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ABSTRACT

The establishment of experimental conditions for
transcriptional regulator network (TRN) reconstruc-
tion in bacteria continues to be impeded by the lim-
ited knowledge of activating conditions for transcrip-
tion factors (TFs). Here, we present a novel genome-
scale model-driven workflow for designing experi-
mental conditions, which optimally activate specific
TFs. Our model-driven workflow was applied to elu-
cidate transcriptional regulation under nitrogen limi-
tation by Nac and NtrC, in Escherichia coli. We com-
prehensively predict alternative nitrogen sources, in-
cluding cytosine and cytidine, which trigger differ-
ential activation of Nac using a model-driven work-
flow. In accordance with the prediction, genome-wide
measurements with ChIP-exo and RNA-seq were per-
formed. Integrative data analysis reveals that the
Nac and NtrC regulons consist of 97 and 43 genes
under alternative nitrogen conditions, respectively.
Functional analysis of Nac at the transcriptional
level showed that Nac directly down-regulates amino
acid biosynthesis and restores expression of tricar-
boxylic acid (TCA) cycle genes to alleviate nitrogen-
limiting stress. We also demonstrate that both TFs
coherently modulate �-ketoglutarate accumulation
stress due to nitrogen limitation by co-activating

amino acid and diamine degradation pathways. A
systems-biology approach provided a detailed and
quantitative understanding of both TF’s roles and
how nitrogen and carbon metabolic networks re-
spond complementarily to nitrogen-limiting stress.

INTRODUCTION

The transcriptional regulatory network (TRN) in bacteria
is sophisticatedly composed, responding to diverse environ-
mental stimuli. Comprehensively revealing the TRN is in-
dispensable in understanding metabolic flexibility and ro-
bustness in response to various environmental changes (1).
Elucidation of the TRN at the systems level starts with the
integration of omics datasets, such as transcription factor
(TF) binding sites and expression profiling (2–8). The typi-
cal approach to designing a TF profiling experiment is de-
termining the relevant growth conditions where a TF of in-
terest is expected to be maximally active. Therefore, the es-
tablishment of an appropriate experimental environment is
essential in describing and understanding a clear regulatory
mechanism of the TRN. However, knowledge about activat-
ing conditions for a number of TFs is limited, which hin-
ders the establishment of optimal experimental conditions
for these TFs. This remains a challenging biological prob-
lem. Therefore, choosing experimental conditions based on
the literature could limit exploration of alternative condi-
tions not mentioned in prior studies that might stimulate the
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activity of TFs. Some of these conditions might be better
than previously reported experimental conditions.

Genome-scale metabolic models generated by recon-
structions of metabolic networks are a key component of
systems biology, providing a mathematical representation
and displaying metabolic capabilities. Metabolic network
models (M-models) have made significant progress in pre-
dicting cellular metabolism in organisms of interest by inte-
grating all metabolic reactions and experimental informa-
tion (9–13). These metabolic models were used to simulate
the maximal growth of a cell with constraints using flux-
balance analysis (FBA), resulting in a valuable understand-
ing of optimal metabolic flux states (14,15). Furthermore,
macromolecular expression models (ME-models), which in-
clude an integrated network of metabolic and gene product
expression pathways, were constructed from M-models to
compute gene expression and translation levels (16,17). Ex-
tended ME-models were used to predict gene expression,
resulting in the interpretation of iron metabolism and acid
stress responses in Escherichia coli (6,7,18). Recently, the
development of M-models (19,20) and ME-models (17,21)
for E. coli has enabled in silico exploration of virtually
every imaginable experimental condition. Comparisons of
different network states computed under different candi-
date experimental conditions can shed light on various cel-
lular responses to environmental changes, thus identifying
regulatory requirements for each condition. In this study,
a model-based prediction workflow for TF activation was
constructed, which combines a ME-model with existing
regulon information from public databases. It can predict
transcriptional changes to present a cellular response on
the transcriptional level against an environmental stimu-
lus and assess gene enrichment in the experimental condi-
tions in silico using regulon information. Thus, this work-
flow can predict conditions where a TF could be activated.
While the conventional, non-systems approach can suggest
experimental conditions from limited information, the ex-
tended, model-driven approach is able to generate multi-
ple promising candidate conditions through in silico simu-
lation, which can also render possible differential activation
of TFs.

Since nitrogen metabolism is one of the key compo-
nents in E. coli metabolism, post-translational regulation of
the Ntr system has been extensively investigated through a
number of studies (22–29). In E. coli, NtrC and Nac are
known to play important roles in transcriptional regula-
tion under nitrogen limitation. It is well known that NtrC
responds to nitrogen-limitation stress primarily by regulat-
ing a small subset of genes involved in nitrogen metabolism
and strongly activates Nac to expand transcriptional reg-
ulation (30,31). Therefore, in this study, NtrC was used as
a standard indicator for measuring nitrogen availability in
E. coli. In case of Nac, previous studies have also shown
that it is capable of regulating a large number of genes in
various metabolic pathways, including nitrogen metabolism
(30,32–34). However, limited information on the genome-
wide regulatory role of Nac in response to nitrogen limita-
tion is available (30,35,36). Previous studies used binding
profiling experiments with low resolution, such as ChIP-
chip and ChIP-seq, or different induction methods for TF
activation, such as inducible Flag-tagging (30,32)

In this study, a model-based workflow was applied to
predict optimal conditions for activating these two TFs,
and the differential activation of the TFs under nitrogen-
limiting conditions was investigated. Subsequently, ChIP-
exo (Chromatin immunoprecipitation with exonuclease
treatment) using � exonucleases was used to identify NtrC
and Nac in vivo binding sites with near-base pair resolu-
tion (37). In addition, transcription profiling (RNA-seq)
on different nitrogen sources was performed with E. coli
K-12 MG1655 wild-type and knockout mutants (ΔntrC
and Δnac) to combine TF-binding profiles, revealing causal
transcriptional regulatory relationships of both TFs. Fur-
thermore, integration of experimentally derived data and
model-derived in silico flux calculations elucidated the dis-
tinct roles of both regulons on the genome-scale level.

MATERIALS AND METHODS

Prediction of activation conditions for transcription factor

In order to simulate ME-models (17) for in silico E.
coli growth under various conditions, candidate nitro-
gen sources were chosen from simulation with M-models
(19) that share the same metabolites with the ME model.
There are 1071 cytoplasmic metabolites in iML1515 M-
model Among them, 628 cytoplasmic metabolites have
more than one nitrogen molecule (Supplementary Figure
S1A). From those metabolites, 177 nitrogen-containing cy-
toplasmic metabolites with exchange reactions in the model
were preserved. With glucose as the sole carbon source
with a −10 mmol/gDCW/h uptake rate, and each nitrogen-
containing metabolites with exchange reactions with a −10
mmol/gDCW/h uptake rate, M-models were used in sim-
ulation to decide if the nitrogen-containing molecule sup-
ported in silico growth. From the set of in silico growth
with 177 nitrogen-containing metabolites, a threshold of
biomass objective function (0.5 mmol/gDCW/h) was used
to decide growth and non-growth, which resulted in 93 can-
didate nitrogen sources, which support in silico growth with
glucose.

The ME-model was used to simulate expression
of genes under 93 candidate nitrogen sources with
−10 mmol/gDCW/h and glucose as the carbon source
with −10 mmol/gDCW/h (Supplementary Figure S1B). As
a result of the ME-model simulation, the feasible solutions
were obtained from 90 candidate nitrogen sources. For each
simulation under an alternate nitrogen source, expression
was compared to simulated growth on ammonium, with
a cutoff of a factor of 2 set to identify predicted sets of
genes. The hypergeometric enrichment of each known TF
regulon taken from Ecocyc (38) in each of these differential
gene sets was used to predict the likelihood of transcription
factor activity under each condition. For NtrC and Nac,
23 conditions and 19 conditions respectively resulted in
predictions of TF activity (Supplementary Figure S1C).

Bacterial strains, media, and growth conditions

All strains used in this study were E. coli K-12 MG1655
and its derivatives, including knock-out strains and a myc
tagging strain. For ChIP-exo experiments, E. coli strains
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harboring NtrC-8myc and Nac-8myc were generated as de-
scribed previously (39). For expression profiling by RNA-
seq, deletion mutants ΔntrC and Δnac were constructed by
a � red-mediated, site-specific recombination system (40).
M9 minimal media (41) was used for ammonia and W2
minimal media (42) was used for nitrogen-limiting con-
ditions. For nitrogen-limiting conditions, 0.2% (w/v) glu-
tamine, cytidine, or cytosine was added for alternative nitro-
gen sources. M9 or W2 minimal media was supplemented
with 0.2% glucose (w/v) and 1 ml trace element solution
(100X) containing 1 g EDTA, 29 mg ZnSO4.7H2O, 198 mg
MnCl2.4H2O, 254 mg CoCl2.6H2O, 13.4 mg CuCl2 and 147
mg CaCl2. Glycerol stocks of E. coli strains were inoculated
into M9 or W2 minimal media and cultured overnight at
37◦C with constant agitation. Cultures were then diluted
1:100 into 50 mL of fresh minimal media and cultured at
37◦C to mid-log phase (OD600 ≈ 0.5 for ammonia, glu-
tamine, and cytidine, OD600 ≈ 0.25 for cytosine) before
harvest.

ChIP-exo experiment

To identify TF and �-factor binding maps in vivo, we
isolated the DNA bound to NtrC, Nac or RpoN and
RpoD from formaldehyde cross-linked E. coli cells by chro-
matin immunoprecipitation (ChIP) with the antibodies that
specifically recognize myc tag (9E10, Santa Cruz Biotech-
nology) or RpoD (2G10, Neoclone), and RpoN (6RN3,
Neoclone) subunits of RNA polymerase complex, respec-
tively, and Dynabeads Pan Mouse IgG magnetic beads (In-
vitrogen) followed by stringent washings as described pre-
viously (43). ChIP materials (chromatin-beads) were used
to perform on-bead enzymatic reactions detailed in the
ChIP-exo method (37) with following modifications. Briefly,
the sheared DNA of chromatin-beads was repaired us-
ing the NEBNext End Repair Module (New England Bi-
olabs) followed by the addition of a single dA overhang
and ligation of the first adaptor (5’-phosphorylated) using
the dA-Tailing Module (New England Biolabs) and NEB-
Next Quick Ligation Module (New England Biolabs), re-
spectively. Nick repair was performed using PreCR Re-
pair Mix (New England Biolabs). Lambda exonuclease-
and RecJf exonuclease-treated chromatin was eluted from
the beads and the protein–DNA cross-link was reversed by
overnight incubation at 65◦C. RNA- and proteins-removed
DNA samples were used to perform primer extension and
second adaptor ligation with the following modifications.
The DNA samples incubated for primer extension as de-
scribed previously (37) were treated with the dA-Tailing
Module (New England Biolabs) and NEBNext Quick Lig-
ation Module (New England Biolabs) for second adaptor
ligation. The DNA sample purified by GeneRead Size Se-
lection Kit (Qiagen) was enriched by polymerase chain reac-
tion (PCR) using Phusion High-Fidelity DNA Polymerase
(New England Biolabs). The amplified DNA samples were
purified again by GeneRead Size Selection Kit (Qiagen) and
quantified using Qubit dsDNA HS Assay Kit (Life Tech-
nologies). Quality of the DNA sample was checked by run-
ning Agilent High Sensitivity DNA Kit using Agilent 2100
Bioanalyzer (Agilent) before being sequenced using MiSeq
or NextSeq550 (Illumina) in accordance with the manufac-

turer’s instructions. Each modified step was also performed
in accordance with the manufacturer’s instructions. ChIP-
exo experiments were performed in biological duplicate.

RNA-seq expression profiling

Three milliliters of cells from mid-log phase culture were
mixed with six ml RNAprotect Bacteria Reagent (Qiagen).
Samples were mixed immediately by vortexing for 5 s, incu-
bated for 5 min at room temperature, and then centrifuged
at 5000 × g for 10 min. The supernatant was decanted,
and any residual supernatant was removed by inverting the
tube once onto a paper towel. Total RNA samples were
then isolated using RNeasy Plus Mini kit (Qiagen) in accor-
dance with the manufacturer’s instructions. Samples were
then quantified using a NanoDrop 1000 spectrophotome-
ter (Thermo Scientific) and quality of the isolated RNA was
checked by running an RNA 6000 Pico Kit using Agilent
2100 Bioanalyzer (Agilent).

Paired-end, strand-specific RNA-seq was performed us-
ing the dUTP method (44) with the following modifica-
tions. The ribosomal RNAs were removed from 2 �g of
isolated total RNA with Ribo-Zero rRNA Removal Kit
(Epicentre) in accordance with the manufacturer’s instruc-
tions. Subtracted RNA was fragmented for 2.5 min at 70◦C
with RNA Fragmentation Reagents (Ambion), and then
fragmented RNA was recovered with ethanol precipitation.
Random primer (3 �g) and fragmented RNA in 4 �l was
incubated in 5 �l total volume at 70◦C for 10 min, and
cDNA or the first strand was synthesized using SuperScript
III first-strand synthesis protocol (Invitrogen). The cDNA
was recovered by phenol–chloroform extraction followed by
ethanol precipitation. The second strand was synthesized
from this cDNA with 20 �l of fragmented cDNA:RNA,
4 �l of 5× first strand buffer, 30 �l of 5× second strand
buffer, 4 �l of 10 mM dNTP with dUTP instead of dTTP,
2 �l of 100 mM DTT, 4 �l of E. coli DNA polymerase (In-
vitrogen), 1 �l of E. coli DNA ligase (Invitrogen), 1 �l of E.
coli RNase H (Invitrogen) in 150 �l of total volume. This
reaction mixture was incubated at 16 ◦C for 2 h, and frag-
mented DNA was recovered with PCR clean-up kit (QIA-
GEN) and eluted in 30 �l of nuclease-free water. The frag-
mented DNA was end-repaired with End Repair Kit (New
England Biolabs), and dA-tailed with dA-Tailing Kit (New
England Biolabs), and then ligated with 7.5 �g of DNA
adaptor mixture with Quick Ligation Kit (New England
Biolabs). The adaptor-ligated DNA was size-selected to re-
move un-ligated adaptors with GeneRead Size Selection Kit
(QIAGEN). It was treated with 1 U of USER enzyme (New
England Biolabs) in 30 �l of total volume, and incubated at
37◦C for 15 min followed by 5 min at 95◦C. The USER-
treated DNA was amplified by PCR to generate sequenc-
ing libraries for Illumina sequencing. The samples were se-
quenced using MiSeq or NextSeq550 (Illumina) in accor-
dance with the manufacturer’s instructions. All RNA-seq
experiments were performed in biological duplicate.

Peak calling for ChIP-exo dataset

Sequence reads generated from ChIP-exo were mapped
onto the reference genome (NC 000913.2) using bowtie



4 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1

(45) with default options to generate SAM output files.
The MACE program (https://code.google.com/p/chip-exo/)
was used to define peak candidates from biological dupli-
cates for each experimental condition with sequence depth
normalization. To reduce false-positive peaks, peaks with
signal-to-noise (S/N) ratio <1.5 were removed. The noise
level was set to the top 5% of signals at genomic positions
because the top 5% make a background level in plateau and
the top 5% intensities from each ChIP-exo replicate across
conditions correlate well with the total number of reads.
The calculation of S/N ratio resembles the way ChIP-chip
peak intensity is calculated, where IP signal is divided by
Mock signal. Then, each peak was assigned to the nearest
gene. Genome-scale data were visualized using MetaScope
(https://sites.google.com/view/systemskimlab/software).

Classification of regulatory and non-regulatory binding sites

For binding sites of NtrC, Nac, RpoN and RpoD, a bind-
ing site was categorized as regulatory if it was located within
300 bp upstream of a target gene, and as non-regulatory if
not. Non-regulatory regions cover intragenic regions with-
out downstream genes and intergenic regions without a pro-
moter nearby.

Motif search from ChIP-exo peaks

Sequence motif analysis for TFs and �-factors was per-
formed using the MEME software suite (46). For NtrC,
Nac and RpoN, sequences in binding regions were extracted
from the reference sequence (NC 000913.2). For RpoD, se-
quences were extended by 20 bp away from target genes,
because only −10 box was found without that extension.
MEME was run for regulatory bindings for all conditions,
regulatory bindings for at least one condition, and non-
regulatory bindings of NtrC, Nac, RpoN and RpoD.

Calculation of differentially expressed gene

Sequence reads generated from RNA-seq were mapped
onto the reference genome (NC 000913.2) using bowtie (45)
with the maximum insert size of 1000 bp, and 2 maxi-
mum mismatches after trimming 3 bp at 3’ ends. SAM
files were generated from bowtie mapping. To compare ex-
pression changes according to nitrogen sources or genetic
deletion mutants, DESeq2 was used to calculate transcripts
per million (TPM) value and differential expression (47).
From DESeq2 output, genes with differential expression
with log2 fold change ≥1.0 and q-value ≤0.05 were consid-
ered differentially expressed genes. Genome-scale data were
visualized using MetaScope (https://sites.google.com/view/
systemskimlab/software).

Clusters of orthologous groups (COG) analysis

NtrC and Nac regulons were categorized according to their
annotated clusters of orthologous groups (COG) category.
Functional enrichment of COG categories in NtrC and Nac
target genes was determined by performing a hypergeomet-
ric test, and a P-value <0.05 was considered significant.

Measuring growth rate and extracellular metabolites on dif-
ferent nitrogen sources

M9 minimal media (41) was used for ammonia and W2 min-
imal media (42) was used for glutamine, cytidine, and cy-
tosine as nitrogen-limiting conditions. A glycerol stock of
E. coli K-12 MG1655 strain was inoculated into fresh M9
or W2 minimal media and cultured overnight at 37◦C with
constant agitation. Cultures were then diluted 1:200 into
100 ml of fresh minimal media and cultured at 37◦C to late-
log phase, having been sampled six or seven times during
early to mid-log phase. Optical density at OD600 was mea-
sured to get growth rates using different nitrogen sources.
For each time point, extracellular metabolites were mea-
sured by HPLC using a 300 mm × 7.8 mm Aminex HPX-
87H (Bio-Rad, USA) column at 35◦C with 5.41 mM H2SO4
as the mobile phase. Growth rate and extracellular metabo-
lite measurement was performed in biological triplicates.
Measured glucose uptake rates were −11.18, −6.48 and
−7.25 mmol/gDCW/hr on ammonia, cytidine and cyto-
sine, respectively. The measured uridine export rate for cy-
tidine was 5.49 mmol/gDCW/hr, and uracil export rate for
cytidine and cytosine were 4.94 and 6.44 mmol/gDCW/h,
respectively.

FBA analysis and MCMC sampling to calculate the
metabolic flux

FBA analysis and MCMC sampling were performed with
the iML1515 E. coli metabolic model (19) and CO-
BRApy (48). For a parameter of nitrogen uptake rate,
uptake rate for the glucose and export rate for pyrim-
idine measured by HPLC were used to constrain the
model. Glucose uptake rate (−11.18 mmol/gDCW/h)
was used to simulate ammonia condition. Glucose up-
take rate (−6.48 mmol/gDCW/h), uridine export rate
(5.49 mmol/gDCW/h), and uracil export rate (4.94
mmol/gDCW/h) were used for constrains on cytidine
condition. In cytosine condition, glucose uptake rate
(−7.25 mmol/gDCW/h) and uracil export rate (6.44
mmol/gDCW/h) were used. An unspecified uptake rate
with a lower bound of −15 mmol/gDCW/hr was used
for ammonia, cytidine and cytosine, because they were all
used less after optimization and this parameter calculated
close growth rates to measured rates. For cytidine, the up-
take rate was set to −9.58 mmol/gDCW/h to match the
in vivo growth rate with the measured one, otherwise the
model chose to uptake all cytidine available, generating
much higher, unrealistic growth rates. This is because cy-
tidine can be utilized as a carbon and energy source. In ad-
dition, the distribution of feasible fluxes for each reaction
in the iML1515 model was determined through MCMC
sampling using experimentally measured and computa-
tionally predicted constrains (Table 1) (49). The biomass
objective function was provided a lower bound of 95%
of the optimal growth rate as computed by FBA. Thus,
the sample flux distributions by MCMC sampling method
represented sub-optimal flux distributions. MCMC sam-
pling was used to obtain 10 000 feasible flux distribu-
tions, and the average of flux samples for each reaction was
used.

https://code.google.com/p/chip-exo/
https://sites.google.com/view/systemskimlab/software
https://sites.google.com/view/systemskimlab/software
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Table 1. Measured extracellular metabolites profiling and predicted up-
take rates

Ammonia Cytidine Cytosine

Measured uptake and export rates (mmol/gDCW/h)
Glucose −11.18 −6.48 −7.25
Uridine N/A 5.29 N/A
Uracil N/A 4.52 6.44

Predicted nitrogen sources uptake rates (mmol/gDCW/h)
Nitrogen source −10.05 −9.58 −6.55

Prediction of three-dimensional structure and interaction of
proteins

The three-dimensional structure of each TF and sigma
factor were predicted by AlphaFold, which was created
by Deepmind (50). The AlphaFold-Multimer pipeline was
used to predict the complex structure model of NtrC multi-
mers or TF and sigma factor multimers (51). These amino
acid sequences were obtained from EcoCyc. The monomer
confidence was determined by the predicted Local Distance
Difference Test (pLDDT). The complex structure confi-
dence was calculated with predicted Template Modeling
score (pTM score), and interface pTM (ipTM). The open-
source molecular visualization program, PyMOL partici-
pated in implementation of structure models.

RESULTS

Model-driven prediction showed distinct activating pattern of
NtrC and Nac by pyrimidine-based nitrogen sources

A model-driven elucidation workflow was conceived to pre-
dict experimental conditions and TF activation based on
genome-scale metabolic models. This provides the ability
to render optimal conditions that activate target TFs. It is
also possible to predict which TFs are activated in a spe-
cific environment. By using ME-models, which are an ex-
tension of M-models, in a computational approach, gene
expression values enable computation in growing E. coli
(17). To demonstrate the applicability of ME-model to pre-
dict TF activation in E. coli, our previous experimental data
for Cra and CRP were used to simulate and investigate its
consistency with observable results (5). Based on simula-
tions, when comparing glucose conditions with acetate con-
ditions, differentially expressed genes (DEGs) in silico were
significantly enriched in Cra and CRP regulon of the car-
bon metabolism (hypergeometric test P-value < 0.05). The
results of the simulation stated the two TFs were activated in
carbon metabolism under acetate conditions, which is con-
sistent with actual experimental data (Figure 1A).

To expand this knowledge, a model-driven prediction
workflow, including overall metabolism, was constructed to
explore nitrogen source candidates that activate NtrC and
Nac (Figure 1B). A genome-scale model of metabolism (M-
model: iML1515) of E. coli (19) was used to determine vi-
able nitrogen-containing molecules. A total of 93 nitrogen-
containing nutrients with known transporters that support
in silico growth were chosen and used for further analy-
sis (Supplementary Figure S1A, Supplementary Table S1).
Then, a model of metabolism and macromolecular expres-

sion (ME-model: iJL1678b-ME) of E. coli (17) was used
to simulate growth on glucose with each of the candidates
as the sole nitrogen source (Supplementary Figure S1B).
From simulated results, predicted gene expression for each
alternative nitrogen candidate was compared with predicted
gene expression for the control nitrogen source, ammonia,
to find a set of predicted differentially expressed genes. An-
notated TF binding information from EcoCyc (38) was used
to calculate which TFs were enriched in the predicted set
of differentially expressed genes for each alternative nitro-
gen source. Out of 93 nitrogen source candidates, 23 and 19
sources were predicted to significantly enrich the expression
of NtrC and Nac regulons, respectively (Figure 1C, Supple-
mentary Table S1).

For instance, glutamine was also predicted to activate
both two TFs. This is consistent with the previous stud-
ies, which used glutamine as a nitrogen source to cause
nitrogen-limiting stress (30,43,52). To increase the reliabil-
ity of model-driven prediction, nitrogen sources activating
only Nac were excluded. This is due to the fact that Nac ac-
tivation must be preceded by NtrC activation under unfa-
vorable nitrogen sources. Therefore, cytosine was predicted
to be the most potent inducer among predicted nitrogen
candidates that simultaneously activate both NtrC and Nac
(Supplementary Figure S1C). However, cytidine, belonging
to pyrimidine-based substances like cytosine, was predicted
to activate only NtrC. Considering that the two molecular
structures are different due to the additional five carbon,
cytosine degradation involves only nitrogen metabolism,
whereas cytidine degradation requires both nitrogen and
carbon metabolisms (Supplementary Figure S2A). There-
fore, this result was expected to be a promising predictive
result. Thus, it was predicted that firstly, NtrC would be ac-
tivated by both pyrimidine-based nitrogen sources and that
secondly, Nac would be differentially activated depending
on the presence of a five-carbon source.

To ascertain activation of NtrC and Nac, expression pro-
filing on RNA and protein levels, through RNA-seq and
western blots, respectively, were performed. E. coli nitrogen
source candidates were selected based on analysis of model-
driven prediction results. Under these alternative nitrogen
conditions, transcription of ntrC and nac was significantly
up-regulated, but no significant change in RNAP subunits
was observed (Supplementary Figure S2B). Moreover, anal-
ysis of environmental differentially expressed genes (DEGs)
showed that a total of 371 and 575 DEGs were uncovered
under cytidine and cytosine conditions, respectively (Sup-
plementary Figure S2C, Supplementary Table S2). Among
these, expression of 247 DEGs changed in both conditions.
In agreement with RNA-seq, the protein expression lev-
els of NtrC and Nac increased with cytidine, or cytosine
as the sole nitrogen source (Figure 1D). Consistent with
the model-driven prediction, the amount of Nac protein
on cytidine was much lower than the amount on cytosine.
This lower protein expression may explain why the num-
ber of DEGs on cytidine was lower than on cytosine. Thus,
transcriptional expression changes of the genes encoding
two key TFs in response to unfavorable nitrogen sources
were significantly up-regulated, which was reflected in an
increase in protein abundance of those TFs.
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Figure 1. Workflow of model-driven experimental design. (A) A model-driven workflow including macromolecular expression (ME-model) predicted the
activation of Cra and Crp due to different carbon sources in carbon metabolisms. (B) Model-driven experimental design was achieved using genome-scale
models of metabolism (M-model) and ME-model of the metabolic network in E. coli K-12 MG1655, with a list of viable nitrogen sources, and known
TF binding sites. (C) Results of model-driven TF prediction. NtrC was activated on 23 nitrogen sources and Nac was activated on 19 nitrogen sources.
(D) Protein expression of two major nitrogen-responsive TFs, NtrC and Nac, and two �-factors, RpoD and RpoN, was measured by western blotting.
Ammonia was used as a negative control as it is known not to activate NtrC and Nac. Glutamine was used as a positive control to activate the two TFs.
Expression of NtrC and Nac increased on alternative nitrogen sources. However, Nac expression on cytidine increased significantly less than on glutamine
or cytosine.

Genome-wide reconstruction of NtrC and Nac regulons asso-
ciated with �-factors

To shed light on transcriptional regulation by NtrC and
Nac, genome-wide binding profiles of both TFs and �-
factors were generated under alternative nitrogen sources
including cytosine and cytidine (Supplementary Table S3).
Across the three-growth conditions, a total of 19 NtrC
and 249 Nac binding sites were identified in regula-
tory regions (Supplementary Figure S3A). 153 and 2171
binding sites were identified for RpoN and RpoD, re-
spectively. The number of binding sites for NtrC in-
creased from 5 to 19, and Nac bindings increased from
15 to over 240 for each condition on alternative nitro-

gen sources compared to ammonia condition, whereas
sigma factors binding sites did not change. The se-
quence motifs from NtrC, Nac, RpoN and RpoD bind-
ing sites were GCaCcaaaAtgGtGC, ATAagnaaaanttAT,
tGGcacgattttTGCa, and ttgaca-15bp-gntAtaaT (Figures
2A and S3B). Motifs of TFs and �-factors were identical
to previous results (38,43,53,54). Previous studies demon-
strated that NtrC is a member of the RpoN-dependent ac-
tivator family (55) and interacts with RpoN (56). Nac, acti-
vated by NtrC, is postulated to serve as an adaptor between
NtrC and RpoD-dependent promoters (30). To identify in
vivo association of NtrC with RpoN and Nac with RpoD,
binding sites of both TFs and their corresponding �-factors
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Figure 2. Genome-wide identification of NtrC and Nac binding sites and regulons associated with sigma factors. (A) Motif analysis on ChIP-exo binding
sites for NtrC, Nac, RpoN and RpoD resulted in previously known sequence motifs (lower-case characters indicate an information content < 1 bit). (B)
Overlaps between NtrC and RpoN or RpoD binding sites under the alternative nitrogen sources. 16 NtrC binding events out of 19 were accompanied
by RpoN binding. 9 NtrC bindings were identified near RpoD binding sites. In the case of Nac, 167 Nac binding events out of 249 were accompanied
by RpoD binding. 15 Nac bindings were identified near RpoN binding sites. (*9 NtrC and RpoD bindings were identified near RpoN binding sites,
*15 Nac and RpoN bindings were also detected near RpoD binding sites. These cases are complicated promoters with both RpoD and RpoN binding
sites.) (C) Comparison of ChIP-exo binding results and differentially expressed gene profiles to define direct NtrC and Nac regulons. (D) NtrC associates
with RpoN-dependent promoters, and regulates 20 transporter genes, 7 peptide/amino acid degradation genes, 6 uracil degradation genes, 3 TF genes, 2
nitrogen regulation system genes, 1 amino acid biosynthesis genes and 4 other enzymes. Nac associates with RpoD-dependent promoters, and regulates 25
transporter genes, 7 TF genes, 5 TCA cycle genes, 5 amino acid degradation genes, 4 amino acid biosynthesis genes, 3 sRNAs, 2 nucleobases deaminase
genes, 1 nitrogen regulation system gene and 45 other enzymes (3D structure of Nac, RpoD, NtrC and RpoN were predicted by AlphaFold).
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were investigated. Out of 19 NtrC binding sites, 16 were
found to be located near an RpoN binding site upstream of
the same gene (Figure 2B). Nine of these were from complex
promoters, having both RpoN and RpoD binding sites. The
majority of Nac bindings (167, or 67.1%) adjoined RpoD
bindings, and 15 binding sites were also found in complex
promoters.

Based on the ChIP-exo datasets, a total of 49 target genes
in 19 TUs of NtrC and 409 target genes in 234 TUs of Nac
were identified in their regulatory regions during growth on
alternative nitrogen sources. These genome-wide NtrC and
Nac binding sites were also compared to binding sites from
previous studies (Supplementary Text S1) (30,32,33). Of the
22 reported NtrC binding sites, 16 (72.7%) were identified
by ChIP-exo experiments in this study. Of the 234 reported
binding sites of Nac, 129 (55.1%) of them were identified,
and 120 novel Nac binding sites were discovered. The num-
ber of binding sites of Nac was much higher than that of
NtrC, suggesting that Nac may play a broader role in vari-
ous metabolisms in E. coli.

To determine the causal relationships between the bind-
ing of TFs and changes in transcription levels of regulon
genes, transcription levels of the wild-type and ntrC and nac
deletion mutants (ΔntrC and Δnac) were compared under
alternative nitrogen conditions. From ΔntrC and Δnac, a
total of 1527 and 538 genes were differentially expressed un-
der least one condition, respectively (Supplementary Table
S4). Only 43 out of 1527 DEGs were differentially expressed
by NtrC, and 97 out of 538 DEGs were found to be directly
regulated by Nac under alternative nitrogen sources (Figure
2C, Supplementary Table S5). Notably, NtrC binding was
mainly found upstream of the RpoN-dependent promoter.
It works predominantly as a transcription activator in many
cases (Supplementary Figure S4A). In contrast, Nac works
as a dual regulator on the RpoD-dependent promoter. It
binds upstream of a promoter when up-regulating the target
gene, and it binds downstream of a promoter when down-
regulating the target (Supplementary Figure S4B).

Functional analysis for regulons of both TFs was per-
formed to shed more light on distinct functions of NtrC and
Nac in response to unfavorable nitrogen sources. NtrC up-
regulated 40 genes under both alternative nitrogen sources,
and an additional two genes in cytidine conditions alone
(Supplementary Figure S5A). Only a single gene, yeaE, was
down-regulated by NtrC under both conditions. The NtrC
regulon mostly contains 20 transporters, or their subunits,
related to nitrogen sources (Figures 2D and S4C). NtrC also
up-regulates transcription factors and major nitrogen regu-
latory proteins, including three TFs, ntrC itself, nac, cbl and
two additional nitrogen regulatory proteins (ntrB and glnK).
In addition, glutamine synthetase (glnA) is up-regulated by
NtrC to maintain intracellular glutamine. Metabolic en-
zymes that scavenge nitrogen-containing molecules to pro-
duce ammonia or glutamate are also activated by NtrC.

While NtrC regulates a smaller set of genes and acti-
vates the expression of these target genes, Nac regulates
a large number of genes and works as a dual regulator
by up-regulating 73 genes and down-regulating 24 genes
(Supplementary Figure S4D). Functional analysis of the
Nac regulon showed Nac regulated 53 genes under all al-

ternative nitrogen sources, and 44 genes in only one con-
dition (Supplementary Figure S5B). The Nac regulon is
comprised of 25 transporters or their subunits relating to
the transport of various compounds (nitrogen sources: 12,
carbon sources: 4, zinc: 1, multidrug: 2, putative trans-
porter: 6) (Figure 2D). This regulon also includes a num-
ber of mostly locally acting TFs, some of which known to
be related to carbon metabolism or found in both carbon
and nitrogen metabolism (Supplementary Text S2). An in-
teresting property of Nac regulatory mechanisms is that
Nac activates nitrogen-containing molecule catabolic en-
zymes and represses amino acid anabolic enzymes. More-
over, Nac up-regulates succinate dehydrogenase (sdhCDAB)
and 2-oxoglutarate dehydrogenase (sucA), which are some
key enzymes in the tricarboxylic acid (TCA) cycle. Three
sRNAs, nitrogen regulatory protein (glnD), and 48 other
enzymes were found in the Nac regulon. Similarly, clus-
ters of orthologous groups (COG) analysis showed most
NtrC regulon genes are functionally enriched in amino acid
metabolism (E) and signal transduction (T) (Supplemen-
tary Figure S5C). Nac regulon genes are only enriched in
amino acid metabolism (E). But this regulon is also highly
involved in carbohydrate metabolism (G) and energy pro-
duction and conversion (C).

Differences in response to nitrogen-limiting stress caused by
cytidine and cytosine

Under nitrogen limitation conditions, a low concentration
of intracellular ammonium ions in E. coli reduces glutamate
biosynthesis flux, resulting in the accumulation of intracel-
lular ɑ-ketoglutarate. Studies investigating the effect of ac-
cumulated ɑ-ketoglutarate on E. coli metabolisms have been
extensively conducted, and the level of accumulation occurs
in proportion to nitrogen-limiting stress (57–59). Moreover,
a high level of ɑ-ketoglutarate decreases expression of im-
portant target genes (e.g. TCA cycle) to insufficient levels,
leading to growth deficiency under nitrogen limitation con-
ditions (58).

Through high-performance liquid chromatography
(HPLC), supernatants were analyzed to obtain a complete
profile of extracellular metabolites for each nitrogen source
respectively. For the cytidine condition, extracellular
uridine and uracil were detected, but only uracil was
found under cytosine condition (Table 1, Figure 3A).
3-hydroxypropionic acid (3-HP) was not detected at all,
which is the final molecule of the pyrimidine degradation
pathway. This extracellular metabolite profiling provides
a better understanding of how cytidine and cytosine are
used as the sole nitrogen source (Supplementary Figure
S6A). Cytidine and cytosine have three nitrogen atoms but
only one, in the form of an ammonium ion, is expected
to be harvested during enzymatic reactions in E. coli. In
the case of cytidine, it is first converted to uridine and an
ammonium ion by cytidine deaminase (cdd), which has
a Nac-independent promoter (Figure 3B). Subsequently,
a portion of the uridine is broken into uracil and ribose
1-phosphate by uridine phosphorylase (udp) or nucleoside
phosphorylase (ppnP). Ultimately, this ribose 1-phosphate
is converted to ribose 5-phosphate, which can go into the
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Figure 3. Different transcriptional regulatory response by Nac under cytidine and cytosine. (A) Glucose uptake rate and pyrimidine export rate measured
by HPLC under alternative nitrogen sources. (B) Different metabolic enzymes of cytidine and cytosine regulated by Nac with RpoD or only RpoD.
Cytidine and cytosine are transported by nupC and codB, respectively. These genes are activated by Nac with RpoD. Then, through cytosine deaminase
(codA), regulated by Nac and RpoD, cytosine is degraded to uracil and ammonium ion. However, cytidine is converted to uridine and ammonium ion
by cytidine deaminase (cdd), which is transcribed by only RpoD. (C) Prediction of nitrogen uptake rate for different nitrogen sources. Simulation of flux
balance analysis (FBA) used experimentally measured glucose uptake rate and extracellular pyrimidine export rate to calculate nitrogen source uptake rates
(ammonia shown as triangles; cytidine shown as circles; cytosine shown as squares). Sample points for flux analysis are also denoted (shown as red-lined
hexagons). (D) Changes in mRNA expression of cytidine and cytosine transporters on different nitrogen sources. Cytidine transporter (nupC) is significantly
up-regulated on cytidine, but cytosine transporter (codB) expression doesn’t change on cytosine. Both transporters are significantly down-regulated in the
nac deletion strain. This indicates that Nac up-regulates the expression of both genes.

pentose phosphate pathway (PPP). Similar to cytidine, only
one ammonium ion is harvested from cytosine, by cytosine
deaminase (codA). However, codA is repressed by the
presence of pyrimidine in the medium (60). Thus, cytosine
catabolism when using cytosine as the sole nitrogen source
seems to have a ‘bug’ that leads to a slowed generation of
ammonium ions. Interestingly, it was observed that codA
was significantly upregulated by Nac. From this, it was
inferred that the ‘bug’ can be debugged by Nac activation,
which maintains the expression of codA to supply ammo-
nium ions. These results also indicate that the pyrimidine
degradation pathway (rutABCDEF), when activated by
NtrC, is not used on both nitrogen sources. Additionally,
these suggest that Nac plays a more important role in
cytosine conditions than cytidine conditions to maintain
growth.

Through growth profiles and extracellular metabolite
profiles, each nitrogen source uptake rate was calcu-
lated by flux balance analysis (FBA) using iML1515
(Figure 3C). On cytidine, the cytidine uptake rate was
−9.58 mmol/gDCW/hr, which is not significantly different
from the ammonia uptake rate, −10.05 mmol/gDCW/h.
However, the cytosine uptake rate was calculated to be

−6.55 mmol/gDCW/h. mRNA expression profiling of
transporters for both nitrogen sources supported the pre-
dictive uptake rates generated by iML1515 (Figure 3D).
The expression of cytidine transporter (nupC) is signifi-
cantly increased with cytidine as the sole nitrogen source,
whereas the expression of codB, which transports cyto-
sine, did not change under cytosine conditions. Addi-
tionally, these transporter genes were both significantly
up-regulated by Nac under nitrogen limitation. Markov
Chain Monte Carlo (MCMC) sampling with iML1515 pro-
vided insight into nitrogen availability and catabolic path-
ways of both pyrimidine molecules. CYTD (cdd) had a
higher flux value than CSND (codA), suggesting higher ni-
trogen availability under cytidine conditions (Supplemen-
tary Figure S6B). Likewise, flux of glutamate biosynthe-
sis (GLUSy-GLUDy), which is indicative of nitrogen avail-
ability, showed the lowest value under the cytosine con-
dition, compared to ammonia or cytidine. This result is
also consistent with mRNA expression values (Supplemen-
tary Figure S6C). Thus, these results indicate that cyto-
sine is the most stressful condition through induction of
nitrogen limitation and accumulation of ɑ-ketoglutarate
simultaneously.
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Nac has unique regulatory mechanisms to restore intracellu-
lar glutamine pools under nitrogen-limiting stress

Intracellular glutamine is the central molecule with which
E. coli cells sense nitrogen-limiting conditions (61). The
Ntr regulatory cascade is triggered by low levels of glu-
tamine, resulting in recovery of intracellular glutamine lev-
els (Supplementary Figure S7A). On the transcription level
of the regulatory cascade, NtrC up-regulated five genes
(ntrC, nac, ntrB, glnA and glnK) while Nac up-regulated one
gene (glnD) and down-regulated two genes (gltB and gltD)
(Supplementary Figure S7B). Thus, NtrC and Nac control
a majority of regulatory components in this cascade.

Based on the results of gene expression profiling, the
primary regulatory mechanism of NtrC acts by restoring
the glutamine concentration decreased by nitrogen-limiting
stress. First, ammonium ion transporters (amtB) are up-
regulated to increase intracellular ammonium ions used to
produce glutamine (Figure 4A) (30). Second, synthesis of
cytoplasmic glutamine from glutamate is increased by ac-
tivating glutamine synthetase (glnA) (30,31). Apart from
the NtrC responses, an important mechanism of Nac in re-
sponding to nitrogen limitation was also observed in the re-
pression of amino acid biosynthesis to alleviate nitrogen-
limiting stress. As amino acid synthesis requires a large
amount of nitrogen, genes involved in the process may ac-
celerate nitrogen-limiting stress under nitrogen depletion
conditions caused by unfavorable nitrogen sources. To sus-
tain growth and survival, Nac is activated by NtrC and sig-
nificantly represses enzymes involved in amino acid biosyn-
thesis, including gltBD (glutamate), asnA (asparagine) and
serA (serine) (Figure 4B). Glutamate, a precursor of glu-
tamine, can be built up from ɑ-ketoglutarate mediated by
two different enzymes. One of the enzymes is glutamate syn-
thase, which consumes glutamine with ɑ-ketoglutarate to
generate glutamate. It is encoded by gltBD, an operon with a
RpoD-dependent promoter. Nac significantly represses the
expression of gltBD to minimize glutamine usage on un-
favorable nitrogen sources (log2 fold change > 2) (Figure
4A). The other enzyme is glutamate dehydrogenase (gdhA),
which also has a RpoD-dependent promoter for constitu-
tive expression, thus, the expression of gdhA did not change
significantly with alternative nitrogen sources.

Asparagine is one of the proteinogenic amino acids con-
taining amide side-chains. Among the two enzymes capable
of asparagine synthesis, asnA is known to be the more active
asparagine synthetase (62). Interestingly, it was found that
asnA was significantly regulated by Nac under nitrogen-
limiting conditions. Nac binds upstream of asnA to down-
regulate expression, which reduces asparagine biosynthe-
sis, thereby decreasing the consumption of ammonium ions.
Therefore, it can be inferred that ammonium ions are prefer-
entially used for glutamine biosynthesis. In addition, phos-
phoglycerate dehydrogenase (serA), an initial enzyme in the
biosynthesis of serine, is down-regulated by Nac. Serine is
the precursor of about ∼33% (7/21) of total proteinogenic
amino acids (Supplementary Figure S8A), hence Nac can
affect amino acid biosynthesis through the strong repres-
sion of a single gene, serA. Moreover, the flux state of pro-
teogenic amino acid biosynthesis using MCMC sampling
with iML1515 showed that fluxes of reactions repressed by

Nac were reduced under unfavorable nitrogen sources (Sup-
plementary Figure S8B). Interestingly, the reduction in the
flux of amino acid biosynthesis in the cytosine condition
was higher than in the cytidine condition (Supplementary
Figure S6B and S8B). Thus, this flux distribution also sup-
ports the experimental results of the higher activation of
Nac on cytosine conditions.

Taken together, in addition to transcriptional regulation
in the cascade, NtrC activates transporters and glutamine
biosynthesis genes, and induces gene expression of the other
key TF, nac. Furthermore, we expanded precise regulons of
Nac under nitrogen-limiting conditions compared to pre-
vious studies, which regulate expression by Nac with more
than a 2-fold change in expression (30,32) (Supplemen-
tary Table S6). Nac plays an important role in transcrip-
tional regulation in amino acid metabolism. To alleviate
nitrogen-limiting stress, enzymes responsible for the biosyn-
thesis of three amino acids are repressed by Nac, reduc-
ing the usage of ammonium ions and glutamine. In par-
ticular, down-regulation of glutamate synthase to maintain
the glutamine pool leads to a decrease in the expenditure
of ɑ-ketoglutarate, a key molecule in carbon metabolism.
The management of production and consumption of ɑ-
ketoglutarate in E. coli cells is revealed to be of particular
interest under nitrogen-limiting conditions.

Rebalancing carbon flux by Nac on the carbon metabolism

The regulatory network of Nac in E. coli was recon-
structed to observe how Nac regulates genes of carbon
metabolic processes, including glycolysis and the TCA cy-
cle. 11 of those involved genes were regulated by Nac
(Figure 5A). Expression of five TCA cycle genes, sucA
and sdhBADC, was significantly up-regulated by Nac. Nac
also up-regulated pck, sucB, sucCD and fumC, and down-
regulated the glycolysis gene, ppc, but the observed ex-
pression fold change was less than two (Supplementary
Figure S9A).

An interesting aspect of the expression change in the
TCA cycle under nitrogen limitation is that downstream
genes of ɑ-ketoglutarate (sucABCD, sdhBADC, lpd) in the
pathway were more repressed than upstream genes (icd,
acnAB, gltA) (Supplementary Figure S9B). Cytosine was
predicted to induce higher nitrogen-limiting stress and ɑ-
ketoglutarate accumulation than cytidine. Consistent with
this result, the expression levels of sucAB, sucCD and sd-
hBADC were more strongly down-regulated on cytosine
than cytidine. Thus, the regulatory role of Nac found in
carbon metabolism is postulated to be regulation of stress
caused by the accumulation of ɑ-ketoglutarate. First, Nac
represses phosphoenolpyruvate carboxylase (ppc) to reduce
carbon flux into the TCA cycle, thereby maintaining the
balance of TCA carbons under nitrogen-limiting condi-
tions. Second, in the TCA cycle, ɑ-ketoglutarate down-
stream genes are activated by Nac, and the expression of
TCA cycle genes is maintained by restoring transcription
expression caused by high concentration of ɑ-ketoglutarate.
These results indicated that need for Nac increases when us-
ing more poor nitrogen sources. It was also similar to the
model-driven prediction and western blot.
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Figure 4. Regulatory mechanisms of amino acid metabolism enzymes by Nac and NtrC under unfavorable nitrogen sources. (A) When exposed to unfa-
vorable nitrogen sources, the low ammonium ion concentration decreases nitrogen incorporation from ɑ-ketoglutarate to amino acids. This decreases the
concentration of cytoplasmic glutamine and increases the concentration of ɑ-ketoglutarate. Glutamine-producing genes are activated by NtrC, and glu-
tamine consumption genes are repressed by Nac. In E. coli, NtrC and Nac play an important role in maintaining glutamine concentration. (B) Amino acid
biosynthesis genes regulated by Nac. Nac directly down-regulates glutamate synthase and asparagine synthetase, which utilize glutamine or ammonium
ions. Additionally, enzyme of initial step in serine biosynthesis is repressed by Nac under nitrogen-limiting conditions. (The left stack denotes the relative
expression of genes between alternative nitrogen sources and ammonia, right stack indicates the relative expression of genes between TF deletion strain
and wild-type strain under alternative nitrogen sources, respectively.)

Additionally, Nac and NtrC regulons were mapped to
amino acid and diamine degradation pathways, which con-
sume intermediates of the TCA cycle with amino acids
to produce glutamate (Figure 5A and Supplementary Fig-
ure S10). Under nitrogen-limiting conditions, transporters
of amino acids and diamine are activated by NtrC. Argi-
nine is degraded into succinate through AST pathway genes
(astCADBE) that are activated by NtrC. This pathway
produces two glutamates, one ammonium ion, and one
molecule of NADH using one molecule each of succinyl-
CoA and ɑ-ketoglutarate. Lysine and putrescine degrada-
tion pathways were found to be co-regulated by both TFs,
NtrC and Nac. First, NtrC activates putrescine aminotrans-
ferase (patA). Subsequently, Nac up-regulates downstream
genes of lysine and putrescine degradation pathways, in-
cluding patD, gabTD. As a result of this co-regulated
pathway, lysine and putrescine are degraded into glutarate
and succinate, respectively, converting two ɑ-ketoglutarates
to two glutamates and generating one molecule each of
NADH and NADPH. Additionally, glutarate is degraded
by Nac regulon genes, csiD and lhgD, consuming one ɑ-
ketoglutarate to convert one molecule of succinate and
regenerate one ɑ-ketoglutarate. Thus, these results indi-
cate that NtrC primarily activates amino acid transporter
genes to induce uptake of extracellular amino acids, and
that both TFs up-regulate amino acid/diamine degrada-
tion pathways. It can be inferred that Nac may shift the
metabolic flux from glutamate synthesis to amino acid
and diamine degradation pathways to convert glutamate
from accumulated ɑ-ketoglutarate. This redirection of ɑ-
ketoglutarate consumption from glutamate synthesis to
amino acid/diamine degradation pathways co-activated by
both TFs might relieve stress caused by nitrogen-limitation
and ɑ-ketoglutarate accumulation. Furthermore, among
the Nac regulon genes in the TCA cycle, succinate dehy-
drogenase (sdhBADC) was most strongly up-regulated by

Nac. This enzyme converts succinate, a final molecule of
amino acid/diamine degradation, into fumarate, providing
the connection between the amino acid/diamine degrada-
tion pathway and the TCA cycle. In addition, two out of
these eight Nac regulon genes (gabTD) were known to be
directly regulated by Nac under nitrogen limitation in pre-
vious study (30) (Supplementary Table S6). These Nac reg-
ulon genes were observed to be regulated by Nac with arti-
ficial induction of Nac under non-nitrogen-limiting condi-
tions (32). Only sdhBC were shown to overlap with the Nac
regulons found in this study. The regulatory role of Nac on
the remaining six genes was different. These results demon-
strated consistent expansion of the Nac regulon in response
to nitrogen-limiting stress.

Moreover, the in silico metabolic model, which makes
predictions independent of transcriptional regulatory in-
formation, provided more insight into the role of Nac.
FBA and MCMC sampling on the iML1515 (19,63) were
performed to simulate feasible internal flux states during
growth on three different nitrogen sources (Figure 5B, Ta-
ble 3). On ammonia, the glucose uptake rate was −11.18
mmol/gDCW/h, and flux of glucose 6-phosphate from glu-
cose was 10.46 mmol/gDCW/h. About 30% of glucose 6-
phosphate went into PPP, leaving about 70% remaining in
the glycolysis pathway. Flux distribution through glucose
6-phosphate on cytosine was the same as ammonia, but the
glucose uptake rate was lower, at −7.25 mmol/gDCW/h.
On cytidine, flux into glucose 6-phosphate was split differ-
ently, with more flux towards PPP and less flux into down-
stream glycolysis. Additionally, the flux of glucose uptake
was the lowest among the three nitrogen sources, at −6.48
mmol/gDCW/h. This is expected to be caused by phos-
photransferase system (PTS)-independent carbon replen-
ishment with ribose 1-phosphate, which is an additional car-
bon source generated by cytidine degradation. And most
fluxes through PPP increased due to ribose 5-phosphate
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Figure 5. Network-level regulation of carbon metabolism and amino acid and diamine degradation pathways by Nac and NtrC. (A) Carbon metabolism
(glycolysis and TCA cycle) and amino acid/diamine degradation pathways are represented. Nac regulates the expression of enzymes in the TCA cy-
cle, including ppc, pck, sdhBADC, sucCD, sucAB and fumC. Transporters or their subunits of amino acids and diamine are up-regulated by NtrC. In
amino acid/diamine degradation pathways, the astCADBE operon and patA are activated by NtrC, which encode the enzymes in the arginine and
lysine/putrescine degradation pathways, respectively. Moreover, Nac significantly up-regulates lysine/putrescine degradation enzymes that are encoded
patD, gabTD, csiD and lhgD. Two lysine degradation genes (ldcC and cadA) and putrescine transporter subunits (potHI) are not regulated by NtrC and
Nac. The genes regulated by Nac or NtrC are depicted by bright red (LFC > 1), bright blue (LFC < −1), light red (0.5 < LFC < 1), and light blue
(−1 < LFC < −0.5), respectively. And the genes regulated by NtrC are depicted by black boxes. Abbreviation: GLC: glucose, AKG: ɑ-ketoglutarate,
SUCCOA: succinyl-CoA, SUCC: succinate, GLU: glutamate, IM, inner membrane; OM, outer membrane. (B) To explain lower activation of Nac on cy-
tidine condition MCMC sampling was performed on ammonia, cytidine, and cytosine with experimentally measured glucose uptake rate and pyrimidine
export rates. (There are genes and reactions with minor flux that are omitted for clarity of Figure. *The flux through the reaction was lower than the flux
on ammonia; however, the direction of the reaction was reversed.) (C) An overview of the Nac and NtrC regulons under nitrogen limitation. Both TFs
induce the conversion of glutamate from ɑ-ketoglutarate and amino acids without using glutamine, to modulate stress response to nitrogen deficiency and
accumulated ɑ-ketoglutarate.

conversion from ribose 1-phosphate. As a result, flux from
fructose 6-phosphate and downstream reactions increased
to higher levels compared with the cytosine condition. In
particular, flux distribution of the TCA cycle, including sd-
hCDAB, showed a smaller decrease with cytidine as the sole
nitrogen source compared to cytosine. This result showed
consistency with experimental data, which found lower re-

pression of TCA cycle genes by ɑ-ketoglutarate accumula-
tion under cytidine conditions. It likely suggests a reduc-
tion in the need for expression restored by Nac under cy-
tidine conditions. In addition, flux of PPC, which converts
phosphoenolpyruvate into oxaloacetate in glycolysis, does
not change with cytidine as the sole nitrogen source, unlike
with cytosine. This reaction encodes the ppc gene, repressed
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Table 2. Growth rate of E. coli K-12 MG1655 wild-type and Δnac strain
under alternative nitrogen sources

Ammonia Cytidine Cytosine

Growth rate of E. coli K-12 MG1655 wild-type (h−1)
0.645 ± 0.003 0.585 ± 0.012 0.433 ± 0.014

Growth rate of E. coli K-12 MG1655 Δnac (h−1)
0.601 ± 0.007 0.353 ± 0.001 0.098 ± 0.001

Table 3. Prediction of the overall metabolic flux of iML1515 on different
nitrogen sources

Reactions Ammonia Cytidine Cytosine

Glycolysis
GLCptspp 10.46 6.13 6.93
PGI 7.41 2.86 4.98
PFK 6.37 4.18 3.73
FBA 6.30 4.12 3.70
TPI 8.86 7.10 5.85
GAPD 18.63 16.60 12.18
PGK − 18.63 − 16.60 − 12.18
PGM − 16.84 − 14.96 − 11.07
ENO 16.90 15.02 11.11
PDH-PFL 10.84 9.37 7.18
GLCptspp + PYK 12.01 9.68 8.12

Pentose phosphate pathway
G6PDH2r 3.25 3.35 1.99
PGL 3.25 3.35 1.99
GND 3.20 3.29 1.96
RPI − 1.98 0.92 − 1.20
RPE 1.18 4.17 0.73
TKT1 0.77 2.24 0.48
TKT2 0.42 1.92 0.25
TALA − 1.74 − 0.46 − 1.65

TCA cycle
PPC 2.77 2.69 1.71
CS 8.85 7.49 5.63
ACONTa 8.78 7.44 5.59
ACONTb 8.78 7.44 5.59
ICDHyr 8.54 7.17 5.43
AKGDH 7.43 6.20 4.72
-PPCSCT-SUCOAS 6.92 5.73 4.39
SUCDi-FRD2-FRD3 8.03 6.88 5.01
FUM 9.26 7.84 5.89
MDH 9.16 7.80 5.87

by Nac. The unchanged flux of ppc indicates a decrease in
the need for repression by Nac. Moreover, growth profiles of
the nac deletion mutant (Δnac) indicate growth rate is not
as strongly affected by cytidine when comparing cytosine
condition (Table 2).

Estimating flux through a metabolic reaction using
the E. coli metabolic model under alternative nitrogen
sources helped explain the observation of lower activa-
tion of Nac on cytidine. To relieve nitrogen limitation and
TCA intermediate accumulation stresses, ɑ-ketoglutarate
was predicted to be converted to glutamate through amino
acid/diamine degradation pathways regulated either by
NtrC alone or both NtrC and Nac (Figure 5C). Addi-
tionally, down-regulated expression of TCA cycle genes re-
sulted in a decrease in reducing power. To compensate for
this, NADH and NADPH are produced through amino
acid/diamine degradation pathways. Furthermore, some
genes of the TCA cycle are regulated by Nac. Nac restores
expression levels of TCA cycle genes that have been re-
duced by nitrogen-limiting stress, suggesting that Nac may
relieve stress caused by TCA intermediate accumulation.

And, to balance decreased consumption of TCA carbon,
flux through phosphoenolpyruvate to oxaloacetate is re-
pressed by Nac. The overall regulatory consequences indi-
cate Nac is an important dual regulator that modulates core
carbon metabolism as well as nitrogen metabolism under
nitrogen-limitation conditions.

DISCUSSION

Computation with metabolic models systematizes biochem-
ical, genetic, and genomic knowledge into a mathemati-
cal framework that enables a mechanistic description of
metabolic physiology. In this study, genome-scale metabolic
models were leveraged to improve our understanding of
regulation of nitrogen metabolism and its interplay with
carbon metabolism. This approach generated an in silico
prediction of gene expression of whole the cell, and calcu-
lated gene expression was assumed to change in response
to TFs. Based on this assumption, experimental conditions
were chosen to activate two important, yet relatively un-
characterized, transcription factors involved in responses to
nitrogen limitation, NtrC and Nac. Integrative data anal-
ysis revealed the important roles of their regulons under
nitrogen-limiting conditions. To validate the extension of
regulon information for NtrC and Nac, regulon genes of
both TFs found in this study were compared to RegulonDB,
which is the primary database containing regulon informa-
tion for E. coli (64). About 95.3% of NtrC regulon genes
were found in RegulonDB, while only 16.5% of Nac regu-
lon genes were found (Supplementary Figure S11A). More-
over, iModulonDB, which is a data-driven bacterial TRN
knowledgebase using a machine learning algorithm (65),
was compared with both experimental regulons as well. In
both iModulons, 39 (90.7%) NtrC regulon genes out of 43
were found, and 21 (21.6%) out of 97 Nac regulon genes
were found (Supplementary Figure S11B). This result sug-
gests that the TF prediction workflow using the ME-model
successfully expanded knowledge of the Nac regulons acti-
vated under nitrogen limiting conditions.

Since the advent of the ChIP-exo method used in
prokaryotic studies (5,7,66,67) with better resolution than
other previously established ChIP methods, ChIP-exo made
it possible to measure accurate TF binding events. We also
observed unexpected binding of TFs and �-factors in non-
regulatory regions. Given the function of those proteins in
gene regulation, they are expected to bind onto regulatory
regions mostly near promoters to regulate the gene expres-
sion of target genes. It is commonly reported that TFs bind
on non-regulatory regions including those inside coding
regions. Similarly, a large number of unexpected bindings
for NtrC (4, 21%), Nac (281, 113%), RpoN (232, 152%),
and RpoD (461, 21%) were observed in non-regulatory re-
gions, respectively. Interestingly, Nac and RpoN showed
more bindings on non-regulatory regions than on regula-
tory regions. The non-regulatory bindings also have identi-
cal sequence motifs; however, they have significantly weaker
binding intensities (Supplementary Figure S3A, rank sum
test P-value < 0.05). The function or consequence of those
bindings is still elusive. There are some possible explana-
tions such as traces of evolution (1), regulation of antisense
transcripts, or multimeric binding onto genomic DNA
as nucleoid-associated proteins (NAPs) like lrp (68). For
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�-factors, some binding sites were observed in the coding
region associated with weaker transcription on the opposite
strand, indicating possible involvement in antisense tran-
scription. Further study is needed to understand the high
number of binding sites of Nac on non-regulatory regions.
It could simply be evolutionary effect, or Nac may work as
an NAP as well.

The role of the Nac regulon was extended by combining
ChIP-exo binding profiles of Nac and expression profiles of
the nac knock-out strain under nitrogen limitation. 26 out
of 32 genes from Zimmer et al. (30) were matched to the
Nac regulon found in this study and the role of Nac also
coincides (Supplementary Table S6). This network level re-
construction of the Nac regulon increased from 26 to 97
under nitrogen-limiting conditions. Moreover, a compari-
son of our study with a recent study on the identification
of the binding sites using ChIP-seq with artificial induction
of Nac showed that the binding sites of 88 out of 97 Nac
regulons found in this study were overlapping (32) (Sup-
plementary Table S6). However, only 13 of 34 overlapping
regulon genes were regulated by Nac in the same repressive
or activating way (Absolute LFC > 1). This result demon-
strated that physical induction caused by nitrogen-limiting
stress changed the TRN of Nac. Therefore, in this study, we
proposed an extended and comprehensively reconstructed
TRN of Nac in response to nitrogen limitation.

Furthermore, this study investigated coupling between
nitrogen and carbon metabolism. Under nitrogen limita-
tion conditions, the low concentration of intracellular am-
monium ions in E. coli reduces glutamate biosynthetic flux.
As the reaction consumes ɑ-ketoglutarate and ammonium
ions, the decreased consumption of TCA intermediates
leads to the accumulation of intracellular ɑ-ketoglutarate.
It was reported that accumulated ɑ-ketoglutarate directly
blocks glucose uptake by inhibiting the first step of the
PTS, resulting in adenylate cyclase (CyaA) deactivation
and subsequent intracellular cyclic-AMP (cAMP) deple-
tion (57,69,70) (Supplementary Figure S12). The decreased
cAMP level reduces the formation of the CRP-cAMP
complex, which downregulates important target genes for
cell growth under nitrogen limitation conditions (58). In
this study, Nac was found to not only repress glutamine-
consuming genes but also play a role in restoring the re-
duced expression of the TCA cycle. Thus, this study revealed
one molecular mechanism through which coupling between
nitrogen and carbon metabolism is implemented, mediated
by Nac.

Model-based analysis provided more insight into how
Nac-mediated metabolic coupling can respond differently
on different nitrogen sources. Genome-scale models have
been previously used to analyze cellular responses to en-
vironmental stimuli (8,71,72). Therefore, in addition to us-
ing modeling to guide experimental design, the iML1515
model was exploited to assess the broader physiological role
of the Nac regulon. As nitrogen availability for each condi-
tion was provided based on the uptake prediction of nitro-
gen source, these uptake rates were used to determine quan-
titative changes in flux through pathways associated with
glutamate biosynthesis from model-based simulation in re-
sponse to alternative nitrogen sources. Lower flux of gluta-
mate biosynthesis under nitrogen limitation conditions in-

dicated the accumulation of ɑ-ketoglutarate might be accel-
erated. Additionally, it is observed that fluxes through ma-
jor pathways on carbon metabolism are different depending
on which nitrogen sources were used. For example, despite
the lowest glucose uptake rate, additional carbon flux from
cytidine went the pentose phosphate pathway and increased
glycolysis and TCA cycle when using cytidine as the sole
nitrogen source than when using cytosine. This provided
insight into the lower activity of Nac on cytidine. More
broadly, computations with metabolic models predict that
other organic nitrogen sources, which contain carbon as
well can influence flux through carbon metabolism. This re-
veals the distinguished importance of the roles of Nac given
the interplay of carbon and nitrogen metabolism. Response
to nitrogen limitation requires not only response in nitro-
gen metabolism, essentially regulated by NtrC, but also a
response in carbon metabolism to rebalance the flux in the
TCA cycle, which is partially regulated by Nac.

Additionally, the three-dimensional structures of the
TFs, sigma factors, and complex structures were predicted
by AlphaFold pipeline with with high pLDDT average
scores (Supplementary Figure S13). However, the protein-
protein interactions between TFs and sigma factors (NtrC
and RpoN, Nac and RpoD), which were expected to elu-
cidate the mechanistic details of how both TFs recruit
or block sigma factors, could not be predicted with an
AlphaFold-multimer.

In conclusion, M and ME-model-driven experimental
design proved effectiveness in determining activation con-
ditions for regulatory TFs in nitrogen metabolism. Further-
more, the definition of NtrC and Nac regulons with flux
prediction from a bacterial metabolic network model deci-
phered contrasting role of these regulons, emphasizing the
unexpected role of Nac in the coupling of nitrogen and
carbon metabolism. These results suggest that integration
of model-based simulation and genome-wide experimen-
tal measurements can be leveraged as a new dimension of
systems approaches to transcriptional regulatory network
study, allowing better understanding by complementarily
providing integrative synergistic effect of each approach.

DATA AVAILABILITY

The whole dataset of ChIP-exo and RNA-seq has been de-
posited to GEO (https://www.ncbi.nlm.nih.gov/geo/) with
the accession number of GSE54905. Scripts for genome-
scale metabolic models, which are used to predict nitro-
gen uptake and to simulate constraint-based models us-
ing HPLC for extracellular metabolites concentration, are
freely available at the public GitHub repository (https://
github.com/SBML-Kimlab/Nitrogen GSM) and on Zen-
odo at https://doi.org/10.5281/zenodo.7508655.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.

ACKNOWLEDGEMENTS

We thank Aarash Bordbar for the discussion on interpre-
tation of model-based simulation and Zak King for help-
ing with the visualization of metabolic flux states. We thank

https://www.ncbi.nlm.nih.gov/geo/
https://github.com/SBML-Kimlab/Nitrogen_GSM
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad006#supplementary-data


NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1 15

Hoa Thi Le for the construction of deletion mutant for E.
coli strains. And we also thank Marc Abrams for helpful
assistance in writing and editing the manuscript.
Author contributions: J.Y.P., D.K., A.E. and B.O.P. con-
ceived the study. J.Y.P., D.K. and S.W.S. performed exper-
iments. J.Y.P., D.K., A.E. and J.K. performed the com-
putational analysis. B.O.P. supervised the study. J.Y.P.,
S.M.L., D.K., A.E., Z.K.S.N., J.K., A.S., S.W.S. and B.O.P.
wrote the manuscript. All authors helped edit the final
manuscript.

FUNDING

National Research Foundation of Korea (NRF)
funded by the Ministry of Science and ICT (MSIT)
[2021M3A9I4024840, 2022M3A9I5018934]; UNIST Cen-
ter for Waste Plastics Carbon Cycling (UWCC) funded by
the Circle Foundation, Republic of Korea; Novo Nordisk
Foundation (NNF) Center for Biosustainability at the
Danish Technical University; NIH NIGMS (National In-
stitute of General Medical Sciences) [5R01GM057089-19,
GM102098].
Conflict of interest statement. None declared.

REFERENCES
1. Shimada,T., Ishihama,A., Busby,S.J. and Grainger,D.C. (2008) The

Escherichia coli RutR transcription factor binds at targets within
genes as well as intergenic regions. Nucleic Acids Res., 36, 3950–3955.

2. Myers,K.S., Yan,H., Ong,I.M., Chung,D., Liang,K., Tran,F.,
Keles,S., Landick,R. and Kiley,P.J. (2013) Genome-scale analysis of
escherichia coli FNR reveals complex features of transcription factor
binding. PLoS Genet., 9, e1003565.

3. Park,D.M., Akhtar,M.S., Ansari,A.Z., Landick,R. and Kiley,P.J.
(2013) The bacterial response regulator ArcA uses a diverse binding
site architecture to regulate carbon oxidation globally. PLos Genet.,
9, e1003839.

4. Cho,B.K., Knight,E.M. and Palsson,B.O. (2006) Transcriptional
regulation of the fad regulon genes of Escherichia coli by ArcA.
Microbiology, 152, 2207–2219.

5. Kim,D., Seo,S.W., Gao,Y., Nam,H., Guzman,G.I., Cho,B.-K. and
Palsson,B.O. (2018) Systems assessment of transcriptional regulation
on central carbon metabolism by Cra and CRP. Nucleic Acids Res.,
46, 2901–2917.

6. Seo,S.W., Kim,D., O’Brien,E.J., Szubin,R. and Palsson,B.O.J.N.c.
(2015) Decoding genome-wide GadEWX-transcriptional regulatory
networks reveals multifaceted cellular responses to acid stress in
Escherichia coli. Nat. Commun., 6, 7970.

7. Seo,S.W., Kim,D., Latif,H., O’Brien,E.J., Szubin,R. and
Palsson,B.O.J.N.c. (2014) Deciphering fur transcriptional regulatory
network highlights its complex role beyond iron metabolism in
Escherichia coli. Nat. Commun., 5, 4910.

8. Federowicz,S., Kim,D., Ebrahim,A., Lerman,J., Nagarajan,H.,
Cho,B.-k., Zengler,K. and Palsson,B.J.P.g. (2014) Determining the
control circuitry of redox metabolism at the genome-scale. PLoS
Genet., 10, e1004264.

9. Covert,M.W., Knight,E.M., Reed,J.L., Herrgard,M.J. and
Palsson,B.O.J.N. (2004) Integrating high-throughput and
computational data elucidates bacterial networks. Nature., 429,
92–96.

10. Feist,A.M. and Palsson,B.Ø.J.N.b. (2008) The growing scope of
applications of genome-scale metabolic reconstructions using
Escherichia coli. Nat. Biotechnol., 26, 659–667.

11. Bordbar,A., Monk,J.M., King,Z.A. and Palsson,B.O.J.N.R.G. (2014)
Constraint-based models predict metabolic and associated cellular
functions. Nat. Rev. Genet., 15, 107–120.

12. O’Brien,E.J., Monk,J.M. and Palsson,B.O.J.C. (2015) Using
genome-scale models to predict biological capabilities. Cell., 161,
971–987.

13. McCloskey,D., Palsson,B.Ø. and Feist,A.M.J.M.s.b. (2013) Basic and
applied uses of genome-scale metabolic network reconstructions of
Escherichia coli. Mol. Syst. Biol., 9, 661.

14. Thiele,I. and Palsson,B.Ø.J.N.p. (2010) A protocol for generating a
high-quality genome-scale metabolic reconstruction. Nat. Protoc., 5,
93–121.

15. Orth,J.D., Thiele,I. and Palsson,B.Ø. (2010) What is flux balance
analysis?. Nat. Biotechnol., 28, 245–248.

16. O’brien,E.J., Lerman,J.A., Chang,R.L., Hyduke,D.R. and
Palsson,B.Ø.J.M.s.b. (2013) Genome-scale models of metabolism and
gene expression extend and refine growth phenotype prediction. Mol.
Syst. Biol., 9, 693.

17. Lloyd,C.J., Ebrahim,A., Yang,L., King,Z.A., Catoiu,E., O’Brien,E.J.,
Liu,J.K. and Palsson,B.O. (2018) COBRAme: a computational
framework for genome-scale models of metabolism and gene
expression. PLoS Comput. Biol., 14, e1006302.

18. Du,B., Yang,L., Lloyd,C.J., Fang,X. and Palsson,B.O.J.P.c.b. (2019)
Genome-scale model of metabolism and gene expression provides a
multi-scale description of acid stress responses in Escherichia coli.
PLoS Comput. Biol., 15, e1007525.

19. Monk,J.M., Lloyd,C.J., Brunk,E., Mih,N., Sastry,A., King,Z.,
Takeuchi,R., Nomura,W., Zhang,Z. and Mori,H.J.N.b. (2017)
iML1515, a knowledgebase that computes Escherichia coli traits.
Nat. Biotechnol., 35, 904–908.

20. Orth,J.D., Conrad,T.M., Na,J., Lerman,J.A., Nam,H., Feist,A.M.
and Palsson,B.Ø.J.M.s.b. (2011) A comprehensive genome-scale
reconstruction of Escherichia coli metabolism––2011. Mol. Syst.
Biol., 7, 535.

21. Dahal,S., Zhao,J., Yang,L.J.B. and Engineering,B. (2020)
Genome-scale modeling of metabolism and macromolecular
expression and their applications. Biotechnol. Bioprocess Eng., 25,
931–943.

22. Garcia,E. and Rhee,S.G. (1983) Cascade control of Escherichia coli
glutamine synthetase. Purification and properties of PII
uridylyltransferase and uridylyl-removing enzyme. J. Biol. Chem.,
258, 2246–2253.

23. van Heeswijk,W.C., Hoving,S., Molenaar,D., Stegeman,B., Kahn,D.
and Westerhoff,H.V. (1996) An alternative PII protein in the
regulation of glutamine synthetase in Escherichia coli. Mol.
Microbiol., 21, 133–146.

24. Blauwkamp,T.A. and Ninfa,A.J. (2002) Physiological role of the
GlnK signal transduction protein of Escherichia coli: survival of
nitrogen starvation. Mol. Microbiol., 46, 203–214.

25. Vasudevan,S.G., Gedye,C., Dixon,N.E., Cheah,E., Carr,P.D.,
Suffolk,P.M., Jeffrey,P.D. and Ollis,D.L. (1994) Escherichia coli PII
protein: purification, crystallization and oligomeric structure. FEBS
Lett., 337, 255–258.

26. Liu,J. and Magasanik,B. (1995) Activation of the dephosphorylation
of nitrogen regulator I-phosphate of Escherichia coli. J. Bacteriol.,
177, 926–931.

27. Atkinson,M.R., Blauwkamp,T.A. and Ninfa,A.J. (2002)
Context-dependent functions of the PII and GlnK signal
transduction proteins in Escherichia coli. J. Bacteriol., 184,
5364–5375.

28. van Heeswijk,W.C., Wen,D., Clancy,P., Jaggi,R., Ollis,D.L.,
Westerhoff,H.V. and Vasudevan,S.G. (2000) The Escherichia coli
signal transducers PII (GlnB) and GlnK form heterotrimers in vivo:
fine tuning the nitrogen signal cascade. Proc. Natl. Acad. Sci. U.S.A.,
97, 3942–3947.

29. Javelle,A., Severi,E., Thornton,J. and Merrick,M.J.J.o.B.C. (2004)
Ammonium sensing in Escherichia coli: role of the ammonium
transporter AmtB and AmtB-GlnK complex formation. J. Biol.
Chem., 279, 8530–8538.

30. Zimmer,D.P., Soupene,E., Lee,H.L., Wendisch,V.F.,
Khodursky,A.B., Peter,B.J., Bender,R.A. and Kustu,S.J.P.o.t.N.A.o.S.
(2000) Nitrogen regulatory protein C-controlled genes of Escherichia
coli: scavenging as a defense against nitrogen limitation. Proc. Natl.
Acad. Sci. U.S.A., 97, 14674–14679.

31. Brown,D.R., Barton,G., Pan,Z., Buck,M. and
Wigneshweraraj,S.J.N.c. (2014) Nitrogen stress response and stringent
response are coupled in Escherichia coli. Nat. Commun., 5, 4115.

32. Aquino,P., Honda,B., Jaini,S., Lyubetskaya,A., Hosur,K., Chiu,J.G.,
Ekladious,I., Hu,D., Jin,L. and Sayeg,M.K.J.B.s.b. (2017)
Coordinated regulation of acid resistance in Escherichia coli. 11, 1.



16 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1

33. Brown,D.R., Barton,G., Pan,Z., Buck,M. and Wigneshweraraj,S.
(2014) Nitrogen stress response and stringent response are coupled in
Escherichia coli. Nat. Commun., 5, 4115.

34. Rodionova,I., Gao,Y., Sastry,A., Hefner,Y., Lim,H., Rodionov,D.,
Saier,M. and Palsson,B. (2021) Identification of a transcription
factor, PunR, that regulates the purine and purine nucleoside
transporter punC in E. coli. Commun. Biol., 4, 991.

35. Camarena,L., Poggio,S., Garcia,N. and Osorio,A. (1998)
Transcriptional repression of gdhA in Escherichia coli is mediated by
the Nac protein. FEMS Microbiol. Lett., 167, 51–56.

36. Muse,W.B. and Bender,R.A. (1998) The nac (nitrogen assimilation
control) gene from Escherichia coli. J. Bacteriol., 180, 1166–1173.

37. Rhee,H.S. and Pugh,B.F. (2012) ChIP-exo method for identifying
genomic location of DNA-binding proteins with
near-single-nucleotide accuracy. Curr. Protoc. Mol. Biol., Chapter 21,
Unit 21.24.

38. Keseler,I.M., Mackie,A., Peralta-Gil,M., Santos-Zavaleta,A.,
Gama-Castro,S., Bonavides-Martı́nez,C., Fulcher,C., Huerta,A.M.,
Kothari,A. and Krummenacker,M.J.N.a.r. (2013) EcoCyc: fusing
model organism databases with systems biology. Nucleic Acids Res.,
41, D605–D612.

39. Cho,B.K., Knight,E.M. and Palsson,B.O. (2006) PCR-based tandem
epitope tagging system for Escherichia coli genome engineering.
BioTechniques, 40, 67–72.

40. Datta,S., Costantino,N. and Court,D.L.J.G. (2006) A set of
recombineering plasmids for gram-negative bacteria. Gene., 379,
109–115.

41. Kim,D., Hong,J.S.-J., Qiu,Y., Nagarajan,H., Seo,J.-H., Cho,B.-K.,
Tsai,S.-F. and Palsson,B.Ø. (2012) Comparative analysis of regulatory
elements between Escherichia coli and Klebsiella pneumoniae by
genome-wide transcription start site profiling. PLoS Genet., 8,
e1002867.

42. Powell,B.S., Court,D.L., Inada,T., Nakamura,Y., Michotey,V.,
Cui,X., Reizer,A., Saier,M.H. Jr and Reizer,J. (1995) Novel proteins
of the phosphotransferase system encoded within the rpoN operon of
Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen
and the conditional lethality of an erats mutant. J. Biol. Chem., 270,
4822–4839.

43. Cho,B.K., Kim,D., Knight,E.M., Zengler,K. and Palsson,B.O. (2014)
Genome-scale reconstruction of the sigma factor network in
Escherichia coli: topology and functional states. BMC Biol., 12, 4.

44. Levin,J.Z., Yassour,M., Adiconis,X., Nusbaum,C., Thompson,D.A.,
Friedman,N., Gnirke,A. and Regev,A. (2010) Comprehensive
comparative analysis of strand-specific RNA sequencing methods.
Nat. Methods, 7, 709–715.

45. Langmead,B., Trapnell,C., Pop,M. and Salzberg,S.L. (2009) Ultrafast
and memory-efficient alignment of short DNA sequences to the
human genome. Genome Biol., 10, R25.

46. Bailey,T.L., Boden,M., Buske,F.A., Frith,M., Grant,C.E.,
Clementi,L., Ren,J., Li,W.W. and Noble,W.S. (2009) MEME SUITE:
tools for motif discovery and searching. Nucleic Acids Res., 37,
W202–W208.

47. Love,M.I., Huber,W. and Anders,S.J.G.b. (2014) Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol., 15, 550.

48. Ebrahim,A., Lerman,J.A., Palsson,B.O. and Hyduke,D.R.J.B.s.b.
(2013) COBRApy: constraints-based reconstruction and analysis for
Python. BMC Syst. Biol., 7, 74.

49. Schellenberger,J. and Palsson,B.Ø.J.J.o.b.c. (2009) Use of randomized
sampling for analysis of metabolic networks. J. Biol. Chem., 284,
5457–5461.

50. Jumper,J., Evans,R., Pritzel,A., Green,T., Figurnov,M.,
Ronneberger,O., Tunyasuvunakool,K., Bates,R., Žı́dek,A. and
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