tz the value of the abscissa at the inflection point,

representing thermal-time at half the value of Emax or

Zmax. Their value was estimated through optimization.

We stated that te~tz, meaning that elongation is

synchronized with expansion.

ke; ks; kz the value of the slope at the inflection point.

This value is supposed to be constant among functional

units (different between processes) and was optimized.

This model relies on two hypotheses: (1) the disease develop-

ment does not affect the plant growth rate (ke) nor the potential

size (Emax), (2) there is no specific feedback of the disease on

natural leaf senescence (DS is disease-independent).

Dynamic of leaf area in disease condition. The diffusion

of pathogenic agents (i.e. spores) was not modelled explicitly and is

approximated by rates of conversion between the different leaf

area compartments. The aim of the pathogen model (eq. 4) was to

merge a compartmental model of leaf injury and the host plant

growth. This model was adapted from previously developed model

on the powdery mildew - vineyard system [29]. In our case, two

processes were refined: (1) healthy area was dependent of host

growth and was simulated with a basic crop model and (2) both

pathogen-induced and natural senescence (DS) contributed to the

removal of leaf area from the system. It was also assumed that the

natural senescence process removed leaf area independently from

its health status (infected or infectious). It was a way to model

disease resistance via avoidance, as leaf area can be removed

Table 1. Summary table for variables.

symbol name unit eq.

Tm mean air temperature uC

t thermal time uC:d

unit number (parameter in ‘‘grid’’
method)

-

LAI leaf area index m2=m2

t thermal age uC:d 1, 2, 3, 5

Z height m 1

w porosity - 6

r receptivity - 5

h thermal stress - 8

did allo-deposition m2 7

tu
:I auto-deposition m2 4

H healthy area m2 4

L latent infected area m2 4

I infectious area m2 4

R removed area m2 4

E expanded area m2 2

A photosynthetically active area m2

S senescent area m2 3

Horizontal lines separate crop attributes from unit specific attributes. Rate-
based variables directly linked to state variables were not specified in the table.
doi:10.1371/journal.pone.0049406.t001
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before it became infectious.

DH~DE{ tu
:I :

H

E
:rd
:hd

� �
{ Did :

H

E
:rd
:hd

� �
{ DS:

H

A

� �

DL~ tu
:I :

H

E
:rd
:hd

� �
z Did :

H

E
:rd
:hd

� �
{

1

lp
:L

� �
{ DS:

L

A

� �

DI~
1

lp
:L

� �
{

1

ip
:I

� �
{ DS:

I

A

� �

DR~
1

ip
:I

� �
zDS

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

Disease initiation. In the model, the primary infection event occurs

at a pre-defined time (at day Di) and a fraction of healthy area (I0)

is converted into the infected state. Depending on the epidemic

archetype, either all units (for the ‘‘Stem’’ model) or a fixed

proportion of the existing units at the time of the infection (‘‘Grid’’

model) are affected. Disease’s development. The dynamic for healthy

area (DH) is given by the host growth (DE) minus the area infected

from a local source minus the area infected from the neighbour-

hood minus the area that became senescent. In consequence, two

parameters acting as rates of infection drive the disease progression

in the unit (auto-deposition, tu) and between neighbouring units

(allo-deposition, tn). The other terms in equation 4 are either

regulation function (rd ,hd ,wd ) or normalizing terms (area in the

compartment divided by total area). The disease development is

also a function of a latency period (lp) and an infectious period (ip).

For computing simplicity, these periods are not simulated as a

time-lag model, meaning that a fraction of infected area becomes

infectious from day one after infection (with a rate of 1=lp).

Disease regulation by crop properties. Receptivity, namely the level of

ontogenic resistance of the plant tissues, affects local and distant

infection rates. Equation 5 presents an example of decreasing

ontogenic resistance with the unit aging and showing an increase

in the rate of infection on the onset of leaf senescence (rdw1).

Ontogenic resistance was modeled as a pathosystem-specific

function [30] as tissues could get less resistant to infection with

aging (pisum-aschochyta [31], potato late blight [32]) or,

conversely, could become nearly immune in older organs (vitis-

powdery mildew [33]). Biotrophic or necrotrophic behaviours

were partly reproduced by this function.

The attribute wd of unit porosity integrates the architectural

characteristics (e.g leaf area orientation, leaf surface properties)

that are assumed to impact disease transmission and which are not

explicitly modeled. Porosity is approximated (Eq. 6) by leaf area

density (area/height) weighted by parameter w0. This regulation

through porosity impacts the rate of infection from neighbouring

units.

r(td )~1{
1

1zexp{kr
:(t{tr)

ð5Þ

Table 2. Summary table for parameters.

symbol name stem grid uncertainty unit eq.

Tb base temperature 0 4 uC

tu phyllochrons 70 ; 50 NA uC .d

tf crop thermal time to flowering 1500 2000 uC .d

Zmax potential height of unit 1 1 m 1

kz increase of elongation rate 0.01 0.015 uC21.d21 1

tz unit / crop thermal time for Zmax=2 300 1000 uC.d 1

Emax potential area of unit 1 1 m2 2

ke increase of expansion rate 0.01 0.015 uC21.d21 2

te unit / crop thermal time for Emax=2 300 1000 uC.d 2

ks increase of senescence rate 0.03 0.06 uC21.d21 3

ts unit / crop thermal time for Emax=2 1000 2500 [70; 130] % uC.d 3

ip duration of infectious period 10 10 [1;15] d 4

lp duration of latency period 3 5 [1;15] d 4

I0 quantity of inoculation 0.01 0.01 [0.01; 0.3] m2

Di day of disease initiation 50 50 [30; 140] d

tn scalar for between-unit infection rate 0.4 0.5 [0.05; 1] - 4

tu scalar for within-unit infection rate 0.6 0.5 [0.05; 1] - 4

tr shape of receptivity function 500 500 [100; 800] uC.d 5

kr slope of receptivity function 0.05 0.01 uC21.d21 5

w0 scalar for porosity level 0.8 0.9 [0.7; 1] m21 6

Tio optimal temperature for infection 25 25 [10;35] uC 8

Tiw shape parameter of infection response to
temperature

2.2e23 2.2e23 - 8

Horizontal lines separate the parameters related to canopy, pathogen and environment. Columns ‘‘stem’’ and ‘‘grid’’ indicate the value of parameters for the specific
use-cases. Column ‘‘uncertainty’’ indicates the range of selected parameters in sensitivity analysis (in % when the meaning of the parameter is different in both models).
doi:10.1371/journal.pone.0049406.t002
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wd~w0
:Ed{Rd

Zd

ð6Þ

Canopy architecture impact on disease

transmission. Predicting the population dynamics from the

behaviour of individuals is a challenge when modeling epidemics

[34]. To face this challenge, we formulated two hypotheses: (1) the

individual-based compartment models (Eq. 4 and 7) are functions

of crop-scale attributes, to make individual dynamics sensitive to

global conditions and (2) the number of connections between units

depends on the pathogen dispersal mode. The outgoing infection

from a unit Dod is modeled as multiplicative effect of infected area

and unit porosity (wd ). For each unit, the incoming infection (Did )

is modeled as the sum of neighbouring emissions (cf. fig. 3.). Input

Figure 2. Hortel statechart for the ‘‘stem’’ method. Hortel statechart for semi-determinate development of plant structure. The conditions for
building a new unit (i.e thermal time above a threshold) are specified in transition between states and represents phyllochrons (tu(n)) or crop
flowering time (tf ).
doi:10.1371/journal.pone.0049406.g002

Figure 3. Individual neighbourhood for the grid method. Nodes are individual plants and edges are pathogen dispersal processes. Local
dispersion graphs are defined from a individual unit point of view (bold circle) and are used to infer the global network of connections between all
functional units at the crop scale.
doi:10.1371/journal.pone.0049406.g003

Epidemiological Modelling and Crop Architecture
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and output disease flows are not synchronized: emissions are

computed at the next time-step (the day after) in the target units.

dod~tn
:I :wd

did~
P

n

dod{1

(
ð7Þ

Impact of environmental stress on plant or pathogen
dynamics (Environment sub-model)

The Crop Climate model aimed to compute environmental

impacts on pathogen development. At this step, only the

temperature effect on disease development is modeled (Eq. 8).

This factor was introduced as a multiplicative term that modulates

disease transmission rates within and between units (Eq. 4). This

bell-shape function depends on the crop mean temperature (Tm)

and two parameters: the optimum temperature for pathogen

growth (Tio) and the width of the response at this optimum

temperature (Tiw). The parameter T0~1 was defined as a

normalizing term to allow dimensional consistency.

hd~1{Tiw
: (Tm{Tio)2

T2
0

ð8Þ

Software implementation and data analysis
Software implementation. The model development and

simulations rely on the VLE software platform (Virtual Laboratory

Environment) [35] and the INRA RECORD platform [36]. This

platform implements a mathematical specification (DEVS, Dis-

crete EVent system Specification [37]) that was originally

developed for research in modeling and simulation independently

of the domain of application. The main feature of the VLE

platform is that it proposes software sub-formalisms between the

abstract DEVS specifications and common mathematical formal-

isms in environmental sciences (e.g ODE, Hortel statechart,

cellular automatons). Consequently, most of the formal model was

implemented by using these extensions rather than manipulating

underlying DEVS formalism and making it possible to integrate

heterogeneous formalisms in the same model. Dynamic creation of

model structure. Following the class/object paradigm, the Functional

units model is defined as a class model whose instantiation depends

on the model graph structure. Depending on the pathosystem,

instantiation is static (at plant emergence) or dynamic during

simulation (following the plant development); these new units

interact according to the specification of the connection network.

This allowed dissociating the biological representation from its

consequence on the graph and simulation.

Data analysis. The sensitivity analysis and data visualization

was performed with R core software [38] with R packages sensitivity

and ggplot2 [39]. Global sensitivity analysis aims at explaining the

variability of model outputs with respect to the input parameter

uncertainties. It is based on intensive use of computer simulations.

After setting an experimental design of parameter values, model

outputs are evaluated for each parameter set and sensitivity indices

are computed. Various methods of global sensitivity analysis exist

[40]. To avoid the m10 model evaluations of a full factorial design

(10 parameters with each m modalities), we used the extended-

FAST method [41] (size 10m, with m~1000) to perform the

sensitivity analysis. It allows to evaluate a first-order sensitivity

index (influence of only one parameter on the output) and a total

sensitivity index (influence of one parameter alone and in

interaction with the others parameters). These two indices

correspond, in the classical variance analysis, to the principal

effect and the total (principal+interactions) effect.

Discussion

Qualitative model evaluation
A strong hypothesis is that the model genericity is fully

supported by the parameter set (cf. table 2) and the individual

graph generating the global connection network (cf. figures 2 and

3). This hypothesis was tested here by running the model with two

sets of parameters. The first set of parameter values characterizes a

vertical epidemic in a homogeneously layered canopy whereas the

second represents a spatial epidemic in a field (lattice of individual

plants). These parameter sets will be later referred to as vertical or

spatial epidemics. In our approach, the model has been built from

a conceptual point of view to get gradually closer to the biological

reality. In this sense, the parameter estimation on real data was not

our priority in the development of the model. Nevertheless, some

parameters are quite easy to estimate, especially those related to

phenology as they are well studied for a number of crops (e.g. in

pea [42,43], potato [44,45]). In the present work, parameters were

not estimated with a numerical optimization method, but were

defined so that the epidemic dynamics are meaningful according

to the pathologists’ knowledge.

The first step concerning the model evaluation was to reproduce

real behaviours, those that pathologists observe in field conditions.

The output variable used to evaluate the model and perform a

sensitivity analysis is the proportion of leaf area removed by the

sole effect of disease (1=ip:I ), integrated over time (sowing to

harvest) and space (units).

Ascochyta blight on pea. The stake was to reproduce

‘‘infection profiles’’, i.e. a varying disease score upon the canopy

height, caused by the development of ascochyta blight on pea

fields [20]. This observed behaviour is assumed to be a

consequence of two processes: a frequent disease initiation on

lower leaves (older and more receptive) and a local dispersion to

upper nodes [31]. The bell shape of the disease profiles is

interpreted as a gradient of age-based (ontogenic) resistance, as

upper and younger leaves are more resistant to infection and lower

leaves could become senescent before being fully infected. The

model outputs are presented in figure 4. They display a classical

behaviour as the disease starts developing firstly on lower nodes,

moving upwards with time (figure 4, lower graph) [46]. Even if

individual unit dynamics are rarely observed in field, the upper

section of figure 4 indicates that after the beginning of infection

(t~50), the system was perturbed to time about t~100 before

returning to a healthy state. This result is interpreted by the

combination of two effects: a high host growth rate (caused by a

favorable oceanic climate) and a weak disease transmission rate

between plant nodes (tn~0:3). Refining the model prediction at

this scale will require additional experiments on controlled

conditions (e.g. on leaf receptivity, [31]).

Potato late blight. In this case, the model parameters intend

to represent a spatial epidemic, where random primo-infection

generates primary foci which in turn infect plants in their

neighbourhood [24]. It is not clear how to infer the connection

network from the real system. On one hand, observation of

patches of infection means a short-range diffusion process (new

infections are more likely to occur near a previously infected

plant). On the other hand, a long-range dispersal is often observed

[47]. Thus, the simulations showed in figure 5 aim at exploring the

sensitivity of the epidemic process to changes in size or range in
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the dispersal neighbourhood. Four examples were chosen from

graphs in figure 3. The asymmetry of some graphs, used as

connection network, provide interesting heterogeneity at the

canopy scale. This parameterization could represent epidemics

in heterogeneous fields (e.g. prevailing winds, asynchronous plant

emergence). These results illustrate the plasticity we achieved in

simulation rather than a formal sensitivity analysis on this

connection network.

With our model, a quantitative proportion of injured leaf area is

used as output data, as pest injuries are usually observed on

quantitative scales. Observations to discriminate between patho-

gen-induced or senescence-induced removal of leaf area is a very

difficult task, if observation is not performed continuously. This

modeling approach permits to estimate the respective proportion

of leaf area removal caused by these two processes. Protocols for

characterization of pest injuries in the field [48] should be

addressed in order to evaluate the predictive quality of our

modeling.

Sensitivity analysis
We have seen in the former section that it was possible to

reproduce observed real behaviors using specific sets of parameter

values. Sensitivity analysis can be useful to determine which

parameters are the most influential on the variability of the model

output, which are those having no influence (precise knowledge on

these parameters may not be not necessary), which are those

interacting together. It can help the modeler to check if the model

respects the a priori knowledge on relative effect of parameters and

their interactions. This analysis can also help set research

priorities. For example, to help decide which experiments are

needed to improve the precision on the estimation of some

parameters or to identify regions of the parameter space with a

Figure 4. Vertical epidemics: disease development in a homogeneously layered canopy. The four upper graphs show individual dynamics
of functional units, with each graph corresponding to a state of infection. The output variables are relative to the total leaf area in the unit. The lower
graph presents the evolution of ‘‘infection profiles’’, namely the severity of the disease in relation to the height (stem nodes) in the crop.
doi:10.1371/journal.pone.0049406.g004

Figure 5. Spatial epidemics: disease development in a lattice of individualised plants. The four maps show the disease severity (grey
scale) on grids of 50650 plants at the end of simulation. Disease initiation was done at random on 1 percent of total cell number for both cases.
These maps differed in the parameterization of the connection network between plants (cf. figure 3): upper maps resulted from symmetrical graphs
(i.e. graphs A and B in figure 3), lower maps resulted from asymmetrical graphs (D and E); right and left maps resulted from a variation in the number
of plants considered for local dispersion (4 and 8).
doi:10.1371/journal.pone.0049406.g005

Epidemiological Modelling and Crop Architecture

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e49406



high (or low) model output which can be useful on a prospective

point of view.

A global sensitivity analysis of the model was conducted to

further apprehend its behavior (cf. figure 6). The impact of 10

parameters on disease severity at the crop scale was assessed for

the two pathosystems (ascochyta blight on pea and potato late

blight) on two contrasted climatic environments (Oceanic -

Rennes, Western France and Mediterranean - Montpellier, South

of France). The range of variation for the input parameters was

adjusted to keep a biological meaning. We assumed a uniform

Figure 6. Sensitivity analysis. Impact of 10 parameters from table 2 on disease severity for the two pathosystems: top, ascochyta blight on pea,
and bottom, potato late blight. Main effect (circle) and total effect (cross) for each parameters are estimated with Extended FAST method [41] on two
contrasted climatic conditions: Mediterranean (black) and oceanic (grey).
doi:10.1371/journal.pone.0049406.g006
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distribution within this range (figure 6, column ‘‘uncertainty’’).

The Extended-FAST method [41] was used to explore parameter

space and compute sensitivity indices.

Whatever the model, the three most influential parameters on

disease severity are the disease initiation day, the latency period

and the onset of senescence. All three parameters are time-related.

This analysis points out that avoidance strategy strongly explains

disease severity: whether this avoidance came from a low exposure

(late inoculum arrival), a slow disease dispersal (long latency

period) or a de-synchronisation of plant and pathogen cycle (early

plant senescence). The high impact of the disease initiation day

parameter on the severity suggests that the control of primary

inoculum production is a key point for crop protection. This point

should be addressed in connection with management strategies,

i.e. interaction between tillage and crop sequence to manage

infected stubble, [49].

As expected, estimated sensitivity indices highlight the strong

impacts of both the network transmission and senescence

parameters. The impact of senescence on severity is higher in

spatial than in vertical epidemics. This is interpreted as the

consequence of the synchronisation of host development in the

spatial model. Interestingly, all parameters interacted more tightly

with each other in spatial epidemics (larger total index).

Both models are sensitive to climate (temperature) and show

contrasted response. In Mediterranean climate, the disease severity

is globally more sensitive variation of model parameters, for the

two types of epidemics. In the warmer climate, disease initiations

concomitant with a senescent crop (resulting from a hastened crop

development) appeared to be more frequent and thus a higher

epidemic variance was observed. For the spatial epidemic case, the

impact of host ontologic resistance (receptivity) and optimal

temperature for pathogen development shifted from none to

significant with the change in environmental conditions. This

indicates that the model is able to reproduce interesting

host|pathogen|environment interactions and could be useful

to better understand some mechanisms of plant epidemics.

Conclusions
As stated before, the developed model lies in the research

domain. It needs more modeling iterations with phytopathologists

to be able to produce outputs that can be used for agricultural

applications. Nevertheless, the modeling process raises interesting

questions that could be scrutinised with experimental approaches:

the disease impact on plant senescence, previously viewed as an

additional process to the model, was finally represented as a simple

competition for leaf area. Simulation plays a great role to help

grasping the functioning of agricultural systems where direct

observations are difficult and tedious, providing a sound balance

between real and virtual experiments.
About conceptual development. A consequent part of the

model adaptation to specific systems was achieved through the

structure of unit network. As its impact cannot be directly

evaluated through classical sensitivity analysis, additional virtual

experiments would be necessary to develop an intuitive under-

standing of network-based epidemics and the effect of network

structure [13]. Thereby, to simulate systems with a high number of

units and a nearly-complete connection graph (e.g. vineyards) will

be highly demanding in computing time: statistics on connection

network on real pathosystems would help reduce this uncertainty.

A first step, to improve the present model, is to focus on the

climatic environment at the local scale (microclimate or phyllo-

climate [50]) as this local heterogeneity could probably explain

finer host|pathogen|environment interactions. The modular

model conception makes this improvement easy to take into

account. Additionally, environmental stresses are most probably

not sensed independently by plant (or organs). An interesting

model combining the action of temperature and wetness on

pathogen response, proposed by Duthie [51], could be considered

to integrate the joint effect of stresses for a range of foliar

pathogens. Cropping practices (e.g. pruning, lodging) that

dramatically affect the crop structure are not yet included in the

present model and should improve its relevance for practical

applications.

About practical development. The modeling of two types

of epidemics within one single model structure was a first step

demonstrating that the defined objects (functional units and a

network of connection) had sufficient flexibility to mimic different

crop/pathogen systems. Because we focused on comparative

epidemiology rather than on quantitative evaluation, operational

conclusions are still out of the scope of the model, and are

therefore not presented in this paper. Very few studies have

integrated canopy architecture and functioning as a way to control

disease [52,53]. Among these studies, the crop-pathogen system is

mainly modeled with functional-structural plant framework

(FSPM) including 3D representation of the canopy. Using a

coarser-grained and less computationally intensive model makes

uncertainties (climate variability and change, diverse production

systems) easier to analyse within a simulation scheme. Biological

complexity is thus easier to integrate and assess [54].

Integrative biology can be seen not only as integration between

scales but also between the different points of view (agronomists,

pathologists and mathematicians). This work also highlighted the

role of software simulation platforms as tools to integrate the

knowledge coming from these different fields [55].
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