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Abstract: Classical approaches in cluster analysis are typically based on a feature space analysis.
However, many applications lead to datasets with additional spatial information and a ground
truth with spatially coherent classes, which will not necessarily be reconstructed well by standard
clustering methods. Motivated by applications in hyperspectral imaging, we introduce in this
work clustering models based on Orthogonal Nonnegative Matrix Factorization (ONMF), which
include an additional Total Variation (TV) regularization procedure on the cluster membership
matrix to enforce the needed spatial coherence in the clusters. We propose several approaches with
different optimization techniques, where the TV regularization is either performed as a subsequent
post-processing step or included into the clustering algorithm. Finally, we provide a numerical
evaluation of 12 different TV regularized ONMF methods on a hyperspectral dataset obtained from
a matrix-assisted laser desorption/ionization imaging measurement, which leads to significantly
better clustering results compared to classical clustering models.

Keywords: orthogonal nonnegative matrix factorization; clustering; spatial coherence; hyperspectral
data; MALDI imaging

1. Introduction

Cluster analysis has been studied over the past fifty years in the machine learning
community and is one of the central topics in unsupervised learning with a wide range of
possible research directions and application fields, including image segmentation, docu-
ment clustering, and bioinformatics [1]. The general clustering problem is to partition a
given set of objects O into different groups, such that the objects within a group are more
similar to each other compared to the objects in other groups. One typical approach is
based on a feature space analysis. The basic concept is to assign to each object σ ∈ O a
feature vector xσ ∈ X containing the characteristics of σ, where X is a suitably defined
feature space. Furthermore, a similarity measure and a suitable minimization problem is
defined to introduce the notion of similarity between the feature vectors and to formulate
the clustering problem.

However, many types of datasets contain additional spatial information, which is
typically not used in a classical cluster analysis. Characteristic examples are images or,
more generally, hyperspectral datasets, where each measured spectrum is associated to a
point in a two- or three-dimensional space. Furthermore, many application fields, such
as mass spectrometry imaging or Earth remote sensing, naturally lead to datasets with
spatially coherent regions. Hence, a classical cluster analysis, which is entirely based on
a feature space analysis, does not lead necessarily to spatially coherent clusters and is,
therefore, not sufficient to reconstruct the coherent regions in these kind of data.

Hence, this work focuses on a combined clustering analysis, which takes into account
both the feature space and the spatial coherence of the clusters. We introduce numerous
clustering methods based on ONMF for general nonnegative datasets with spatial infor-
mation and include a TV regularization procedure to regularize the cluster membership

J. Imaging 2021, 7, 194. https://doi.org/10.3390/jimaging7100194 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0003-3424-8031
https://doi.org/10.3390/jimaging7100194
https://doi.org/10.3390/jimaging7100194
https://doi.org/10.3390/jimaging7100194
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7100194
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7100194?type=check_update&version=2


J. Imaging 2021, 7, 194 2 of 31

matrix to induce the needed spatial coherence. Furthermore, we discuss different opti-
mization techniques for the ONMF models and derive the corresponding minimization
algorithms. Finally, we perform a numerical evaluation on a mass spectrometry imaging
dataset acquired from a matrix-assisted laser desorption/ionization imaging measurement
of a human colon tissue sample and compare the proposed clustering methods to classical
ONMF approaches.

This paper is organized as follows. After a short description of the related work and
the used notation in Sections 1.1 and 1.2, we give a brief outline of the basics of ONMF
approaches, its relations to K-means clustering, and details on possible solution algorithms
in Section 2. In Section 3, we introduce the proposed methods in this work, which are
divided into so-called separated methods and combined methods. Section 4 is entirely
devoted to the numerical experiments and the evaluation of the discussed methods. Finally,
Section 5 concludes the findings and gives an outlook for future possible research directions.

1.1. Related Work

The natural relation between ONMF and clustering models is well studied. One of
the first theoretical analysis was provided by Ding et al. in Reference [2]. By comparing the
cost functions of different Nonnegative Matrix Factorization (NMF) and K-means models,
the authors could show in their work, for example, the strong relationship between K-
means clustering and ONMF with an orthogonality constraint on one of the factorization
matrices, as well as kernel K-means and symmetric ONMF. Furthermore, the connections
to spectral clustering and tri-factorizations were studied. Several works followed with a
similar theoretical emphasis on tri-factorizations [3] and multiple other NMF models [4].

The previous mentioned works focus on the theoretical side but also give some first
update rules to solve the corresponding ONMF problems. However, more work has been
done for the algorithm development. Many classical approaches are based on multiplica-
tive update rules [3,5–7]. More recent works are, for instance, based on nuclear norm
optimization [8], further multiplicative update schemes [9,10], hierarchical alternating least
squares [11–13], and proximal alternating linearized minimization [14], together with the
very recent work of Reference [15], EM, such as algorithms and augmented Lagrangian
approaches [16], deep neural networks [17], and other techniques [18,19]. Very recently,
Reference [20] developed a block coordinate descent-based projected gradient algorithm
specifically for solving ONMF problems. Regarding nonnegative matrix tri-factorizations,
the very recent work of Reference [21] introduces a block inertial Bregman proximal algo-
rithm for general nonsmooth and non-convex problems and applies it to the application
case of symmetric nonnegative matrix tri-factorization. Furthermore, the authors in Refer-
ence [22] develop four algorithms for the specific problem case of symmetric multi-type
nonnegative matrix tri-factorization comprising a fixed-point method, block-coordinate
descent with projected gradient, and a gradient method with exact line search, as well as an
adaptive moment estimation approach. Finally, we would like to refer the interested reader
at this point to the two review articles on NMF methods for clustering by References [23,24]
and a book on NMF by Reference [25].

While analyzing and developing optimization algorithms for NMF clustering methods
is a major topic throughout the literature, studying clustering techniques with spatial coher-
ence by incorporating the local information of the considered data points is far less common.
This topic is primarily analyzed in the context of image segmentation problems [26–29].
The subject of spatial coherence can also be found in the literature of hyperspectral image
analysis. Several NMF models with total variation regularization, which include the local
neighborhood information of each data point, have been analyzed for the critical process-
ing step of hyperspectral unmixing [30–32]. These articles can be considered as closest
to our approach, since we also focus on the application of generalized NMF models to
hyperspectral images. Further works also consider NMF models with different TV penalty
terms for hyperspectral image denoising [33–35], some of which will be used in the later
course of this work for the derivation of optimization algorithms of the respective clus-
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tering models. Reference [36] uses a variant of the NMF, namely the nonnegative matrix
underapproximation, which solves the NMF by identifying localized and sparse features
sequentially. Similar to the considered approach in this work, the authors introduce a
sparsity constraint, make use of the fact that it is more likely that neighboring pixels are
contained in the same features, and apply the approach to hyperspectral datasets.

However, all the aforementioned works on ONMF or TV regularized NMF only
include either orthogonality constraints or TV regularization into their NMF models,
whereas we focus on combining both of these properties to obtain a spatially coherent
clustering method for hyperspectral datasets.

The only work, which includes TV regularization, as well as penalty terms to enforce
an orthogonality constraint on one of the matrices, is, to the best of our knowledge,
the survey article of Reference [37], with a rather general focus on the development of
algorithms based on surrogate functions leading to multiplicative update schemes.

1.2. Notation

Matrices will play a major role throughout this work and are denoted, unless otherwise
stated, by capital Latin or Greek letters (e.g., X, U, Ψ, . . . ). The entry of a matrix U in the i-th
row and j-th column is indicated as Uij. The same holds true for a matrix product, where
its ij-th entry is given by (UV)ij. Furthermore, we use a dot to indicate rows and columns
of matrices. The i-th row and j-th column of U are written as Ui,• and U•,j, respectively.
Moreover, we denote the i-th iteration of a matrix U in an algorithm by U[i].

Moreover, we write ‖U‖F and ‖U•,j‖2 for the Frobenius norm of a matrix U and the
usual Euclidean norm of a vector U•,j. We also use the notion of nonnegative matrices
and write U ≥ 0 or U ∈ Rm×n

≥0 with R≥0 := {x ∈ R | x ≥ 0} for an m × n matrix U,
which has only nonnegative entries. The notation for the dimension of the matrices in the
NMF problems are reused throughout the article and will be introduced in the following,
Section 2.

2. Background
2.1. Orthogonal NMF and K-Means

Nonnegative Matrix Factorization (NMF), originally introduced by Paatero and Tapper
in 1994 as positive matrix factorization [38], is a specific matrix factorization method
designed to obtain a low-rank approximation of a given and typically large nonnegative
data matrix. Different from the widely used Principal Component Analysis (PCA), which
is based on the singular value decomposition and allows for computation of a best rank
K approximation of a given arbitrary matrix, the NMF constrains the matrix factors to be
nonnegative. This property makes the NMF the method of choice where the considered data
naturally fulfills a nonnegativity constraint so that the interpretability of the factor matrices
is ensured. NMF has been widely used for data compression, source separation, feature
extraction, clustering, or even for solving inverse problems. Possible application fields
are hyperspectral unmixing [30–32], document clustering [8,39], and music analysis [40]
but also medical imaging problems, such as dynamic computed tomography, to perform a
joint reconstruction and low-rank decomposition of the corresponding dynamic inverse
problem [41], or Matrix-Assisted Laser Desorption/Ionization (MALDI) imaging, where it
can be used for tumor typing in the field of bioinformatics as a supervised classification
method [42].

Mathematically, the standard NMF problem can be formulated as follows: For a given
nonnegative matrix X ∈ RM×N

≥0 , the task is to find two nonnegative matrices U ∈ RM×K
≥0

and V ∈ RK×N
≥0 with K � min{M, N}, such that

X ≈ UV =
K

∑
k=1

U•,kVk,•.
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This allows the approximation of the columns X•,n and rows Xm,• via a superposition of just
a few basis vectors {U•,k}k and {Vk,•}k, such that X•,n ≈ ∑k VknU•,k and Xm,• ≈ ∑k UmkVk,•.
In this way, the NMF can be seen as a basis learning tool with additional nonnegativity con-
straints.

The typical variational approach to tackle the NMF problem is to reformulate it as a
minimization problem by defining a suitable discrepancy term D according to the noise
assumption of the underlying problem. The default case of Gaussian noise corresponds
to the Frobenius norm on which we will focus on in this work. Further possible choices
include the Kullback–Leibler divergence or more generalized divergence functions [25].

Moreover, NMF problems are non-linear and ill-conditioned [43,44]. Thus, they
require stabilization techniques, which is typically done by adding regularization termsRj
into the NMF cost function F . However, besides the use case of regularization, the penalty
termsRj can be also used to enforce additional properties to the factorization matrices U
and V. The general NMF minimization problem can, therefore, be written as

min
U,V≥0

D(X, UV) +
J

∑
j=1

αjRj(U, V) =: min
U,V≥0

F (U, V), (1)

where αj are regularization parameters. Common choices for Rj are `1 and `2 penalty
terms. Further possible options are total variation regularization or other penalty terms
which enforce orthogonality or even allow a supervised classification scheme in case the
NMF is used as a prior feature extraction step [37,42]. In this work, we will focus on the
combination of orthogonality constraints and total variation penalty terms to construct an
NMF model for spatially coherent clustering methods.

Another essential step for computing the NMF of a given matrix X is the determination
of an optimal number of features K. Typical techniques used throughout the literature are
based on heuristic or approximative methods, including core consistency diagnostics via a
PCA or residual analysis (also see Reference [25]). A straightforward technique used in
Reference [45] is based on the analysis of the rank-one matrices U•,kVk,•. For a K ∈ N chosen
sufficiently large, the considered NMF algorithm is executed to obtain the factorization
UV. Afterwards, the norm of the rank-one matrices U•,kVk,• for every k ∈ {1, . . . , K} is
analyzed. By the choice of a large K, the NMF algorithm is forced to compute additional
irrelevant features, which can be identified by a small norm of the corresponding rank-one
matrices. By choosing a suitably defined threshold for the values of the norm, a suitable K
can be obtained.

This work, however, will not focus on methods to determine an optimal number of
features. Hence, we assume in the numerical part in Section 4 that the true number of
features in the considered dataset is known in advance so that K can be set a priori.

On the other hand, K-means clustering is one of the most commonly used prototype-
based, partitional clustering technique. As for any other clustering method, the main task
is to partition a given set of objects into groups such that objects in the same group are
more similar compared to the ones in other groups. These groups are usually referred to
as clusters. In mathematical terms, the aim is to partition the index set {1, 2, . . . , M} of a
corresponding given dataset {xm ∈ RN | m = 1, . . . , M} into disjoint sets Ik ⊂ {1, . . . , M},
such that ∪k=1,...,KIk = {1, . . . , M}.

Many different variations and generalizations of K-means have been proposed and
analyzed (see, for instance, References [1,46] and the references therein), but we will focus
in this section on the most common case. The method is based on two main ingredients.
On the one hand, a similarity measure dist(·, ·) is needed to specify the similarity between
data points. The default choice is the squared Euclidean distance dist(xi, xj) := ‖xi − xj‖2

2.
On the other hand, so-called representative centroids ck ∈ RN are computed for each
cluster Ik. The computation of the clusters and centroids is based on the minimization
of the within-cluster variances given by J = ∑K

k=1 ∑m∈Ik
dist(xm, ck). Due to the NP-

hardness of the minimization problem [47], heuristic approaches are commonly used to
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find an approximate solution. The K-means algorithm is the most common optimization
technique which is based on an alternating minimization. After a suitable initialization,
the first step is to assign each data point xm to the cluster with the closest centroid with
respect to the distance measure dist(·, ·). In the case of the squared Euclidean distance,
the centroids are recalculated in a second step based on the mean of its newly assigned
data points to minimize the sum of the within-cluster variances. Both steps are repeated
until the assignments do not change anymore.

The relationship between the NMF and K-means clustering can be easily seen by
adding further constraints to both problems. First of all, from the point of view of K-means,
we assume nonnegativity of the given data and write the vectors xm row-wise to a data
matrix X such that X = [x1, . . . , xM]ᵀ ∈ RM×N

≥0 . Furthermore, we define the so-called
cluster membership matrix Ũ ∈ {0, 1}M×K, such that

Ũmk :=

{
0 if m 6∈ Ik

1 if m ∈ Ik

and the centroid matrix Ṽ := [c1, . . . , cK]
ᵀ ∈ RK×N

≥0 . With this, and by choosing the squared
Euclidean distance function, it can be easily shown that the objective function J of K-
means can be rewritten as J = ‖X − ŨṼ‖2

F, which has the same structure of the usual
cost function of an NMF problem. However, the usual NMF does not constrain one of the
matrices to have binary entries or, more importantly, to be row-orthogonal as it is the case
for Ũ. This ensures that each row of Ũ contains only one nonzero element which gives the
needed clustering interpretability.

This gives rise to the problem of ONMF, which is given by

min
U,V≥0

F (U, V), s.t. UᵀU = I,

where I is the identity matrix. The matrices U and V of an ONMF problem will be
henceforth also referred to as cluster membership matrix and centroid matrix, respectively.
In the case of the Frobenius norm as discrepancy term and without any regularization terms
Rj, it can be shown that this problem is equivalent to weighted variant of the spherical
K-means problem [16]. For further variants of the relations between ONMF and K-means,
we refer to the works of References [2–4] and the review articles of References [23,24].

2.2. Algorithms for Orthogonal NMF

Due to the ill-posedness of NMF problems and possible constraints on the matrices,
tailored minimization approaches are needed. In this section, we review shortly common
optimization techniques of NMF and ONMF problems, which will also be used in this
work for the derivation of algorithms for ONMF models, including spatial coherence.

For usual choices of D and Rj in the NMF problem (1), the corresponding cost
function F is convex in each of the variables U and V but non-convex in (U, V). Therefore,
the majority of optimization algorithms for NMF and ONMF problems are based on
alternating minimization schemes

U[i+1] = arg min
U≥0
F (U, V[i]), (2)

V[i+1] = arg min
V≥0
F (U[i+1], V). (3)

One classical technique to tackle these minimization problems are alternating multiplica-
tive algorithms, which only consist of summations and multiplications of matrices and,
therefore, ensure the nonnegativity of U and V without any additional projection step
provided that they are initialized appropriately. This approach was mainly popularized
by the works of Lee and Seung [48,49], which also brought much attention to the NMF,
in general. The update rules are usually derived by analyzing the Karush–Kuhn–Tucker
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(KKT) first-order optimality conditions for each of the minimization problems in (2) and
(3) or via the so-called Majorize-Minimization (MM) principle. The basic idea of the lat-
ter technique is to replace the NMF cost function F by a majorizing surrogate function
QF : dom(F )× dom(F )→ R, which is easier to minimize and whose tailored construc-
tion leads to the desired multiplicative updates rules defined by

A[i+1] := arg min
A∈dom(F )

QF (A, A[i]).

with the defining properties of a surrogate function that QF majorizes F and
QF (A, A) = F (A) for all A ∈ dom(F ), it can be easily shown that the above update
rule leads to a monotone decrease of the cost function F (also see Appendix A). However,
the whole method is based on an appropriate construction of the surrogate functions,
which is generally non-trivial. Possible techniques for common choices of D and Rj in
the NMF cost function are based on the quadratic upper bound principle and Jensen’s
inequality [37]. Overall, multiplicative algorithms offer a flexible approach to various
choices of NMF cost functions and will also be used in this work for some of the proposed
and comparative methods.

Another classical method is based on Alternating (nonnegative) Least Squares (ALS)
algorithms. They are based on the estimation of the stationary points of the cost function
with a corresponding fixed point approach and a subsequent projection step to ensure the
nonnegativity of the matrices. An extension to this procedure is given by Hierarchical
Alternating (nonnegative) Least Squares (HALS) algorithms, which solve nonnegative
ALS problems column-wise for both matrices U and V [11,12] and will also be used as a
comparative methodology.

An optimization approach, which was recently used for NMF problems, is the widely
known Proximal Alternating Linearized Minimization (PALM) [14,15], together with its
extensions, including stochastic gradients [50]. As a first step, the cost function is split up
into a differentiable part F1 and a non-differentiable part F2. In its basic form, the PALM
update rules consist of alternating gradient descent steps for U and V with learning rates
based on the Lipschitz constants of the gradient of F1 in combination with a subsequent
computation of a proximal operator of the function F2. Some of these techniques will
be used for the proposed methods in this work and will be discussed in more detail in
Section 3.

Further well-known techniques are, for example, projected gradient algorithms consist-
ing of additive update rules, quasi-Newton approaches based on second-order derivatives
of the cost function, or algorithms based on an augmented Lagrangian concept [16,25].

All these methods can be also used to derive suitable algorithms for ONMF problems.
Common approaches to include the orthogonality constraints are the use of Lagrangian
multipliers [3,5,6,11,12] or the replacement of the hard constraint UᵀU = I by adding a
suitable penalty term into the NMF cost function to enforce approximate row-orthogonality
for U controlled by a regularization parameter [7,9,10,15,20,37]. Other methods include
optimization algorithms on the Stiefel manifold [19], the use of sparsity and nuclear norm
minimization [8,39], or other techniques [14,16,18].

In the next section, we will introduce the considered NMF models in this work and
derive the corresponding optimization algorithms.

3. Orthogonal NMF with Spatial Coherence

In this section, we present the spatially coherent clustering methods based on ONMF
models, together with the derivation of their optimization algorithms. Different from
classical clustering approaches via ONMF, our proposed technique includes the local
information of a measured data point into the clustering process. This is done by including
a TV regularization procedure on the cluster membership matrix U, which naturally leads
to spatially coherent regions, while preserving their edges.
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This is, for instance, especially helpful for hyperspectral datasets. If the neighborhood
of a measured spectrum Xm,• is associated to one cluster Ik, the inclusion of spatial coher-
ence in the clustering model makes it more likely that Xm,• will be also classified to Ik. This
spatial coherence can be observed in many spectral imaging applications, such as Earth
remote sensing or MALDI imaging, where locally close spectra have a higher probability
to belong to the same class.

In the following, we divide our proposed techniques into so-called separated and
combined methods.

3.1. Separated Methods

One straightforward approach to design a spatially coherent clustering method is to
compute a clustering based on a classical ONMF model and subsequently perform a post-
processing on the obtained cluster membership matrix based on total variation denoising.
The general workflow is provided in Algorithm 1 and will be henceforth referred to as
ONMF-TV.

Algorithm 1 ONMF-TV

1: Input: X ∈ RM×N
≥0 , K ∈ N, τ > 0, θ ∈ RJ

2: Initialize: U[0] ∈ RM×K
≥0 , V[0] ∈ RK×N

≥0

3: (U, V)← ONMFθ(X, U[0], V[0])
4: U ← TVDENOISERτ(U)

After a suitable initialization of the cluster membership matrix and the centroid matrix
in Line 2, a classical ONMF model is used in Line 3 to perform a clustering of the given data
X, where θ are possible hyperparameters which typically have to be chosen a priori. These
ONMF models will be chosen based on some of the works described in Section 2.2 and will
be specified in more detail in Section 4.2. Afterwards, a TV denoising algorithm is applied
on the cluster membership matrix U obtained by ONMFθ to induce the spatial coherence
in the clustering. In this work and for all considered separated methods, the denoising step
is based on evaluating the proximal mapping column-wise on U, which is defined by the
minimization problem

proxτ‖·‖TV
(x) := arg min

y∈RM

{
1
2
‖y− x‖2 + τ‖y‖TV

}
. (4)

Here, τ > 0 is a regularization parameter, and ‖ · ‖TV denotes the classical isotropic
TV [51,52] and corresponds to the definition in (6) with εTV = 0 if ‖ · ‖TV is applied on a
matrix U. The algorithm used to solve the above minimization problem is based on a Fast
Iterative Shrinkage/Thresholding Algorithm (FISTA) described in Reference [52], with
a maximal iteration number of 100. Afterwards, every negative entry of U is projected
to zero to ensure the corresponding nonnegativity constraint. For further details on the
implementation of the TV denoising algorithm and the separated methods, in general, we
refer the reader to the provided codes of all considered algorithms in our GitLab [53].

We consider this workflow as baseline for our comparison with the combined methods
presented in the following Section 3.2. For the later numerical evaluation of the separated
methods in Section 4.4, we will compare these approaches with and without the TV post-
processing step to get an impression of the advantage of adding a TV regularization
procedure to the clustering method.

The initialization methods, the stopping criteria and the choice of the hyperparameters
will be specified in more detail in Section 4 of the numerical experiments of this work.

3.2. Combined Methods

In this section, we present the so-called combined methods, together with different
optimization algorithms for their numerical solution. Different from the separated methods
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in Section 3.1, this coupled approach includes a total variation penalty term into the ONMF
model to induce the spatial coherence in the clustering. The combination of orthogonality
constraints and a total variation penalty term in the NMF problem leads, in general, to a
higher effort to derive suitable solution algorithms. However, the main motivation is that
this joint workflow allows the clustering process to take advantage of the TV regularization,
leading to better local minima, which could, therefore, enhance the quality of the clustering
compared to classical approaches or the previous described separated methods, where the
spatial coherence is just enforced in an independent subsequent TV denoising step.

In the following, we will present different multiplicative update rules and algorithms
based on proximal gradient descent approaches.

As for the separated methods, the initialization and the stopping criteria, as well as the
choice of the hyperparameters, for all considered approaches will be described in Section 4
in more detail.

3.2.1. Multiplicative Update Rules
ONMFTV-MUL1

Our first multiplicative algorithm is taken from the work of Reference [37] without
any modification and is based on the ONMF model

min
U,V≥0

1
2
‖X−UV‖2

F +
σ

2
‖I −UᵀU‖2

F +
τ

2
‖U‖TVεTV

, (5)

where σ, τ ≥ 0 are regularization parameters, and ‖ · ‖TVεTV
is the smoothed, isotropic total

variation [37,54] defined by

‖U‖TVεTV
:=

K

∑
k=1

M

∑
m=1
|∇mkU| :=

K

∑
k=1

M

∑
m=1

√
ε2

TV + ∑
m̃∈Nm

(Umk −Um̃k)2. (6)

Furthermore, εTV > 0 is a positive, small, predefined constant to ensure the differen-
tiability of the TV penalty term, which is needed due to the MM principle for the opti-
mization approach. Finally, Nm are index sets referring to spatially neighboring pixels.
The default case in two dimensions for the neighborhood of a non-boundary pixel in
(i, j) is N(i,j) = {(i + 1, j), (i, j + 1)} to obtain an estimate of the gradient components in
both directions.

The derivation of the solution algorithm is described in Reference [37] and is based
on the MM principle mentioned in Section 2.2. The surrogate function QF (x, a) of such
approaches majorizes F and is typically quadratic in x. In order to avoid complications
in constructing a suitable surrogate function for the cost function in (5), the fourth order
terms from ‖I − UᵀU‖2

F have to be avoided. In Reference [37], this problem is solved
by introducing an auxiliary variable W ∈ RM×K

≥0 and by reformulating the minimization
problem in (5) as

min
U,V,W≥0

1
2
‖X−UV‖2

F +
σ1

2
‖I −WᵀU‖2

F +
σ2

2
‖W −U‖2

F +
τ

2
‖U‖TVεTV︸ ︷︷ ︸

=:F (U,V,W)

. (7)

For this problem, a suitable surrogate function and a multiplicative algorithm can be
derived. The details of the derivation will not be discussed here and can be found in
Reference [37] in all details. We also provide a short outline of the derivation in Appendix A.
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In the following, we describe the final update rules obtained by the MM principle in
Algorithm 2 and define for this purpose the matrices P(U), Z(U) ∈ RM×K

≥0 as

P(U)mk :=
∑m̃∈Nm 1
|∇mkU| + ∑

m̃∈N̄m

1
|∇m̃kU| , (8)

Z(U)mk :=
1

P(U)mk

(
1

|∇mkU| ∑
m̃∈Nm

Umk + Um̃k
2

+ ∑
m̃∈N̄m

Umk + Um̃k
2|∇m̃kU|

)
, (9)

where N̄m is the so-called adjoint neighborhood given by m̃ ∈ N̄m ⇔ m ∈ Nm̃.

Algorithm 2 ONMFTV-MUL1

1: Input X ∈ RM×N
≥0 , K ∈ N, σ1, σ2, τ > 0, i = 0

2: Initialize U[0], W [0] ∈ RM×K
>0 , V[0] ∈ RK×N

>0
3: repeat

4: U[i+1] =

[
U[i] ◦

(
XV[i]ᵀ + τP(U[i]) ◦ Z(U[i]) + (σ1 + σ2)W [i]

τP(U[i]) ◦U[i] + σ2U[i] + U[i]V[i]V[i]ᵀ + σ1W [i]W [i]ᵀU[i]

)]
>0

5: V[i+1] =

[
V[i] ◦

(
U[i+1]ᵀX

U[i+1]ᵀU[i+1]V[i]

)]
>0

6: W [i+1] =

[
W [i] ◦

(
(σ1 + σ2)U[i+1]

σ1U[i+1]U[i+1]ᵀW [i] + σ2W [i]

)]
>0

7: i← i + 1
8: until Stopping criterion satisfied

We denote by ◦, as well as the fraction line, the element-wise (Hadamard) multipli-
cation and division, respectively. Due to the multiplicative structure of the update rules,
the nonnegativity of the iterates is preserved. However, a strict positive initialization of
U, V, and W is needed to avoid numerical instabilities and the zero locking phenomenon
caused by zero entries in the matrices, which is characteristic for all algorithms based on
multiplicative update rules (see, e.g., Reference [9]). For the same reason, we perform a
subsequent element-wise projection step for every matrix defined by [λ]>0 := max{λ, εP1}
with εP1 = 1× 10−16. Analogously, a projection step is applied for too large entries, with
εP2 = 1× 1035 being the corresponding parameter.

The asymptotic computational complexity of ONMFTV-MUL1 can be easily obtained
by analyzing the performed matrix multiplications and the involved for-loops in the
algorithm (also see Reference [53]), which leads to a complexity of O(KMN + K2N +
K2M). However, K is usually chosen such that K � min{M, N}. Hence, regarding the
asymptotic computational complexity, we can consider K as a positive constant, so that we
obtain O(MN).

Finally, the above algorithm ensures a monotone decrease of the cost function in (7)
due to its construction based on the MM principle [37]. This leads to the convergence of
the cost function values, since F (U, V, W) is bounded from below.

Theorem 1 (ONMFTV-MUL1). Algorithm 2 ensures a monotone decrease of the cost function defined
by the NMF model in (7).

ONMFTV-MUL2

In this section, we derive another multiplicative algorithm, following the ideas in the
work of Reference [35], based on a continuous formulation of an isotropic and differentiable
version of the TV penalty term given by

TVεTV(u) :=
∫

Ω
‖∇u‖εTV d(x1, x2) (10)
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for Ω ⊂ R2, a sufficiently smooth u : Ω → R with bounded variation (see, e.g., Refer-
ence [51]), and for

‖∇u‖εTV :=

√(
∂u
∂x1

)2
+

(
∂u
∂x2

)2
+ ε2

TV, (11)

with a small εTV > 0. The application of the TV regularization on the discrete matrix U is
done via a subsequent discretization step, which is specified in more detail in Appendix B.
Thus, we consider in this section the orthogonal NMF model

min
U,V≥0

1
2
‖X−UV‖2

F +
σ1

4
‖I −UᵀU‖2

F + τ TVεTV(U)︸ ︷︷ ︸
=:F (U,V)

, (12)

with the sloppy notation of TVεTV(U) for the matrix U, where the discretization step is
implicitly included. Different from the model ONMFTV-MUL1 in the previous section, we do
not include any auxiliary variable W.

The update rule for U is based on a classical gradient descent approach

U[i+1] := U[i] − Γ[i] ◦ ∇UF (U[i], V[i]), (13)

with a step size Γ[i] ∈ RM×K
≥0 . By computing the gradient ∇UF (U[i], V[i]) and choosing an

appropriate step size Γ[i], this leads to the multiplicative update rule shown in Algorithm 3.
For the minimization with respect to V, we simply choose the multiplicative update rule
given in Algorithm 2. The term div

(
∇U[i]/‖∇U[i]‖εTV

)
is again an abuse of notation and

implicitly includes a discretization step (see Appendix B.2). It can be seen as the gradient
of the TV penalty term and is obtained by analyzing the corresponding Euler-Lagrange
equation (see Appendix B.1). Note that, in discretized form, it is a matrix of size M× K
and can also contain negative entries. Hence, this update step is, strictly speaking, not a
multiplicative update, since it cannot enforce the nonnegativity of the matrix U by itself.
However, as in Algorithm 2, the projection step given by [·]>0 is applied subsequently
for both matrices to avoid numerical instabilities and to ensure the nonnegativity of U.
Different from the approach in ONMFTV-MUL1, a monotone decrease of the cost function
cannot be guaranteed based on the MM principle, since F also contains fourth-order terms
due to the penalty term ‖I −UᵀU‖2

F.

Algorithm 3 ONMFTV-MUL2

1: Input X ∈ RM×N
≥0 , K ∈ N, σ1, τ > 0, i = 0

2: Initialize U[0] ∈ RM×K
>0 , V[0] ∈ RK×N

>0
3: repeat

4: U[i+1] =

U[i] ◦
XV[i]ᵀ + τ div

(
∇U[i]

‖∇U[i]‖εTV

)
+ σ1U[i]

U[i]V[i]V[i]ᵀ + σ1U[i]U[i]ᵀU[i]


>0

5: V[i+1] =

[
V[i] ◦

(
U[i+1]ᵀX

U[i+1]ᵀU[i+1]V[i]

)]
>0

6: i← i + 1
7: until Stopping criterion satisfied

By analyzing the involved matrix multiplications in Algorithm 3, we can see that the
asymptotic computational complexity is the same as in ONMFTV-MUL1. Hence, we obtain for
ONMFTV-MUL2 O(KMN + K2N + K2M).

Furthermore, note the similarity of the update rules given in Reference [9], where no
total variation penalty term is considered. For more details on the derivation of Algorithm 3
and the discretization of the divergence term, we refer the reader to Appendix B.
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3.2.2. Proximal Alternating Linearized Minimization

Adapting the optimization procedure of the very recent work of Reference [50], we
consider in this section several Proximal Alternating Linearized Minimization (PALM)
schemes. For all presented methods in this section, we consider the NMF model

min
U,V,W≥0

1
2
‖X−UV‖2

F +
σ1

2
‖I −WᵀU‖2

F +
σ2

2
‖W −U‖2

F︸ ︷︷ ︸
=:F (U,V,W)

+τ ‖U‖TV︸ ︷︷ ︸
=:J (U)

, (14)

where ‖ · ‖TV is defined according to (4). One crucial step for the application of this
optimization approach is to divide the whole cost function into a differentiable part F and
a non-differentiable part J . The additional auxiliary variable W is needed to ensure the
Lipschitz continuity of the partial gradients of F and, hence, the convergence rates of the
respective algorithms shown in Reference [50].

The general scheme of these algorithms are based on an alternating minimization pro-
cedure with a gradient descent step with respect to the differentiable function F (U, V, W)
via the computation of full gradients or gradient estimates and a subsequent column-wise
application of the proximal operator for the non-differentiable part of the ONMF model.
In the case of the algorithm for U, the proximal operator with respect to the function J is
evaluated, which leads to the update rule

U[i+1]
•,k :=

[
proxτηJ

(
U[i]
•,k − η(∇̃UF (U[i], V, W))•,k

)]
≥0

(15)

for a suitable step size η > 0. Furthermore, ∇̃UF is either the partial derivative ∇UF
of F with respect to U or some random gradient estimate (also see ONMFTV-SPRING). The
nonnegativity constraint of the matrices is ensured by a final projection of all negative
values to zero denoted in (15) by [·]≥0. In the following, we will write in short

U[i+1] :=
[
proxτηJ

(
U[i] − η∇̃UF (U[i], V, W)

)]
≥0

for the whole matrix U. The evaluation of the proximal mapping for all considered methods
based on the PALM scheme in this section is based on the same FISTA algorithm [52] as it is
the case for the separated approaches of Section 3.1, whereby the maximal iteration number
is reduced to 5. As usual for PALM algorithms, adaptive step sizes based on the local
Lipschitz constants of the partial gradients of F are used, which will be approximated via
the power iteration for all considered approaches. More information on the computation of
these estimates and the choice of the step sizes are given in the subsequent descriptions
of the specific algorithms and in Section 4 of the numerical experiments, as well as in
Appendix C. Details on the derivation of the gradients and the Lipschitz constants for the
specific NMF model in (14) are given in Appendix C.

Regarding the update rules for the matrices V and W for the considered ONMF
model in (14), the application of the proximal operator can be neglected, since there is
no non-differentiable part in (14) depending on either V or W. Hence, only the corre-
sponding gradient descent and projection steps are performed for both matrices (see
Algorithms 4 and 5).

ONMFTV-PALM

The proximal alternating linearized minimization is based on the general algorithm
scheme dscribed above. The main steps are illustrated in Algorithm 4. For the gradient
descent step, the full classical partial derivatives ∇UF ,∇VF , and ∇WF are computed
without the consideration of any batch sizes. Furthermore, the function POWERIT denotes
the power method to compute the needed step sizes. The derivation of the algorithm,
together with the computation of the gradients and the Lipschitz constants for the step
sizes, are described in Appendix C.1. The algorithm terminates until a suitable stopping
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criterion is satisfied, which will be further specified in Section 4 and Appendix D. This
approach will be henceforth referred to as ONMFTV-PALM.

As for the multiplicative algorithms ONMFTV-MUL1 and ONMFTV-MUL2, one can easily
obtain the asymptotic computational complexity for Algorithm 4 by analyzing the involved
matrix multiplications (also see Reference [53]), leading to the same complexity O(KMN +
K2N + K2M) as for proposed multiplicative update rules.

Algorithm 4 ONMFTV-PALM

1: Input X ∈ RM×N
≥0 , K ∈ N, σ1, σ2, τ > 0, i = 0

2: Initialize U[0], W [0] ∈ RM×K
≥0 , V[0] ∈ RK×N

≥0
3: repeat
4: ηU[i] = POWERITU(V[i], W [i])

5: U[i+1] =

[
proxτη

U[i]J

(
U[i] − ηU[i]∇UF (U[i], V[i], W [i])

)]
≥0

6: ηV[i] = POWERITV(U[i+1])

7: V[i+1] =
[
V[i] − ηV[i]∇VF (U[i+1], V[i], W [i])

]
≥0

8: ηW[i] = POWERITW(U[i+1])

9: W [i+1] =
[
W [i] − ηW[i]∇WF (U[i+1], V[i+1], W [i])

]
≥0

10: i← i + 1
11: until Stopping criterion satisfied

ONMFTV-iPALM

A slightly extended version of ONMFTV-PALM is the so-called Inertial Proximal Al-
ternating Linearized Minimization (iPALM) algorithm, which introduces an additional
momentum term into Algorithm 4 and, hence, improves the convergence rate. Since the
iPALM algorithm still follows the rough outline of ONMFTV-PALM and uses the classical
partial gradients of F , we will not present the whole algorithm at this point and refer the
reader to the corresponding work in Reference [55], Appendix C.2, and our GitLab [53],
where the corresponding codes are available online. This method will be referred to as
ONMFTV-iPALM.

Since ONMFTV-iPALM follows the same major principles as ONMFTV-PALM, the asymptotic
computational complexity of ONMFTV-iPALM is the same as in the case of ONMFTV-PALM.

ONMFTV-SPRING

The so-called Stochastic Proximal Alternating Linearized Minimization (SPRING)
is an extended version of the PALM method, where the full gradients are replaced by
random estimates. One basic assumption of this approach is that F is separable depending
on the considered variable for which the cost function is minimized. In the case of the
minimization with respect to U, the function F can be expressed as

F (U, V, W) =
N

∑
n=1

1
2
‖X•,n −UV•,n‖2

2 +
K

∑
k=1

σ1

2
‖I•,k −UᵀW•,k‖2

2 +
σ2

2
‖U•,k −W•,k‖2

2︸ ︷︷ ︸
=:F̃ (U,W)

.

However, instead, we use the formulation

F (U, V, W) =
N

∑
n=1

[
1
2
‖X•,n −UV•,n‖2

2 +
1
N
F̃ (U, W)

]
=:

N

∑
n=1
Fn(U, V, W)

to be able to compute the estimates of the gradients based on the functions Fn. These
random estimates are formed by using just a few indices of Fn, which are the elements of
the so-called mini-batch n ∈ BU

i,j ⊂ {1, . . . , N}, where i denotes the iteration number of the
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SPRING algorithm, and j ∈ {1, . . . , sr} specifying the currently used subsample of indices,
with 1/sr being the subsample ratio. One classical example of a gradient estimator, which
is also used in this work, is the Stochastic Gradient Descent (SGD) estimator given by

∇̃i,j
UF (U, V, W) := ∑

n∈BU
i,j

∇UFn(U, V, W). (16)

For other possible gradient estimators, such as the SAGA or SARAH estimator, we refer
the reader to the work of Reference [50] and the references therein.

The case of the minimization with respect to V and W is more straightforward. For V,
the penalty terms for the orthogonality can be dropped, and we use the separability of the
function with respect to the rows of X and U. The computation of the SGD estimator is
done analogously. For minimizing with respect to W, the expression based on F̃ (U, W)
can be used by omitting the data fidelity term. However, since K � min{M, N}, we use in
this work the full gradient of F for the minimization with respect to W.

The main steps of the algorithm are presented in Algorithm 5, which will be referred to
as ONMFTV-SPRING. For details on the choice of the hyperparameters and the computation
of the gradients, as well as the step sizes, we refer the reader to Section 4 and Appendix C.

Algorithm 5 ONMFTV-SPRING

1: Input X ∈ RM×N
≥0 , K ∈ N, σ1, σ2, τ > 0, sr ∈ N, i = 0

2: Initialize U[0,1], W [0,1] ∈ RM×K
≥0 , V[0,1] ∈ RK×N

≥0
3: repeat
4: for j = 1, . . . , sr do
5: ηU[i,j] = POWERITU(V[i,j], W [i,j])

6: U[i,j+1] =

[
proxτη

U[i,j]J

(
U[i,j] − ηU[i,j]∇̃i,j

UF (U
[i,j], V[i,j], W [i,j])

)]
≥0

7: ηV[i,j] = POWERITV(U[i,j+1])

8: V[i,j+1] =
[
V[i,j] − ηV[i,j]∇̃i,j

VF (U
[i,j+1], V[i.j], W [i,j])

]
≥0

9: ηW[i,j] = POWERITW(U[i,j+1])

10: W [i,j+1] =
[
W [i,j] − ηW[i,j]∇WF (U[i,j+1], V[i,j+1], W [i,j])

]
≥0

11: end for
12: U[i+1,1] = U[i,sr+1], V[i+1,1] = V[i,sr+1], W [i+1,1] = W [i,sr+1]

13: i← i + 1
14: until Stopping criterion satisfied

The asymptotic computational complexity of ONMFTV-SPRING can be obtained by
analyzing the involved for-loops and matrix multiplications (see Reference [53]), leading to
a complexity of O(KMN + srK2N + srK2M), which now also involves sr. However, note
that sr can be also seen as a positive constant, which in this case would lead to the same
complexity as in ONMFTV-PALM.

Convergence Analysis

While this work does not focus on a theoretical convergence analysis of the considered
optimization methods of the ONMF models, we provide in the following some brief
information on the convergence properties of the PALM algorithms.

The convergence theory of PALM algorithms has been analyzed in various
works [50,55,56]. The convergence properties depend heavily on the properties of the
considered cost function. A non-standard extension of the usual PALM scheme in the case
of our considered ONMF model in (14) is the introduction of a third auxiliary variable.
However, according to References [50,56], the full convergence theory of the PALM and
SPRING scheme easily extends to an arbitrary number of variables.
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Furthermore, F and J in (14) have to satisfy specific properties to ensure basic
convergence properties of the PALM algorithms. F needs to be a finite-valued, differ-
entiable function with its gradient ∇F being Lipschitz continuous on bounded sets of
RM×K × RK×N × RM×K. This is obviously true in the case of (14) as a consequence of
the mean value theorem, since F is a C2 function. Furthermore, the partial gradients
∇UF ,∇VF , and ∇WF need to be Lipschitz continuous with modulus LU , LV , and LW ,
respectively, which is also true in our considered ONMF model (also see Appendix C).

Regarding the non-differentiable part in (14), J needs to be a proper lower semi-
continuous function, which is bounded from below. Since the classic TV semi-norm used
in (14) is lower semi-continuous (see Reference [51]), these properties also hold in our case.

To ensure the specific convergence property that a sequence of iterates
Y[k] := (U[k], V[k], W [k]) converge to a critical point Y∗ := (U∗, V∗, W∗) of the whole cost
function G(U, V, W) := F (U, V, W) + J (U) in (14), additional requirements on G are
needed. In the case of ONMFTV-PALM, G needs to be a so-called Kurdyka-Łojasiewicz (KL)
function (see References [50,56]), whereas, for ONMFTV-SPRING, G has to be a semialgebraic
function [50]. For a full-length treatise of the definition and properties of semialgebraic
functions in the field of real algebraic geometry, we refer the reader to Reference [57].
The following Lemma is a nonsmooth version of the Łojasiewicz gradient inequality and
can be found in Reference [56].

Lemma 1. Let f : Rn → (−∞,+∞] be a proper and lower semicontinuous function. If σ is
semialgebraic, then σ fulfills the KL property at any point in the domain of σ and is, hence, a
KL function.

Since G is obviously a proper and lower semicontinuous function, it is sufficient
to show that G is semialgebraic. To do so, we note, first of all, that F (U, V, W) is a
real polynomial function and, hence, semialgebraic. By using further basic properties
of semialgebraic functions, it is also easy to see that J (U) is semialgebraic. Since J is
given by the equation in (6) with εTV = 0, it consists of a real polynomial function with a
subsequent application of the square root function, which is still semialgebraic. Since finite
sums of semialgebraic functions are semialgebraic, G is semialgebraic. Hence, the sequence
of iterates Y[k] produced by ONMFTV-PALM converge to a critical point of G. In the case of
ONMFTV-SPRING, the iterates converge in expectation to a critical point.

Similar arguments with additional assumptions on the momentum terms can be
applied for ONMFTV-iPALM, so that we also achieve a convergence to a critical point for
this algorithm. While the authors in Reference [55] do not prove improved convergence
rates, they show that the additional momentum terms lead to an improved performance
in practice. For further results on the convergence rates of the considered algorithms, we
refer the reader to the aforementioned references.

4. Numerical Experiments
4.1. Dataset

Concerning the numerical experiments of this work, we consider a hyperspectral
dataset obtained from a Matrix-Assisted Laser Desorption/Ionization (MALDI) imaging
measurement of a human colon tissue sample [58]. This technique is a Mass Spectrometry
Imaging (MALDI-MSI) method, which is able to provide a spatial molecular profile of a
given analyte. Together with the technological advancements in acquisition speed and
robustness over the last decade, MALDI-MSI has become a standard tool in proteomics and
applications in medical research, such as characterization of tumor subtypes and extraction
of characteristic spectra [42], have become feasible.

In general, a measurement with a mass spectrometer can be subdivided into three
main steps: the ionization of the sample, followed by the separation and detection of
the ions. Considering MALDI imaging, the ionization part is characterized by the term
MALDI. Different from other ionization techniques, such as the so-called Secondary-Ion
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Mass Spectrometry (SIMS) or Desorption Electrospray Ionization (DESI), MALDI allows
measurement of a wider mass range of the extracted ions. This is possible due to an
application of a matrix onto the tissue sample to optimize the transfer of the ionization
energy and to extract the molecules out of the analyte. The needed ionization energy is
provided by a laser, which is shot on the tissue sample by following a grid pattern. The
separation of the molecules is done by a mass analyzer. One typical method, which was
also used for the dataset in this work, is to accelerate the ions by an electric field and to
measure the Time-Of-Flight (TOF) of the particles. The final step of the whole measurement
is the detection of the ions with the help of an ion detector.

Another major aspect of the whole MALDI-MSI workflow is the preparation of the
analytes before the actual measurement with a MALDI-TOF device, which follows stan-
dardized protocols. For more information, we refer the reader to References [58,59].

For every point on the tissue slide, which is shot by the laser, a whole mass spectrum
is acquired, leading to a hyperspectral dataset. The whole data is then written into the
matrix X ∈ RM×N

≥0 , where each entry denotes the intensity of the detected particles of a
specific mass-to-charge ratio (m/z-value). Typically, the measured spectra are ordered
row-wise to the matrix, such that every column corresponds to an intensity plot of the
whole tissue slide for a specific m/z-value (m/z-image).

Typical data sizes range from 1× 104 to one million spectra and m/z-images, respec-
tively. Furthermore, MALDI datasets are naturally nonnegative. These properties make
the NMF an ideal analyzing tool for MALDI imaging datasets due to the nonnegativity
constraints leading to a meaningful physical interpretation of the acquired matrices U
and V. For more details on the application of NMF models to MALDI imaging problems
and the interpretation of the factorization matrices, we refer the reader to the works of
References [37,42].

Figure 1 shows the human colon tissue dataset used for the subsequent numerical
evaluation of the methods. Figure 1a is the histological image after the application of a so-
called Hematoxylin and Eosin (H&E) staining, which allows a distinction between different
tissue types. Figure 1b shows the histological annotation, which divides the dataset
into six different classes and constitutes the ground truth for the subsequent numerical
evaluation. The human colon dataset consists of 12,049 acquired spectra, each containing
20,000 measured m/z values covering a mass range of 600 Da to 4000 Da. However, we
only consider the actual annotated spectra to ensure that each considered spectra can
be reasonably classified in one of the 6 classes shown in Figure 1b. Hence, we restrict
ourselves to 8725 spectra leaving out the zero and the non-annotated ones, which leads to
the nonnegative data matrix X ∈ R8725×20,000

≥0 for the numerical experiments.

(a) Histological image after H&E staining

Muscularis

Tumor

Submucosa

Mucosa

Subserosa

Lymphocytes

(b) Ground truth

Figure 1. Histological image of the considered MALDI dataset after H&E staining (a) and the histological annotation (b).
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4.2. Choice of Separated Methods

As discussed in Section 3.1, we consider the separated approaches based on the
workflow given in Algorithm 1 as baseline for the comparison with the combined methods
presented in Section 3.2. In this section, we specify shortly seven ONMF algorithms to
compute the clustering in Line 3 of Algorithm 1, which are based on different works
throughout the literature and will be used for the numerical comparison in Section 4.4
(see Table 1). Numerical tests for the optimization approach in the more recent work of
Reference [8], which is based on a sparsity and nuclear norm minimization, did not lead to
satisfactory results and, hence, will not be presented in this work.

Furthermore, we will evaluate the separated methods with and without the TV denois-
ing step in Section 4.4. In such a way, we obtain a comparison between the clustering results
of the classical ONMF approaches in Table 1 with and without the TV post-processing and
by that an intuitive view on the advantage of adding a TV regularization procedure to the
clustering method.

The choice of the hyperparameters and details on the initialization of the matrices, as
well as the used stopping criteria of all separated methods, are discussed in Section 4.3 and
Appendix D.1.

Table 1. Designations of the considered separated methods (left column) and short explanation of
the corresponding ONMF algorithm (right column).

Separated Method Description
K-means-TV Classical K-means clustering algorithm.
ONMF-TV-Choi Alternating multiplicative update rules based on Reference [5].
ONMF-TV-Ding Alternating multiplicative update rules based on Reference [3].

ONMF-TV-Pompili1
Alternating expectation-maximization algorithm similar to the default spheri-
cal K-means algorithm [16,60].

ONMF-TV-Pompili2
Alternating algorithm based on an augmented Lagrangian approach with strict
orthogonality constraints [16]. Nonnegativity is obtained asymptotically by
using a quadratic penalty.

ONMF-TV-Kimura
Hierarchical alternating least squares algorithm, which is applied column-wise
on U and row-wise on V [11].

ONMF-TV-Li
Hierarchical alternating least squares algorithm with approximate orthogonal-
ity constraints and subsequent projection steps to ensure nonnegativity [12].

4.3. Setup

In this section, we describe the initialization methods and stopping criteria, the cal-
culation of the final hard clustering, the choice of the various hyperparameters, and the
used cluster validation measures. Furthermore, we give some further details on the general
numerical setup.

For every considered separated and combined method in Sections 3.1 and 3.2, we
perform 30 replicates of the experiment to get an impression of the performance stability,
since the used initialization methods are partially based on randomly selected data points
or matrices. For each method, we use the same random seed in the beginning of the
experiment. Furthermore, we measure for each replicate the computational time, including
the time for the calculation of the initialization of the factorization matrices.

For the evaluation of the clusterings, we use several different clustering validation
measures discussed in Reference [61]. Due to the known ground truth of the data, we
restrict ourselves to external clustering validation measures. Based on the results in this
work, we primarily consider the so-called normalized Van Dongen criterion (VDn) and
the normalized Variation of Information (VIn), since they give the most representative,
quantitative measures in most of the general cases. Furthermore, they are normalized
into the [0, 1] range and give reasonable results in cases there are clusters without any
corresponding data points, which is different from classical measures, such as the purity.
In addition, we consider as a secondary measure the Entropy (E). For all considered
measures, it holds that a lower value indicates a better clustering performance.
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To provide the definition of the clustering validation measures, we denote nkk̃ as the
number of data points in cluster Ik from class Ck̃ for k, k̃ ∈ {1, . . . , K} and define

n :=
K

∑
k,k̃=1

nkk̃, nk,• :=
K

∑
k̃=1

nkk̃, n•,k̃ :=
K

∑
k=1

nkk̃,

pkk̃ :=
nkk̃
n

, pk :=
nk,•

n
, p̃k̃ :=

n•,k̃
n

.

Using this notation, the definition of all considered clustering validation measures are
given in Table 2.

Table 2. Definitions of all considered clustering validation measures.

Measure Definition Range

Entropy (E) −
K

∑
k=1

pk

(
K

∑
k̃=1

pkk̃
pk

log
(

pkk̃
pk

))
[0, log(K)]

Normalized Variation of
Information (VIn) 1 + 2 ·

∑K
k,k̃=1 pkk̃ log

(
pkk̃/(pk p̃k̃)

)
∑K

k=1 pk log(pk) + ∑K
k̃=1 p̃k̃ log( p̃k̃)

[0, 1]

Normalized Van Dongen
criterion (VDn)

2n−∑K
k=1 maxk̃{nkk̃} −∑K

k̃=1 maxk{nkk̃}
2n−maxk{nk,•} −maxk̃{n•,k̃}

[0, 1]

Concerning the initialization approaches, we consider either the classical K-means++
method or an initialization based on the singular value decomposition of the data matrix X
by following the works of References [62,63]. In short, the latter method is based on the
computation of a truncated Singular Value Decomposition (SVD) of the data matrix follow-
ing a Krylov approach described in Reference [62] and performing specific projection, as
well as normalization steps, based on the algorithm described in Reference [63]. For further
details on the initialization, we refer the reader to the provided code in the GitLab [53]. For
K-means-TV, we use K-means++ as the typical initialization method for the K-means algo-
rithm. To achieve the optimal results for each of the remaining proposed and comparative
methods, both initialization methods are tested. The initialization method which leads to
a better clustering stability and performance in terms of the VDn is chosen. However, it
turns out that, for all methods, except K-means-TV, ONMF-TV-Ding, and ONMF-TV-Pompili1,
the initialization based on the SVD of X leads to better clustering results. The concrete
choices for every ONMF model are described in Appendix D.

Regarding the stopping criteria, we simply set for the considered ONMF models a
maximal iteration number until a sufficient convergence is reached, except for K-means-TV,
ONMF-TV-Pompili1, and ONMF-TV-Pompili2, where we use the internal stopping criteria of
the respective algorithms. For more information, we refer the reader to Appendix D and
the work of Reference [16].

Another aspect is the computation of the final clustering based on the cluster member-
ship matrix U. Most of the considered ONMF models yield a cluster membership matrix U
having multiple positive entries in each row, which is related to a soft clustering. To obtain
the final hard clustering, we assign every data point to the cluster, which corresponds to
the column in U, where the maximal value in the row is attained. In the case that there are
two or more equal entries in one row, we choose the cluster by a random choice.

A main part of the whole workflow of the numerical evaluation is the choice of the
various hyperparameters of the considered ONMF models. In particular, these include the
regularization parameters σ1, σ2, and τ of the combined methods and the parameter τ of
the TV post-processing of the separated methods. For all considered methods, we perform
a grid search of the corresponding parameters. An appropriate subset of the parameter
space is chosen and experiments for a wide range of possible combinations of parameters
are performed. For each considered method, the parameter configuration leading to the
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best performance stability and VDn is chosen. More details and the specific selection of the
hyperparameters are given in Appendix D.

Furthermore, we perform several projection steps to enhance the numerical stability.
For all considered methods, we project the data matrix X by applying [·]>0 defined as in
Section 3.2.1. Furthermore, we perform specifically for the multiplicative update rules
and for ONMF-TV-Kimura the same projection step after the initialization of the matrices.
For the combined method ONMFTV-SPRING, we perform an additional projection step of the
parameter τηU[i,j] used for the application of the proximal operator described in Algorithm 5
to avoid too large parameters for the TV regularization. A similar projection is done for the
step size in each gradient descent step. More details are given in Appendix C.3.

The algorithms were implemented with MATLAB® R2021a and executed on an Intel®

Core™ i7-7700K quad core CPU @4.20 GHz with 32 GB of RAM. The corresponding
MATLAB® codes can be found in our GitLab [53].

4.4. Results and Discussion

In this section, we present and discuss the numerical results obtained in the evaluation
discussed in the previous sections.

Figure 2 shows the clusterings of the separated methods without the subsequent
TV regularization step of the best performed replicate with respect to the VDn, which
was obtained after the TV post-processing. In general, every separated method is able
to identify all classes shown in Figure 1b, except the distinction between the tumor and
mucosa. Since the combined methods are also not able to distinguish between both classes
(see Figure 3), this is probably due to the fundamental, underlying NMF model with the
orthogonality constraints, which are not able to identify the regions in an unsupervised
workflow. In the case that annotated datasets are available for training, supervised machine
learning methods could lead to different results. However, this work does not focus on
these kind of approaches.

(a) Ground
truth

Muscularis Tumor Submucosa Mucosa Subserosa Lymphocytes

(b)
K-means-TV

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(c)
ONMF-TV-Choi

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(d)
ONMF-TV-Ding

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(e)
ONMF-TV-Pompili1

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(f)
ONMF-TV-Pompili2

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(g)
ONMF-TV-Kimura

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(h)
ONMF-TV-Li

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Figure 2. Ground truth and clusterings of all considered separated methods without TV regularization. The best-performing
replicate, including the TV regularization, is chosen based on the normalized van Dongen criterion.



J. Imaging 2021, 7, 194 19 of 31

(a) Ground
truth

Muscularis Tumor Submucosa Mucosa Subserosa Lymphocytes

(b)
K-means-TV

Cluster 1 Cluster 2 Cluster 3 Cluster 4

(c)
ONMF-TV-Choi

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(d)
ONMF-TV-Ding

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(e)
ONMF-TV-Pompili1

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

(f)
ONMF-TV-Pompili2

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(g)
ONMF-TV-Kimura

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(h)
ONMF-TV-Li

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(i)
ONMFTV-MUL1

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(j)
ONMFTV-MUL2

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(k)
ONMFTV-PALM

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

(l)
ONMFTV-iPALM

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(m)
ONMFTV-SPRING

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Figure 3. Ground truth and clusterings of all considered methods, including the TV regularization. The best-performing
replicate, including the TV regularization, is chosen based on the normalized van Dongen criterion.

Furthermore, every separated method is not able to guarantee a spatially coherent
clustering in the region of the muscularis. Moreover, every method, except K-means-TV,
does not provide any spatial coherence in any of the classes of the tissue slide. This is in
contrast to the results in Figure 3, which shows the clusterings of all considered methods
of the best performed replicate with respect to the VDn, including the TV regularization.
Every method is able to provide a spatially coherent clustering with some few exceptions
in the region of the muscularis and, hence, leads to significantly improved clusterings, in
general. Comparing the results within Figure 3, the clustering of ONMFTV-SPRING seems
to be the one, which best reproduces the given annotations. Furthermore, we note that
some methods lead to clusterings with clusters, which do not contain any data points (see,
i.e., K-means-TV, ONMF-TV-Pompili1, ONMFTV-PALM). However, this is also owing to the fact
that the class of the lymphocytes is significantly underrepresented compared to the other



J. Imaging 2021, 7, 194 20 of 31

ones (see Figure 1b). Furthermore, this behavior is also dependent on the choice of the TV
regularization parameter τ.

For a quantitative evaluation, we provide in Figure 4 box plots of all replicates of every
performed experiment and for all considered methods with respect to the VDn and VIn.
For each combined method, one box plot is plotted, which visualizes the corresponding
clustering validation measure of all 30 replicates of the experiment through its quartiles.
As usual, the line in between the box indicates the median of the validation measure of
all replicates. Furthermore, the vertical lines are the so-called whiskers, which indicate
the variability outside the lower and upper quartile. Finally, each plotted point in the
graph represents one replicate of the corresponding experiment indicating the obtained
validation measure.

For every separated method, two box plots are plotted in different colors, each repre-
senting the obtained clustering validation measure with or without the TV post-processing
(see the legend). In such a way, a comparison of the classical ONMF algorithms of Table 1
with and without the total variation regularization is possible.

Based on such a visualization, a quantitative evaluation and comparison of all con-
sidered methods by considering different clustering validation measures is possible. Fur-
thermore, the box plots visualize the performance variability of every method and, hence,
give some indications on the stability of the approaches. As described in Section 4.3, lower
values of the VDn and VIn indicate better clustering results.

For both measures, the observations of the qualitative evaluation above can be con-
firmed. First, we note that, for all separated methods, the TV post-processing does indeed
lead to clusterings with better cluster validation measures. Moreover, the combined meth-
ods based on the PALM scheme achieve the best results with respect to both measures,
from which ONMFTV-PALM and ONMFTV-iPALM achieve the highest performance stability.
While some experiments of ONMFTV-SPRING attain the best values compared to all other
methods, this approach is less stable than the non stochastic approaches ONMFTV-PALM
and ONMFTV-iPALM. Furthermore, we note that both combined methods ONMFTV-MUL1 and
ONMFTV-MUL2 based on the multiplicative update rules do not perform better than some
of the other separated methods. Comparing the separated methods with each other, we
see that ONMF-TV-Li performs remarkably well, with a high stability compared to the
other approaches. Note that the stability also seems to depend on the initialization pro-
cedure. Regarding this, the SVD seems to favor more stable results than the K-means++
initialization.

Similar to the cluster validation measures VDn and VIn shown in Figure 4,
Figure 5 displays the entropy of all performed experiments for all methods. As described
in Section 4.3, lower values of the entropy measure indicate better clustering results.
This measure also confirms the observation, that the combined methods ONMFTV-SPRING,
ONMFTV-PALM, and ONMFTV-iPALM achieve the best results. Concerning the other methods,
the outcomes are similar to the ones of the VDn and VIn and shall not be discussed in detail.

Figure 6 shows the box plots of the computational times of all replicates for every
method. For each considered approach, one box plot is plotted visualizing the computa-
tional cost of all performed replicates of the experiment. As in the previous figures, each
plotted point corresponds to a replicate showing the specific needed computational time.

The combined methods ONMFTV-PALM and ONMFTV-iPALM are one of the fastest meth-
ods, together with K-means-TV, which requires the least time to compute the experiments.
Furthermore, we note that ONMFTV-SPRING needs significantly more time compared to
the other PALM algorithms, which can be also seen by the slightly different asymptotic
computational complexities (see Section 3.2.2). The other separated methods are faster
than ONMFTV-SPRING, except ONMF-TV-Pompili2, which needs significantly more time than
every other considered approach.

All in all, based on the experiments performed on the MALDI dataset, we recom-
mend the methods based on the PALM scheme, particularly ONMFTV-PALM, as well as



J. Imaging 2021, 7, 194 21 of 31

ONMFTV-iPALM, since they give the most stable results, while achieving comparatively good
results with low computational effort.
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Figure 4. Box plots of the normalized van Dongen criterion (VDn) and the normalized variation of
information (VIn) of all performed experiments.
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Figure 5. Box plot of the Entropy (E) of all performed experiments.
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Figure 6. Box plot of the computational times in minutes of all performed experiments.

5. Conclusions

In this work, we have considered various orthogonal nonnegative matrix factorization
(ONMF) models, together with different optimization approaches for clustering hyperspec-
tral data, as the main application field. Furthermore, we have introduced total variation
regularization in the proposed ONMF models to ensure spatial coherence in the obtained
clusterings constituting the main innovation in this paper motivated by numerous spectral
imaging applications, which naturally satisfy the spatial coherence in the data.

After a brief description of the main principles of ONMF models, their relation to
classical clustering methods, and different optimization techniques, we have proposed
so-called separated methods, which apply the TV denoising step after the computation of a
classical ONMF algorithm. Furthermore, we have introduced more sophisticated combined
methods with different optimization procedures, which include the TV regularization into
the considered ONMF model.

For the numerical evaluation, we have compared 12 different TV regularized ONMF
methods on a MALDI-MSI human colon hyperspectral dataset with six different spatially
coherent tissue regions, which constitute the ground truth for the clustering problem.
The qualitative and quantitative results confirmed our expectation that the TV regular-
ization significantly improves the clustering performance. Furthermore, the combined
methods based on the proximal alternating linearized minimization have led to the best
clustering outcomes and performance stability. Hence, based on the numerical evaluation
of the MALDI dataset, we recommend the methods ONMFTV-PALM and ONMFTV-iPALM, as
well as ONMFTV-SPRING.

Several further research directions could be of interest. One limitation of the pre-
sented approaches is the need of a manual a-priori choice of the needed hyperparameters.
Hence, a useful extension of the proposed methods could be to introduce an automated
way to choose suitable parameters. Another aspect is the analysis and the derivation of
optimization algorithms for the case of discrepancy terms different from the Frobenius
norm. Moreover, further gradient estimators different from the SGD could be examined for
the method ONMFTV-SPRING. Furthermore, another major point is the consideration of more
hyperspectral datasets from different application fields and a more thorough numerical
evaluation of the different ONMF methods.

A more theoretical research direction could be an extended convergence analysis
in particular for the multiplicative algorithms ONMFTV-MUL1 and ONMFTV-MUL2. Finally,
the investigation of spatially coherent clustering models in infinite dimension space lead-
ing to “continuous” factorization problems with gradient based penalty terms could be
interesting. In this setting, the analysis of first order conditions could lead to connections
to corresponding K-means clustering models and partial differential equations, whose
solutions give insight to the according distance measures and clusters. A first step for such
an investigation could be to start with a finite dimensional space based on ONMF models.
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Appendix A. Derivation of the Algorithm ONMFTV-MUL1

In this section, we give an outline of the proof of Theorem 1. For more details on the
derivation, we refer the reader to the work of Reference [37].

The update rules in Algorithm 2 are based on the Majorize-Minimization (MM) princi-
ple [64]. The basic idea behind this concept is to replace the cost function F by a so-called
surrogate function QF , whose minimization is simplified and leads to the desired multi-
plicative algorithms.

Definition A1. Let Ω ⊂ RM×K be an open set, and F : Ω→ R a given cost function. A function
QF : Ω×Ω→ R is called a surrogate function, if it satisfies the following properties:

(i) QF (U, A) ≥ F (U) for all U, A ∈ Ω,
(ii) QF (U, U) = F (U) for all U ∈ Ω.

The minimization procedure based on the MM approach is defined by

U[i+1] := arg min
U∈Ω

QF (U, U[i]).

www.scils.de
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Together with the properties of QF , this leads directly to the monotone decrease of the cost
function F , since

F (U[i+1]) ≤ QF (U[i+1], U[i]) ≤ QF (U[i], U[i]) = F (U[i]).

Tailored construction techniques for surrogate functions leads additionally to the desired
multiplicative structure of the update rules and are typically based on Jensen’s inequality
or the so-called quadratic upper bound principle [37,64].

We first focus on the minimization with respect to U. It can be shown that, for each
term of the cost function F in (7), a surrogate function can be constructed, which finally
results to a suitable surrogate QF := QF1 +QF2 +QF3 defined by

QF1(U, A) :=
1
2

M

∑
m=1

N

∑
n=1

1
(AV)mn

K

∑
k=1

AikVkn

(
Xmn −

Umk
Amk

(AV)mn

)2
,

QF2(U, A) :=
σ1

2

K

∑
k=1

K

∑
`=1

1
(WᵀA)k`

M

∑
m=1

Wmk Am`

(
δk` −

Um`

Am`
(WᵀA)k`

)2
+

σ2

2
‖W−U‖2

F,

QF3(U, A) :=
τ

2

(
K

∑
k=1

M

∑
m=1

[
P(A)mk(Umk − Z(A)mk)

2
]
+ C(A)

)
,

where C(A) is some function depending only on A, and with P(A) and Z(A) given as in
Equations (8) and (9). Computing the first order condition∇UQF (U, A) = 0 and applying
classical calculation rules for derivatives leads then to the desired update rule given in Line
4 of Algorithm 2.

The update rules for V and W are treated similarly.

Appendix B. Details on the Algorithm ONMFTV-MUL2

Appendix B.1. Derivation of the Update Rules

Algorithm 3 is based on a classical gradient descent approach with a suitably chosen
step size to ensure a multiplicative structure of the update rules. We will discuss here only
the derivation for the minimization with respect to U. The update rules for V are classical
results and can be found in various works [37,49].

Regarding the update rule for U, we consider the classical gradient descent step

U[i+1] := U[i] − Γ[i] ◦ ∇UF (U[i], V),

given also in (13). Thus, we need an explicit expression for ∇UF (U, V). Classical calcula-
tion rules for derivatives yields

∇UF (U, V) = UVVᵀ − XVᵀ + σ1(UUᵀU −U) +∇U TVεTV(U).

The gradient of TVεTV(U) can be acquired via the Euler-Lagrange equation and is a classical
result. By considering the continuous case with the function u : Ω → R of Section 3.2.1
and defining L(x1, x2, u, u1, u2) := ‖∇u‖εTV with ui := ∂u/∂xi for i ∈ {1, 2}, the Euler
Lagrange Equation

∂L
∂u
−

2

∑
i=1

∂

∂xi

(
∂L
∂ui

)
= 0

gives the formal relationship ∇u TVεTV(u) := −div(∇u/‖∇u‖εTV). Thus, the gradient
descent step is given by

U[i+1] := U[i]−Γ[i] ◦
(

U[i]VVᵀ−XVᵀ−τ div

(
∇U[i]

‖∇U[i]‖εTV

)
+ σ1U[i]U[i]ᵀU[i]−σ1U[i]

)
.
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To ensure a multiplicative structure of the update rules, we set the step size to be

Γ[i] :=
U[i]

U[i]VVᵀ + σ1U[i]U[i]ᵀU[i]
,

which leads directly to the update rule in Line 4 of Algorithm 3.

Appendix B.2. Discretization of the TV Gradient

In this section, we describe the discretization procedure of the divergence term
div
(
∇U[i]/‖∇U[i]‖εTV

)
, which occurs in Line 4 of Algorithm 3.

To perform such a discretization, it is needed for express the divergence term in terms
of sums and products of first and second order derivatives. To simplify the notation, we
stick in this first step to the continuous case and consider the function u mentioned in (10).
By considering the definition in (11) and applying classical calculation rules for derivatives,
we get

div
(
∇u

‖∇u‖εTV

)
=

ε2
TV

(
∂2u
∂x2 +

∂2u
∂y2

)
+
(

∂u
∂x

)2
∂2u
∂y2 +

(
∂u
∂y

)2
∂2u
∂x2 − 2 ∂u

∂x
∂u
∂y

∂2u
∂x∂y

‖∇u‖3
εTV

.

For the discretization of this expression, we assume that u is a given discretized image
of size d1 × d2. Note that, in the NMF models, which are considered in this work, this
would correspond to one (reshaped) column of the matrix U. To approximate the partial
derivatives in the above expression, we use in the following a central differencing scheme
and interpret the x and y directions as the vertical and horizontal axis in the image u,
respectively. Thus, we define

(∆xu)ij :=
ui+1,j − ui−1,j

2
, (∆yu)ij :=

ui,j+1 − ui,j−1

2
,

(∆xxu)ij := ui+1,j − 2uij + ui−1,j, (∆yyu)ij := ui,j+1 − 2uij + ui,j−1,

(∆xyu)ij :=
ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1

4
.

The discretized gradients can also be interpreted as matrices of size d1 × d2, which finally
leads to the discretization of the divergence term

div
(
∇u

‖∇u‖εTV

)
=

ε2
TV
(
∆xxu + ∆yyu

)
+ (∆xu)2 ◦ ∆yyu + (∆yu)2 ◦ ∆xxu− 2∆xu ◦ ∆yu ◦ ∆xyu(
(∆xu)2 + (∆yu)2 + ε2

TV1d1×d2

)3/2
,

where 1d1×d2 is a matrix of size d1 × d2 with ones in every entry.

Appendix C. Algorithmic Details on the Proximal Gradient Descent Approach

In this section, we give some information about the involved gradients, Lipschitz
constants, and the computation of the step sizes of all algorithms based on the proximal
gradient descent approach (see Section 3.2.2).

Appendix C.1. ONMFTV-PALM

We start in this section with details on the gradients of the algorithm ONMFTV-PALM.
Since the computations are straightforward, we will only state the final results of all
three gradients:

∇UF (U, V, W) = UVVᵀ − XVᵀ + σ1(WWᵀU −W) + σ2(U −W),

∇VF (U, V, W) = UᵀUV −UᵀX,

∇WF (U, V, W) = σ1(UUᵀW −U) + σ2(W −U).
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For the calculation of the Lipschitz constants, we compute for the minimization with
respect to U and arbitrary matrices U1, U2 ∈ RM×K

‖∇UF (U1, V, W)−∇UF (U2, V, W)‖ = ‖(U1 −U2)VVᵀ + σ1WWᵀ(U1 −U2) + σ2(U1 −U2)‖

≤ (‖VVᵀ‖+ ‖σ1WWᵀ + σ2 IM×M‖) · ‖U1 −U2‖
= (λ1,U + λ2,U) · ‖U1 −U2‖,

where ‖ · ‖ is the spectral norm, and λ1,U , λ2,U the maximal absolute eigenvalue of the
symmetric matrices VVᵀ and σ1WWᵀ+σ2 IM×M, respectively, with IM×M being the identity
matrix of size M×M. The other cases are treated analogously and result in

‖∇VF (U, V1, W)−∇VF (U, V2, W)‖ ≤ ‖UᵀU‖ · ‖V1 −V2‖ = λ1,V‖V1 −V2‖,
‖∇WF (U, V, W1)−∇WF (U, V, W2)‖ ≤ ‖σ1UUᵀ + σ2 IM×M‖ · ‖W1 −W2‖

= λ1,W‖W1 −W2‖.

Numerically, the eigenvalues of the matrices are approximated via the power iteration with
5 iterations. The step sizes ηU , ηV , and ηW described in Algorithm 4 are computed based on
the Lipschitz constants, which are given by LU := λ1,U + λ2,U , LV := λ1,V , and LW := λ1,W
with the computation above. The standard choice for the step size of the ONMFTV-PALM
algorithm are simply the inverse Lipschitz constants, i.e. ηU = 1/LU , ηV = 1/LV , and
ηW = 1/LW [50,56].

Appendix C.2. ONMFTV-iPALM

The calculation of the gradients and Lipschitz constants for ONMFTV-iPALM are the same
as in the case of ONMFTV-PALM with the slight difference that the gradients are evaluated at
other points. Furthermore, the step sizes are set by ηU = 0.9/LU , ηV = 0.9/LV , and ηW =
0.9/LW according to Reference [50]. For details, we refer the reader to References [50,55]
and to the codes available in our GitLab [53].

Appendix C.3. ONMFTV-SPRING

The computation of the gradients for ONMFTV-SPRING are based on the SGD estimator
given in (16). As in the case of ONMFTV-PALM, the computations are straightforward, and
we get, by defining the mini-batch BV

i,j ⊂ {1, . . . , M} for the minimization with respect to

V and with Fm(U, V, W) := 1/2‖Xm,• −Um,•V‖2
2, the gradients

∇̃i,j
UF (U, V, W) = ∑

n∈BU
i,j

[
(UV)•,nVᵀ

n,• − X•,nVᵀ
n,• + 1/N(σ1(WWᵀU −W) + σ2(U −W))

]

= UV•,BU
i,j

Vᵀ
BU

i,j ,•
− X•,BU

i,j
Vᵀ
BU

i,j ,•
+
|BU

i,j|
N

(σ1(WWᵀU −W) + σ2(U −W)),

∇̃i,j
VF (U, V, W) = ∑

m∈BV
i,j

∇VFm(U, V, W) = ∑
m∈BV

i,j

Uᵀ
•,m(UV)m,• −Uᵀ

•,mXm,•

= Uᵀ
•,BV

i,j
UBV

i,j ,•
V −Uᵀ

•,BV
i,j

XBV
i,j ,•

,

where V•,BU
i,j

, X•,BU
i,j

, and UBV
i,j ,•

, XBV
i,j ,•

are the submatrices of U, V, and X, which are con-

strained column-wise and row-wise based on the index sets BU
i,j and BV

i,j, respectively.
For the minimization with respect to W, the full partial gradient of F is used, which was
already computed in Appendix C.1.
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The computation of the Lipschitz constants of the partial gradients ofF with respect to
U and V is based on the SGD estimator and goes analogously to the steps in Appendix C.1.
Hence, we have

‖∇̃i,j
UF (U1, V, W)− ∇̃i,j

UF (U2, V, W)‖ ≤
(
‖V•,BU

i,j
Vᵀ
BU

i,j ,•
‖+
|BU

i,j|
N
‖σ1WWᵀ + σ2 IM×M‖

)
‖U1 −U2‖

= (λ1,U + λ2,U) · ‖U1 −U2‖,
‖∇̃i,j

VF (U, V1, W)− ∇̃i,j
VF (U, V2, W)‖ ≤ ‖Uᵀ

•,BV
i,j

UBV
i,j ,•
‖ · ‖V1 −V2‖ = λ1,V‖V1 −V2‖,

together with the Lipschitz constants LU , LV analogously to Appendix C.1. Since we
consider the full partial gradient of F with respect to W, we also get the same Lipschitz
constant LW as in Appendix C.1.

The choice of of the step sizes ηU[i,j] and ηV[i,j] are chosen according to the work of
Reference [50] by defining

ηU[i,j] := min

 1√⌈
i · |BU

i,j |/N
⌉
· LU

,
1

LU

, ηV[i,j] := min

 1√⌈
i · |BV

i,j |/M
⌉
· LV

,
1

LV

.

Furthermore, as described in Section 4.3, we perform an additional projection step of the
parameter τηU[i] (see Line 6 in Algorithm 5 and the application of the proxτη

U[i,j]J operator)

to avoid too large regularization parameters of the TV penalty term by applying proxτi,jJ
with τi,j := min{τηU[i,j] , 1× 10−3}. For more details on the algorithm, we refer the reader
to the codes available in our GitLab [53].

Appendix D. Parameter Choice

As described in Section 4.3, we choose the regularization parameters for the numerical
experiments of every considered method empirically by performing multiple experiments
for different parameters and choosing the ones which lead to stable experiments and the
best VDn. For the separated methods, we also follow, partially, the recommendations of
the corresponding works. In the following sections, we describe the choice of these and
other hyperparameters in more detail.

Appendix D.1. Separated Methods

In this section, we describe the choice of the main hyperparameters of all sepa-
rated methods. Table A1 shows the selected parameters for the numerical experiments
in Section 4, along with the used stopping criteria (stopCrit) and initialization methods
(initMethod).

Table A1. Parameter choice of the separated methods for the numerical experiments with the
MALDI dataset.

Method τ stopCrit imax initMethod
K-means-TV 1 Cluster assignment – K-means++
ONMF-TV-Choi 2× 10−2 maxIt 6× 102 SVD
ONMF-TV-Ding 2× 10−2 maxIt 8× 102 K-means++
ONMF-TV-Pompili1 1 Cluster assignment – K-means++
ONMF-TV-Pompili2 4× 10−2 Pompili Internal – SVD
ONMF-TV-Kimura 2× 10−2 maxIt 7× 102 SVD
ONMF-TV-Li 3× 10−2 maxIt 2× 102 SVD
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All separated methods are initialized either based on the SVD approach described in
Section 4.3 or via K-means++. Both methods were tried out for every separated method in
the numerical experiments, and one of them was chosen based on the stability and quality
measures of the results. For the specific case of ONMF-TV-Pompili1, we use a mixture of the
K-means++ method and the internal initialization procedure of Reference [16].

Furthermore, different stopping criteria were used. Besides the classical stopping
criterion based on a maximal iteration number imax (maxIt), the clustering algorithms
K-means-TV and ONMF-TV-Pompili1 (i.e., Line 3 in Algorithm 1) are stopped until the clus-
ter assignments in the cluster membership matrix U do not change anymore. For the special
case of ONMF-TV-Pompili2, the algorithm stops until the current iterates are “sufficiently”
nonnegative (see Reference [16]).

Finally, the TV denoising algorithm in Line 4 of all separated methods is based on
a Fast Iterative Shrinkage-Thresholding Algorithm (FISTA; see Reference [65]) with a
maximal iteration number of 100.

Appendix D.2. Combined Methods

In this section, we describe the choice of the main hyperparameters of all combined
methods. As in the previous section, Table A2 shows the selected parameters for the
numerical experiments in Section 4, along with the used stopping criteria (stopCrit) and
initialization methods (initMethod).

Table A2. Parameter choice of the combined methods for the numerical experiments with the
MALDI dataset.

Method σ1 σ2 τ εTV sr stopCrit imax initMethod
ONMFTV-MUL1 0.5 0.5 5× 10−3

√
1× 10−5 – maxIt 8× 102 SVD

ONMFTV-MUL2 1 – 1× 10−3
√

1× 10−5 – maxIt 7× 102 SVD
ONMFTV-PALM 0.1 0.1 1× 10−1 – – maxIt 4× 102 SVD
ONMFTV-iPALM 0.1 0.1 1× 10−1 – – maxIt 3× 102 SVD
ONMFTV-SPRING 0.1 0.1 1× 10−4 – 40 maxIt 1× 102 SVD

All combined methods are initialized based on the SVD approach described in
Section 4.3 and are stopped until imax iterations are reached (maxIt). Regarding the initial-
ization methods, kmeans++ and the SVD method were tried out, and one of them was
finally chosen based on the quality of the results as it is the case for the separated methods.
For ONMFTV-SPRING, we choose sr = 40, according to Reference [50].
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