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Postharvest losses of cut flowers is one of the considerable challenges restricting their efficient mar-
ketability. Consequently, such challenges have triggered a constant hunt for developing compatible
postharvest treatments to mitigate postharvest losses. Interestingly, recent studies entrench extensive
role of salicylic acid (SA) in mitigating postharvest losses in various flower systems. The current investi-
gation focusses on role of SA in augmenting physiological and biochemical responses to mitigate posthar-
vest senescence in cut spikes of Consolida ajacis. The cut spikes of C. ajacis were supplemented with
various SA treatments viz, 2 mM, 4 mM, 6 mM. The effects of these treatments were evaluated against
control set of spikes placed in distilled water. Our study indicates considerable increment in postharvest
longevity of cut spikes, besides an increase in solution uptake, sugar and protein content of tepal tissues.
SA augmented antioxidant system via upsurge in phenolic content and antioxidant enzymes viz, super-
oxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) to forfend reactive oxygen species
(ROS) related oxidative damage. SA profoundly reduced lipoxygenase (LOX) activity to preserve the mem-
brane integrity and thus prevented seepage of solutes from tepal tissues. These results authenticate SA
particularly 4 mM concentration as effective postharvest treatment to preserve the postharvest quality
of C. ajacis cut spikes.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Postharvest senescence is a crucial factor afflicting the mar-
ketability of cut flowers (Babarabie, 2018). Consequently, quality
preservation of cut flowers is arguably an ongoing challenge for
florists (Schroeder and Stimart, 2005). The key factors provoking
postharvest senescence include depletion of carbohydrates,
increase in temperature and respiration rates, microbial interfer-
ence, water stress and ethylene sensitivity (Gupta and Dubey,
2018). Instigation of postharvest senescence adversely affects var-
ious physiological and biochemical attributes resulting in water
loss from the senescing tissue, ion leakage, upsurge in ROS, alter-
ation in membrane fluidity, nucleic acids breakdown, decline in
carbohydrates and proteins (Lone et al., 2021). Flower longevity
is an important quality attribute determining the customer satis-
faction and market value of cut flowers (Vehniwal and Abbey,
2019). Therefore, optimization of suitable postharvest treatments
to improve flower longevity demands a critical attention (Nguyen
et al., 2020). C. ajacis is an exquisite ornamental plant producing
entrancing spikes of different hues and colors. It is highly sensitive
to ethylene which provokes senescence of its cut spikes (Shahri
et al., 2011). Visible signs of postharvest senescence in C. ajacis
flowers include wilting followed by abscission of tepals. Earlier
studies indicate the use of several anti-ethylene treatments in
combating postharvest senescence in cut spikes of C. ajacis
(Shahri and Tahir, 2010), yet the efficacy of salicylic acid (SA) has
not been reconnoitered in improving postharvest longevity in cut
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spikes of C. ajacis. SA is a phenolic compound occurring ubiqui-
tously in plants (Singh et al., 2018). It is widely used plant growth
regulator which is also effective in other forms in plants such as
acetyl salicylic acid and methyl salicylate (Heidarnezhadian et al.,
2017). It is synthesized in plants via shikimate pathway by two
metabolic routes viz, phenylalanine route and isochorismate
route. Phenylalanine pathway operates in cytolplasm while as iso-
chorismate pathway operates in chloroplast (Sharma et al., 2020).
It mediates defense response in plants and regulates various phys-
iological processes like seed germination, crop yield, plant growth,
photosynthetic efficiency, senescence and flowering (Handa et al.,
2017; Hernández et al., 2017; Ahmad et al., 2018). SA not only con-
fers resistance against biotic stress but also provides tolerance
against various types of abiotic stresses through osmolite accumu-
lation, synthesis of secondary metabolites, increasing activity of
ROS scavenging enzymes, regulation of other hormonal pathways
and mineral uptake (Kohli et al., 2018a,b, 2019; Kaya et al.,
2020a,b; Koo et al., 2020). Over the recent years, SA has gained
increasing interest due to its role in postharvest quality mainte-
nance of fruits and vegetables (Shabanian et al., 2019). Owing to
its potential role as postharvest preservative, SA has also been
reported to improve longevity in flowers like, Rosa hybrida, Dia-
nthus caryophyllus, Lilium pumilum and Chrysanthemum (Phi et al.,
2021). SA has been implicated in suppression of ethylene biosyn-
thesis by impeding conversion of ACC to ethylene (Hassan and
Ali, 2014) which otherwise trigger surge in ROS and provoke senes-
cence. It also counteracts oxidative stress through upsurge in
antioxidant enzyme activity viz., CAT, SOD, POD and APX and thus
curtail lipid peroxidation to prevent membrane outpouring of petal
tissues (Tareen et al., 2012; Ahmad et al., 2011; Ahanger et al.,
2020; Kaya et al., 2020a, b). Moreover, SA has been found to mod-
ulate senescence in Nicotiana plumbaginifolia by improving sugar
and protein content of petal tissues (Nisar et al., 2021). In view
of multifaceted implications of SA in senescence regulation, the
current investigation was undertaken to explicate the efficacy of
SA in alleviating postharvest losses in cut spikes of C. ajacis to ame-
liorate their display life.
2. Material methods

2.1. Plant material

In our study C. ajacis spikes were obtained from experimental
plots at commercial maturity and transported to laboratory in
water filled bucket. Each spike was defoliated and excised to
30 cm length under water to prevent vascular occlusion. The pro-
cessed spikes were put in 100 ml Erlenmeyer flasks containing
SA test solutions with different concentrations viz., 2 mM, 4 mM
and 6 mM. The effect of these treatments was evaluated against
control set of spikes held in distilled water. All the treatments as
well as control comprised of 10 flasks (replicates). After standard-
ization, 4 mM SA, was found to be optimum concentration in
improving various postharvest attributes. SA concentrations above
6 mM were found to be toxic provoking early senescence. The dif-
ferent biochemical assays were performed by randomly selecting
open flowers from each treatment at different time intervals (day
2nd and day 5th). The day of transfer of C. ajacis spikes to test solu-
tions was designated as day zero. The treatment effects were
observed by keeping the spikes in laboratory under 12 h light per-
iod per day, at a temperature of 25 ± 2 �C and RH of 60 ± 10 %.
2.2. Postharvest longevity and floral diameter

Postharvest longevity of C. ajacis spikes was calculated from day
1 of transfer to test solutions till senescence of 70% florets on each
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spike. During the study, the floral diameter was estimated as mean
of two perpendicular distances across a flower at different time
intervals.

2.3. Membrane stability index (MSI)

The membrane stability index was measured by Sairam’s
method 1994. It was estimated as leakage of electrolytes from
the sample tissues. The formula for calculation of MSI is given as;

Where C1 & C2 represent the tissue samples incubated at 25 �C
and 100 �C respectively in deionized water.

MSI ¼ ½1� C1=C2� � 100
2.4. Bacterial density and solution uptake

The bacterial contamination of holding solutions was estimated
by Naing et al. (2017), using UV–VIS spectrophotometer. The bac-
terial density was expressed as cfu ml�1. Solution uptake (ml) was
measured as the difference between the total volume of vase solu-
tion and solution left in the vases after the senescence of spikes.

2.5. Protein quantification method

Protein content of the sample tissue was quantified according to
Lowry et al. (1951) method using bovine serum albumin as a
standard.

2.6. Sugar and phenol quantification method

For estimation of sugars and phenols 1 g of tepal tissue was
taken from each treatment and fixed in 70% boiling ethanol. This
tissue was later mashed and centrifuged. After centrifugation suit-
able volume of supernatant was taken for estimation of sugars and
phenols. The amount of reducing sugars in sample tissues was
quantified by following a procedure elaborated by Nelson (1944).
Total sugars were estimated by converting non-reducing sugars
to reducing sugars using invertase. The quantity of non-reducing
sugars was obtained as difference between total sugars and reduc-
ing sugars. Phenols were quantified by a method described by
Swain and Hillis (1959) using gallic acid as standard.

2.7. Quantification of antioxidant enzymes

2.7.1. Superoxide dismutase
Superoxide dismutase activity was determined by Dhindsa et al.

(1981) method and the activity of enzyme was expressed as units
min�1 mg�1 protein.

2.7.2. Ascorbate peroxidase
Ascorbate peroxidase activity of tepal tissues was estimated by

following Chen and Asada (1989) protocol. The units of APX activ-
ity were expressed as units min�1 mg�1 protein.

2.7.3. Catalase
The activity of catalase enzyme was quantified as consumption

of H2O2 at 240 nm for 3 min as described by Aebi (1984) method.
The units of enzyme activity were expressed as units min�1 mg�1

protein.

2.7.4. Lipoxygenase
Lipoxygenase activity of the tepal tissues was estimated by

Axelrod et al. (1981) method and was expressed as lmol. min�1

mg�1 protein.
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2.8. Layout of the experiment and statistical analysis of the data

Complete randomized design was followed during the experi-
ment and ANOVA was used to compare the treatment means (anal-
ysis of variance). Each value is obtained as mean of three biological
replicates. Treatments were considered significant at (p < 0.05)
according to Duncan’s multiple range test. SPSS software was used
for statistical analysis of the data.
3. Results

3.1. Postharvest longevity and floral diameter

Postharvest longevity was profoundly accentuated in all SA
treatments as compared to control Fig. 1. The maximum increase
in postharvest longevity (80%) was observed in 4 mM SA treatment
Fig. 2A. In addition to postharvest longevity the flower diameter
also exhibited maximum increase (17.24 %) at 4 mM SA. However
with the progression of time, a marginal decrease was recorded in
flower diameter as revealed by day 5th analysis. Fig. 2B.
3.2. Bacterial density and solution uptake

SA treatments improved the solution uptake in C. ajacis cut
spikes by reducing the bacterial density in holding solutions as
depicted in Fig. 3A-B.Minimum bacterial density was recorded in
4 mM SA treatments. Bacterial density decreased by 32.6% in
4 mM SA solutions while as, solution uptake of spikes held in this
solution was increased by 150.15%. Highest bacterial density was
observed in control treatments while as lowest bacterial density
was recorded in SA treatments. However, at day 5, the bacterial
density was found to increase both in control and SA treatments
but increase in bacterial density was found to be much higher in
control as compared to SA treatments.
Fig. 1. (A-D). Postharvest longevity C. ajacis cut spikes as affected by application of di
experiment.
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3.3. Membrane stability index and lipoxygenase activity

During the current study, SA maintained the membrane stabil-
ity of tepal tissues as compared to control by preventing mem-
brane lipid peroxidation through attenuation of LOX activity.
Among the range of treatments, MSI values increased by 80.32%
in 4 mM SA treatment while as, LOX activity decreased by 70.4 %
in these tepal tissues. However, MSI values exhibited a declining
trend, while as LOX activity exhibited an increasing trend towards
the advanced phase of flower development as evident from the
second analysis carried on day 5th of the experiment Fig. 4A-B.

3.4. Soluble proteins

Decrease in soluble protein content of tepal tissues due to
upregulation of protease activity marks the key feature of petal
senescence. However, during the present investigation soluble pro-
teins were found to be in higher concentration in SA treated tepal
tissues as compared to control. Among the different SA treatments,
highest increase in soluble proteins (42.4%) was found in tepal tis-
sues treated with 4 mM SA. Moreover, Protein content of tepal tis-
sues gradually declined towards the end stage of experiment Fig. 5.

3.5. Sugar and phenolic content

Exogenous inclusion of SA resulted in significant upsurge in
sugar and phenolic content of tepal tissues in comparison to con-
trol. Maximum enrichment of sugars (27.27%) and phenols
(62.5%) was stimulated by 4 mM SA as signposted in Fig. 6A-D.
The phenolic content increased by two fold as compared to sugars.
On the contrary, both sugar and phenolic content declined with the
passage of time from day 2 to day 5.

3.6. Antioxidant enzymes

The activity of antioxidant enzymes like CAT, APX and SOD was
profoundly upregulated in SA treated tepal tissues as compared to
fferent SA treatments on day 0th(a), day 2th (b), day 5th (c) and day 11th (d) of



Fig. 2. (A-B). Variation in postharvest longevity (A) and floral diameter (B) of C. ajacis cut spikes at different time intervals in response to application of different SA
treatments. Data are represented as mean of 3 replicates ± S.E. Different letters above the error bars indicate significant differences between different treatments as
determined by Duncan’s test.

Fig. 3. Variation in Bacterial density (A) and solution uptake (B) of C. ajacis cut spikes at different time intervals in response to application of different SA treatments. Data are
represented as mean of 3 replicates ± S.E. Different letters above the error bars indicate significant differences between different treatments as determined by Duncan’s test.

Fig. 4. Variation in LOX activity (A) and membrane stability index (B) of C. ajacis cut spikes at different time intervals in response to application of different SA treatments.
Data are represented as mean of 3 replicates ± S.E. Different letters above the error bars indicate significant differences between different treatments as determined by
Duncan’s test.
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Fig. 5. Variation in soluble protein content of C. ajacis cut spikes at different time
intervals in response to application of different SA treatments. Data are represented
as mean of 3 replicates ± S.E. Different letters above the error bars indicate
significant differences between different treatments as determined by Duncan’s
test.
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control. The peak in antioxidant enzyme activity was recorded in
flower tissues held in 4 mM SA. The increase in SOD, CAT and
APX enzymes was about 74.19%, 287%, 464% respectively. However
the enzymatic activity decreased with onset of senescence in tepal
tissues towards the end phase of experiment. Fig. 7A-C.
Fig. 6. Variation in total sugar (A), reducing sugar (B), non-reducing sugars (C) and ph
application of different SA treatments. Data are represented as mean of 3 replicates ±
different treatments as determined by Duncan’s test.
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4. Discussion

Postharvest longevity of cut flowers is one of the key issues
challenging the progress and development of floriculture industry
(Hussen and Yassin, 2013). Moreover, cut flowers act as an expedi-
ent and realistic experimental system for understanding flower
senescence. Clipping of cut flowers from their mother plant
deprives them from incessant supply of water and nutrients
(Patel et al., 2018). Hence, inclusion of postharvest treatments is
essential for their prolonged survival (Nair et al., 2006). In our
study, exogenous inclusion of SA considerably delayed the posthar-
vest senescence in cut spikes of C. ajacis. Increase in postharvest
longevity due to SA application has also been reported in Alstrome-
ria peruviana, Gerbera jamesonii, Lillium asiaticum, Rosa hybrida and
Polianthes tuberose (Bayat and Aminifard, 2017). Postharvest senes-
cence is triggered by water loss and reduced water uptake owing to
bacterial xylem occlusion (van Meeteren, 1981). Our results indi-
cate maximum solution uptake and reduced bacterial count in SA
containing solutions as compared to control. The increased solu-
tion uptake may be attributed to germicidal activity of SA, which
can prevent the vascular blockage by suppressing bacterial prolif-
eration thereby, maintaining continuous flux through xylem ves-
sels (Singh et al., 2018). Moreover, SA fosters stomatal closure to
slow down respiratory rate and to prevent water loss through tran-
spiration (Hatamzadeh et al., 2012). Besides postharvest longevity,
floral diameter also exhibited a marginal increase by SA applica-
tion. The increase in floral diameter may be ascribed to increased
solution uptake which maintains the turgidity of the petal tissues
and preserves display quality of cut flowers (Bayat and
Aminifard, 2017). Furthermore, SA has been implicated in suppres-
enolic content (D) of C. ajacis cut spikes at different time intervals in response to
S.E. Different letters above the error bars indicate significant differences between



Fig.7. Variation in SOD (A) CAT (B) APX (C) activity of C. ajacis cut spikes in response to application of different SA treatments. Data are represented as mean of 3 replicates ± S.
E. Different letters above the error bars indicate significant differences between different treatments as determined by Duncan’s test.
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sion of ethylene production which might prevent onset of senes-
cence as observed in Companula and Rosa (Bahrami et al., 2013).

Proteolysis is the hallmark of petal senescence as recognized in
various flower systems such as Petunia, Rosa, Iris, Dianthus, Heme-
rocallis, Sandersonia and Gladiolus (Tripathi et al., 2009). During
the current investigation SA treated spikes maintained higher con-
centration of soluble proteins in tepal tissues as compared to con-
trol. Reportedly, SA functions as protease inhibitor to attenuate
proteolysis and maintains higher concentration of proteins in petal
tissues (Kant and Arora, 2012). Higher protein content was corre-
lated with the prolonged vaselife of various flowers like Rosa and
Calendula (Farshid et al., 2012; Lone et al., 2021). Proteins are also
metabolized as alternate respiratory substrates to circumvent
sugar starvation (Hirota et al., 2018). Furthermore, protein accu-
mulation activates stress-related defense mechanisms by aug-
menting antioxidant enzyme activity and stimulating stress-
specific protein synthesis, to improve postharvest longevity
(Doganlar et al., 2010; Promyou et al., 2012).

Membrane outpouring is inversely related to flower longevity.
It is a key indicator signaling the onset of senescence (Khandan-
Mirkohi et al., 2021). Our study revealed, higher values of MSI in
SA treated tepal tissues as compared to control. These values cor-
responded to lower LOX activity. SA preserves membrane consis-
tency by impairing LOX activity through conversion of LOX-Fe+3

to LOX-Fe+2 (Lapenna et al., 2009). Increase in lipoxygenase activity
prompts breakdown of membrane lipids and alters membrane
integrity (Shabanian et al., 2019). SA has been found to extend
the vase life in various flowers like Rosa, Lisianthus and Chrysanthe-
mum by preserving membrane integrity (Gerailoo and
Ghasemnezhad, 2011; Bahrami et al., 2013; Balieiro et al., 2018).
Moreover, SA masks free radical production which otherwise trig-
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ger peroxidation of lipids and impairs synthesis of cell membrane
macromolecules and cytoplasm (Rao et al., 1997; El-Tayeb et al.,
2006).

SA treated spikes exhibited profound phenolic enrichment in
the tepal tissues as compared to untreated ones. SA augments
PAL (phenyl ammonia lyase) activity coupled with decrease in
PPO activity (Polyphenol oxidase), which causes phenolic accumu-
lation and preserves quality of cut products by preventing oxida-
tion of phenolic compounds which otherwise cause browning of
fruits, cut flowers and vegetables (Wei et al., 2011; Siddiqui
et al., 2016; Shabanian et al., 2019). Phenolic enrichment reinforces
antioxidant defense mechanisms and prevents flowers from oxida-
tive stress through scavenging of free radicals (Ahmad and Tahir,
2017). Moreover, SA treatments can be suggested as relevant
approach to improve floral vase life by reinforcing antioxidant sys-
tem as observed in various flower systems such as Lisianthus, Petu-
nia and Rosa (Ghadimian and Danaei, 2016; Nisar et al., 2018;
Pourzarnegar et al., 2020). Thus, in the light of our findings
decrease in phenolic content can be suggested as a driving force
for senescence instigation in cut spikes of C. ajacis due to impaired
antioxidant activity.

Excision of flowers from the mother plant causes a decrease in
concentration of sugars due to interruption of nutrient supply,
which negatively affects flower longevity (Gómez-Merino et al.,
2020). Pertinently, inclusion of SA in the holding solutions reduced
the carbohydrate starvation and improved the sugar content in
tepal tissues of C. ajacis. Maintenance of higher sugar content in
C. ajacis tepal tissues can be correlated with their prolonged vase
life as observed in Petunia hybrida and Gerbera jasmonii (Nisar
et al., 2018; Hemati et al., 2019). Moreover, higher sugar content
in C. ajacis tepal tissues may be ascribed to increase in solution
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uptake and sugar translocation by SA which foster accumulation of
more resources thereby, maintaining petal turgidity due to opti-
mum water content and delay senescence as observed in Gladiolus
flowers (Ezhilmathi et al., 2007; Saeed et al., 2016). Sugars serve as
osmoticum to regulate osmotic changes, maintain membrane
integrity and counteract ROS against different types of stresses
(Keunen et al., 2013; Singh et al., 2015). Also, sugars induce synthe-
sis of anthocyanins responsible for petal coloration and hence
improve flower quality. Decrease in carbohydrates lead to undesir-
able color changes and ultimately increases susceptibility to
microorganisms (Hemati et al., 2019).

Oxidative stress due to ROS accumulation is another key factor
affecting postharvest quality of flowers. Oxidative stress impairs
vital physiological functions and provokes flower senescence
(Arora et al., 2007). Petal tissues with attenuated antioxidant
enzyme activity (APX) exhibit early signs of senescence due to
ROS accumulation (Mittler et al., 2004; Saeed et al., 2014). Conse-
quently, elicitation of antioxidant machinery is a prerequisite con-
dition for mitigation of oxidative stress. In current investigation,
application of SA in holding solution augmented the activity of var-
ious antioxidant enzymes such as SOD, CAT and APX which act as
effective defense system against oxidative stress (Kohli et al.,
2018a,b, 2019; Kaya et al., 2020a,b; Ahanger et al., 2020). These
findings suggest the conspicuous role of SA in orchestrating antiox-
idant system and regulation of ROS levels in the cell as reported by
Khan et al. (2015). SAmediated surge in antioxidant enzymes (SOD,
CAT and APX) has also been reported in gerbera cultivars
(Shabanian et al., 2019). Moreover, upregulation in antioxidant
enzymes positively improve the postharvest longevity and preserve
floral quality as observed in Calendula flowers (Lone et al., 2021).
5. Conclusion and future prospects

In conclusion, our research authenticates SA as effective
postharvest treatment in alleviating postharvest senescence. Inclu-
sion of SA ameliorated postharvest longevity of C. ajacis spikes by
modulating physiological and biochemical attributes such as pro-
teins, sugars and antioxidant system. Moreover, the current
research offers an immense scope for molecular investigation to
dig out the expression patterns of various senescence associated
genes underlying the senescence of C. ajacis flowers. In addition,
understanding crosstalk of SA with other phytoharmones espe-
cially ethylene will unravel vast vistas of signaling networks
involved in regulation of senescence process. Together, these stud-
ies will bridge the knowledge gaps and enable us to formulate cost
effective and ecofriendly postharvest treatments for efficient mar-
keting of these cut spikes, which can have huge economic
implications.
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