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Abstract

With the advances in high-throughput sequencing technologies, it is not difficult to extract tens of thousands of single-nucleotide polymor-
phisms (SNPs) across many individuals in a fast and cheap way, making it possible to perform genome-wide association studies (GWAS) of
quantitative traits in outbred forest trees. It is very valuable to apply traditional breeding experiments in GWAS for identifying genome
variants associated with ecologically and economically important traits in Populus. Here, we reported a GWAS of tree height measured at
multiple time points from a randomized complete block design (RCBD), which was established with clones from an F1 hybrid population of
Populus deltoides and Populus simonii. A total of 22,670 SNPs across 172 clones in the RCBD were obtained with restriction
site-associated DNA sequencing (RADseq) technology. The multivariate mixed linear model was applied by incorporating the pedigree
relationship matrix of individuals to test the association of each SNP to the tree heights over 8 time points. Consequently, 41 SNPs were
identified significantly associated with the tree height under the P-value threshold determined by Bonferroni correction at the significant
level of 0.01. These SNPs were distributed on all but two chromosomes (Chr02 and Chr18) and explained the phenotypic variance ranged
from 0.26% to 2.64%, amounting to 63.68% in total. Comparison with previous mapping studies for poplar height as well as the candidate
genes of these detected SNPs were also investigated. We therefore showed that the application of multivariate linear mixed model to the
longitudinal phenotypic data from the traditional breeding experimental design facilitated to identify far more genome-wide variants for
tree height in poplar. The significant SNPs identified in this study would enhance understanding of molecular mechanism for growth traits
and would accelerate marker-assisted breeding programs in Populus.

Keywords: genome-wide association study; randomized complete block design; mixed linear model; single-nucleotide polymorphism;
Populus

Introduction
The genus Populus (Salicaceae) is a deciduous and dioecious tree

taxon, comprising aspens, poplars, and cottonwoods, widely

distributed in the Northern Hemisphere. Because of its unique bi-

ological characteristics, such as rapid growth rate, small genome

size, facile asexual reproduction, and easy transgenesis, the ge-

nus has been selected as a model system in forest trees

(Bradshaw et al. 2000). In the past three decades, poplar breeders

focused on dissecting genetic architectures underlying growth

traits targeted for producing new cultivars to meet the intensive

need for wood-based products including timber, paper, and pulp

or for bioenergy to mitigate carbon emissions (Taylor 2002). To in-

vestigate the genetic mechanism of ecologically and economi-

cally important traits, both molecular marker and phenotype

data across a genetic mapping population are prerequisite to es-

tablish a statistical model for analyzing the marker-trait relation-

ship. One of the approaches for this task is to identify

quantitative trait loci (QTLs) on genome based on genetic linkage
maps constructed with a set of markers generated from a full-sib
family, like a backcross (BC) and F2 population in inbred lines or
an F1 hybrid population in outbred species (Lander and Botstein
1989; Zeng 1994; Tong et al. 2012; Liu et al. 2017). Another ap-
proach is so-called genome-wide association study (GWAS),
which allows to detect markers closely linked to QTLs with a
large number of single-nucleotide polymorphisms (SNPs) in natu-
ral populations or multiple families (Gonzalez-Martinez et al.
2007; Li et al. 2014; Zhao et al. 2019).

In the 1990s, Bradshaw and Stettler (1995) first conducted QTL
analysis of 2-year stem growth traits in an F2 hybrid population
of Populus trichocarpa and Populus deltoides. Later on, Wu (1998) per-
formed QTL mapping for 3-year growth traits in the same F2 pop-
ulation. Maybe due to the sparse linkage map or insufficient
number of individuals used in the analyses, the two early studies
were not able to detect more than two QTLs for the tree height.
Recently, Monclus et al. (2012) identified about 7 QTLs on average
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controlling tree height and circumference measured in the first
and the second year in an F1 hybrid population of P. deltoides �
P. trichocarpa. More recently, Du et al. (2016) detected 3 and 6 QTLs
for tree height and diameter at breast height, respectively, using
a large number of progeny in an F1 population derived by cross-
ing the female ‘YX01’ (P. alba � P. glandulosa) and the male ‘LM50’
(P. tomentosa). These previous studies applied the traditional
molecular markers such as RAPD, RFLP, AFLP and SSR, probably
limiting the power of detecting QTLs due to their low throughput
(Tong et al. 2016). With advances in the next-generation sequenc-
ing (NGS) technologies, thousands of SNPs can be obtained across
many individuals in a fast and low-cost way for QTL mapping.
Recently, Tong and colleague performed a series of studies on
extracting a large number of SNPs with restriction site-associated
DNA sequencing (RADseq) technology, constructing genetic link-
age maps, and mapping QTLs in an F1 hybrid population of P. del-
toides and P. simonii (Mousavi et al. 2016; Tong et al. 2016; Liu et al.
2017; Yao et al. 2020). Meanwhile, GWAS emerged as a powerful
method for identifying SNPs associated with the growth traits in
poplar. Liu et al. (2018) conducted GWAS with 156,362 SNPs to
identify significant SNP effects on the dynamic growth of tree di-
ameter and height in a full-sib family of P. deltoides and P. euramer-
icana.

In various GWAS, linear mixed models (LMMs) have been
widely used with multiple available software packages such as
TASSEL (Bradbury et al. 2007), EMMA (Kang et al. 2008), and GCTA
(Yang et al. 2011). Because algorithms for fitting LMMs involve
nonlinear optimization problem and have high computational
cost (Zhou and Stephens 2014), these software packages have
their own limitations in estimating genetic parameters (Zhang
et al. 2009). It is because of this reason that two-stage approaches
were applied to reduce the computational burden especially in
plant GWAS, where replicated plants within blocks and plots are
often used in traditional experimental designs (Xue et al. 2017). In
some scenarios, the first stage was to obtain the best linear unbi-
ased estimate (BLUE) or prediction (BLUP) for each line from a lin-
ear model with environmental effects but without any marker
effects, whereas in the second stage the BLUE or BLUP was used
as a dependent variable to perform GWAS with a reduced LMM
(Zhang et al. 2009; Lipka et al. 2013; Xue et al. 2017; Vanous et al.
2018). Although most GWAS were conducted under a univariate
framework, the use of multivariate linear mixed model (mvLMM)
for GWAS is increasingly important because it is powerful to de-
tect genetic variants that affect multiple traits or different growth
stages (Zhou and Stephens 2014; Liu et al. 2018; Carlson et al.
2019). Like the two-stage approaches, different reduced strategies
were also applied in multivariate GWAS such as using ratios
between two phenotypes (Gieger et al. 2008) and the principal
components of multiple traits (Aschard et al. 2014; Rice et al. 2020)
to perform a univariate association analysis. However, from the
statistical perspective, the direct use of mvLMM by incorporating
various environmental effects undoubtedly enhances the power
of GWAS not only over the univariate analysis but also over the
reduced approaches (Galesloot et al. 2014; Zhou and Stephens
2014; Onogi 2019).

In this study, we reported a multivariate GWAS of tree height
with longitudinal data from a randomized complete block design
(RCBD). The design was established with clones from the F1 hy-
brid progeny of P. deltoides and P. simonii as described above. Each
clone has several cuttings planted in different blocks, which have
the same genome as a single seedling tree in the F1 population. In
the previous studies (Mousavi et al. 2016; Tong et al. 2016), we per-
formed RAD sequencing of many individuals in the hybrid

population. By mapping RADseq data of each clone to the refer-
ence genome of P. trichocarpa (Tuskan et al. 2006), we obtained
22,667 SNPs across 172 clones. With the SNP genotype data at
these SNPs for each individual, we applied mvLMM to perform
GWAS of tree height measured over multiple time points using
the R package EMMREML (https://cran.r-project.org/web/pack
ages/EMMREML, accessed January 6, 2021). To compare with the
multivariate method, we also conducted a univariate GWAS of
the tree height at each single time point using a two-stage ap-
proach with the software TASSEL (Bradbury et al. 2007). The re-
sult showed that the multivariate method showed a superior
ability over the univariate approach in detecting the association
of SNPs with the tree height. Moreover, we could identify far
more significant SNPs associated with the tree height than the
previous QTL mapping studies in Populus. In addition, we also in-
vestigated the candidate genes of the significant SNPs, which
were related to plant hormones, to the growth and development
of tree tissues, and to response to stresses, or involved in photo-
synthesis.

Materials and methods
Plant materials and measurement of growth
traits
An RCBD was established for testing the clones from an F1 hybrid
population, which was derived by crossing P. deltoides and P. simo-
nii in the springs from 2009 to 2011. The two parents have sub-
stantial differences in growth and adaptability and their hybrids
display significant segregation traits in morphology and physiol-
ogy (Mousavi et al. 2016; Tong et al. 2016). In the spring of 2017, a
total of 234 clones were chosen to plant with 3 blocks, 6 cuttings
for each clone per plot within a block, and a 50� 60 cm spacing
on Xiashu Forest Farm of Nanjing Forestry University, Jurong
County, Jiangsu Province, China. During the growth season, each
tree was measured in cm using a telescoping height measuring
pole for height at 8 different times, that is, on June 8 (T1), June 23
(T2), July 6 (T3), July 16 (T4), July 27 (T5), August 14 (T6),
September 2 (T7), and October 14 (T8), 2017. We preliminarily
performed correlation analysis and multivariate analysis of vari-
ance for these phenotypic data with SAS 9.3 software (SAS
Institute, Cary, USA).

SNP genotyping
In our previous studies, we performed RADseq of hundreds of
individuals in the Populus F1 hybrid population (Mousavi et al.
2016; Tong et al. 2016). Of the clones used in the RCBD, 172 clones
and their two parents were sequenced previously and the
RADseq data were already deposited at the SRA database in NCBI
with accession numbers in Supplementary Table S1. These
RADseq data were filtered to obtain high-quality (HQ) reads data
using the NGS QC toolkit with default parameters (Patel and Jain
2012). We used the HQ reads data to call SNP genotypes for each
clone with the reference genome of P. trichocarpa. The whole call-
ing procedures were almost the same as described in our previ-
ous studies such as Mousavi et al. (2016) and Yao et al. (2020)
except for the utilization of different reference sequence. In brief,
the paired-end (PE) reads of each clone were first aligned to the
reference sequence with the software BWA (v0.7.17) to generate a
SAM formatted file (Li and Durbin 2009). The SAM file was con-
verted into BAM formatted file which was further sorted and
indexed with SAMtools (v1.9) (Li et al. 2009). Then, the sorted BAM
file was used to generate a BCF file and further to a VCF file using
the software BCFtools (v1.9) (Li et al. 2009). Finally, we filtered the
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VCF file to obtain SNP genotypes for each clone such that a het-
erozygous allele has a read coverage depth (DP) of at least 3 and
the quality of each SNP genotype is greater than 30.

After obtaining SNP genotypes of each clone, we further fil-
tered the genotype data across the 172 clones by considering the
missing genotype rate and the segregation ratio at each SNP site.
We kept those SNPs that were not seriously deviated from the
Mendelian segregation ratios (P> 0.01), which possibly include
the ratios of 1:1, 1:2:1, and 1:1:1:1 due to the complicated genetic
structure of the F1 hybrid population in outbred forest species
(Maliepaard et al. 1997; Tong et al. 2010). Meanwhile, if there were
more than 5% missing genotypes at an SNP site, it was removed
from the data set.

Statistical model for association analysis
The mvLMM was applied to find an SNP association to the tree
height as follows:

yijkt ¼ lt þ Bit þMjt þ Gjt þ eijkt; (1)

where yijkt is the height of the kth tree of the jth clone in the ith block
at the tth time point, lt is the overall mean of tree height, Bit is the
effect of the ith block, Mjt is the genotype effect of the jth clone at
the tested SNP site, Gjt is the polygene background effect of the jth
clone (Yu et al. 2006), and eijkt is the residual effect. It is assumed that
Bit and Mjt are fixed effects each with the sum-to-zero constraint,
whereas Gjt and eijkt are the random effects with Gjt � Nð0; r2

gt
Þ and

eijkt � Nð0; r2
et
Þ. In matrix form, model (1) can be expressed as:

Y ¼ BXþ GZþ E; (2)

where Y is the m� n matrix of tree heights of n individuals at the m
time points; X is a p� n known design matrix of fixed effects, in-
cluding overall mean, block effects, and individual genotype effects
at the tested SNP site; B is the m� p matrix of fixed-effect coeffi-
cients; G is the m� c matrix of random additive genetic effects with
VecðGÞeNm�c 0; A� VGð Þ, where c is the number of clones and Vec
denotes the matrix vectorization function (Searle et al. 2006, pp.
458),Ais the additive relationship matrix for the c clones and VGis
the additive genetic covariance matrix for the m time points ;Zis
thec� ncoefficient matrix corresponding to the matrixG;Eis the
random residual matrix with VecðEÞeNm�n 0; In � VEð Þ. Hence, the
covariance matrix of Vec(Y) can be expressed as:

V ¼ cov ðYÞð Þ ¼ Z0AZ� VG þ In � VE: (3)

Since the clones in the RCBD were from a full-sib family and
their parents were unrelated and not inbred, the coefficient of ad-
ditive genetic covariance between any two different clones is 0.5
in theory (Loiselle et al. 1995; Lynch and Walsh 1998), leading to
theAmatrix with ones on the diagonal and 0.5 elsewhere.

We used the R package EMMREML to calculate the REML esti-
mates of VG and VE and then the BLUE of B (https://cran.r-project.
org/web/packages/EMMREML, accessed January 6, 2021). To test
the effects of SNP genotypes, an F statistics was used under the
null hypothesis M Vec (B) ¼ 0for a full-rank q�mp matrix, as:

F ¼ 1
q

M VecðBÞð Þ0 M ðX� ItÞV�1ðX0 � ItÞ
� ��1

M0
h i�1

M VecðBÞð Þ; (4)

withqnumerator degrees of freedom andtðn� pÞdenominator
degrees of freedom (Kang et al. 2008). The P-value for testing each

SNP was adjusted based on Bonferroni-correction and the
genome-wide false discovery rate (FDR) was set to be 0.01. As the
method described in Xu (2003), the percent of phenotypic vari-
ance explained by a significant SNP was calculated as:

R2 ¼ 1� RSS1

RSS0
; (5)

where RSS0 and RSS1 are the residual sums of squares under the
null and full hypothesis models, respectively.

To compare the multivariate GWAS approach to the univari-
ate method, we performed GWAS of the tree height at each time
point separately with two-stage approach using the software
TASSEL (Bradbury et al. 2007). First, the best linear unbiased esti-
mates (BLUEs) of the clone effects were obtained with the re-
duced linear model from model (1) by omitting the SNP genotype
effects and fixing time point t as follows:

yijk ¼ lþ Bi þ Gj þ eijk: (6)

Second, the BLUEs at a fixed time point were used for the asso-
ciation analysis using TASSEL with parameters set as
“-mlmVarCompEst P3D -mlmCompressionLevel None.”

Additionally, to obtain the heritability of the tree height at
each time point, we used model (6) to first estimate the genetic
and residual variance components with EMMREML and then to
calculate the heritability as:

h2 ¼
r2

g

r2
g þ r2

e
: (7)

Investigation of candidate genes
The upstream and downstream genes of the significant SNPs
were investigated for candidate genes affecting the tree height. If
a gene harbored an SNP that had a linkage disequilibrium (LD)
value (r2) above a threshold with a neighboring significant SNP,
then this gene was considered as a candidate gene for further in-
vestigation. The LD threshold was determined by performing LD
decay analysis with all the SNPs using the software PopLDdecay
(Zhang et al. 2019). After that, the coding sequences of the candi-
date genes around each significant SNP were extracted from the
gene annotation of P. trichocarpa at Phytozome (v4.1; https://ge
nome.jgi.doe.gov). These genes were annotated afresh by first
performing blast searches with their coding sequences against
the non-redundant protein database (Altschul et al. 1990; Pruitt
et al. 2007) and then mapping the hits to GO terms with Blast2GO
(https://www.blast2go.com). The result of these gene annotations
was saved in a text file, in which we searched the keywords re-
lated to the tree growth and development as well as response to
stresses. Furthermore, these candidate genes were used to per-
form GO enrichment analysis with Blast2GO for finding which
GO terms are over-represented for the growth of tree height.

Data availability
The RADseq data of the 172 clones have been deposited in the
SRA database at the National Center for Biotechnology
Information (NCBI) with accession numbers presented in
Supplementary Table S1. The phenotypic and genotypic data
generated for GWAS in this study can be found in Supplementary
Tables S2 and S6, respectively. All of the supplemental materials
(Supplementary Tables S1–S13 and Supplementary Figures S1
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and S2) for this study are available at figshare DOI: 10.25387/
g3.13017866.

Results
Phenotype and genotype data
We successfully obtained tree height and SNP genotype data of
172 clones and a total of 1664 individual trees (Supplementary
Table S2). The tree heights were measured at 8 different times
during the growth season in 2017. Histograms showed that the
tree height basically followed a normal distribution at each time
point (Figure 1). The average and standard deviation of the tree
height were consistently increased across the growth season, but
the coefficient of variation (CV) was decreased from about 32% to
22% (Supplementary Table S3). We also found that the CV of the
tree height increment between successive time points varied
smoothly in a range of 29.60–37.16% over the first six time inter-
vals. However, the CV of the increment abruptly rose to 63.83% at
the last time interval (September 2 to October 14, 2017). It is
mainly due to the fact that the mean of the increment was the
smallest and the standard deviation was relatively high for the
last time interval (Supplementary Table S3). Meanwhile, the her-
itabilities at each time point did not change much with a range of
0.54–0.55 during the vigorous growth season (June to July), but
then dropped to 0.47 in the late growth season (August to
October; Supplementary Table S3). Correlation analysis of the
phenotypic data showed that the tree height was significantly
correlated between any two time points, with a coefficient of over
0.94 (P< 0.01) between adjacent time points and a minimum co-
efficient value of 0.541 between the first and the last measure
time points (Supplementary Table S4). Furthermore, we also cal-
culated the genetic correlation coefficients of the tree heights at
different time points from the genetic covariance matrix esti-
mated with model (1) by ignoring SNP effects. The result showed
that the genetic correlation coefficients were consistently higher
than the phenotypic correlation coefficients and that the genetic
coefficients between adjacent time points were all greater than

0.960 (Supplementary Table S4). Moreover, multivariate analysis
of variance for the longitudinal data showed that the effects of
tree height were significantly different among the blocks, the
clones, and the interactions of blocks and clones (Supplementary
Table S5). These primary statistical analyses showed that the
tree height over multiple time points in the RCBD variated largely
and was worth further exploring the molecular mechanism.

A total of 22,670 SNPs across the 172 clones (Supplementary
Table S6) were obtained by mapping their RADseq data sepa-
rately to the reference genome of P. trichocarpa (v4.1; https://ge
nome.jgi.doe.gov). Each clone had an average of 16.89 million
RADseq reads and 4.61 Gb data with a mean genome coverage
depth of 9.6X (Supplementary Table S1). After a stringent quality
control with NGS QC toolkit, an average amount of 4.45 Gb HQ
reads data per clone was remained for calling SNP genotypes.
Since the clones were from the F1 hybrid population in Populus, as
expected, the majority of SNPs were segregated in the ratio of 1:1
(P> 0.01) with a minority in 1:2:1 and 1:1:1:1 (Table 1). Each SNP
genotype was satisfied such requirements that the allele of a het-
erozygous genotype had a coverage depth of at least three reads
and the coverage depth for the allele of a homozygous genotype
was at least 5. In addition, the quality of each genotype had a
Phred score of at least 30. The missing genotype rate at each SNP
was controlled to be not greater than 5%.

Figure 1 Histograms of tree height measured in the randomized complete block design at eight different time points: (A) June 8, (B) June 23, (C) July 6,
(D) July 16, (E) July 27, (F) August 14, (G) September 2, and (H) October 14 in 2017.

Table 1 Summary of SNPs obtained across clones in the
randomized complete block design

Segregation type Ratio Genotype Number

aa�ab 1:1 aa, ab 8,968
aa�bc 1:1 ab, ac 23
ab�aa 1:1 aa, ab 13,512
ab�cc 1:1 ac, bc 48
ab�ab 1:2:1 aa, ab, bb 105
ab�ac 1:1:1:1 aa, ab, ac, bc 14
Total 22,670
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Significant SNPs associated with tree height
We applied the mvLMM to perform the GWAS for the tree height
with the 22,670 HQ SNPs distributed on the 19 chromosomes and
several scaffolds in Populus. The P-value threshold for significant
SNPs was set to 4.41E–7 (-log10(P-value) ¼ 6.36) based on the
Bonferroni correction at the 0.01 significant level. If a small re-
gion (<1000 bp) harbored several significant SNPs, the most sig-
nificant was chosen to represent that region. As a result, 41 SNPs
were found to be significantly associated with the tree height.
Figure 2 shows the Manhattan plot of the SNP position against
the corresponding negative base 10 logarithm of P-value. It can
be seen that these significant SNPs were distributed on all but 2
(Chr02 and Chr18) chromosomes with one SNP on scaffold 45.
The physical distance between adjacent significant SNPs was
greater than 123 kb, the minimum distance found between the
second and the third significant SNPs on chromosome 5 (Table 2).

Table 2 summarizes the significant SNPs on their IDs, posi-
tions, segregation types, P-values, and ratios of explaining the
phenotypic variance (R2). The SNP IDs were named after the two
parents of the clones currently used in this study, the chromo-
some and scaffold name, and the order within a chromosome,
where D stands for P. deltoides, S for P. simonii, C for chromosome,
and T for scaffold (e.g., DSC05H2 indicates the second significant
SNP affecting the tree height on chromosome 5). We found that
all the SNPs segregated in the ratio of 1:1 with 21 segregating in
the type of aa�ab and 20 in ab�aa. The percent of phenotypic var-
iance (R2) explained by the SNPs ranged from 0.26% to 2.64%,
amounting to 63.68% in total. Moreover, the effect of each SNP at
each time point was also estimated, which was defined as the dif-
ference between the homozygous (aa) and heterozygous (ab)
effects (Zeng 1994). Figure 3 presents the connected scatter plot
of each SNP effects. It can be seen that the SNPs were largely di-
vided into two categories: one possessed positive effects and the
other had negative effects over multiple time points.

We found 15 significant SNPs were consistent in position with
most QTLs identified in the previous studies for mapping tree
height in Populus (Monclus et al. 2012; Du et al. 2016; Liu et al.
2017). Supplementary Table S7 lists those SNPs that were consis-
tent with one or more QTLs detected in the three recent studies,
excluding the two early studies due to no position information
available in the physical map for the QTLs (Bradshaw and
Stettler 1995; Wu 1998). It can be seen that most QTLs detected in
the three previous studies either were located not far from or
their confidence intervals contained a significant SNP. The physi-
cal distance between the consistent SNP and QTL was less than
5.0 Mb for most pairs with a few greater than 5.0 Mb but less than

15.0 Mb. Interestingly, we found that these consistent SNPs have
stronger association signals than the others. It is obvious to see
that 5 of the consistent SNPs have the first and the third to sixth
lowest P-values (Table 2). Moreover, we performed the Kruskal–
Wallis rank-sum test (Hollander and Wolfe 1973) to test the dif-
ference of the minus logarithm P-values between the 15 consis-
tent SNPs and the others. The test result showed that the
consistent SNP group had the minus logarithm P-values signifi-
cantly higher than the other group with a P-value of 0.0482.

In comparison with the univariate approach, we also per-
formed the association analysis for each single tree height with
the software TASSEL. The result showed that there were 6 SNPs
significantly associated with the tree height measured at the first
time point (T1), which were distributed on chromosomes 4, 10,
17, and 19 (Supplementary Figure S1). However, no significant
SNPs were found for the tree height at time points T2–T8.

Exploration of candidate genes
To explored candidate genes of the significant SNPs, we extracted
100 coding genes surrounding each SNP in the genome annota-
tion database of P. trichocarpa at Phytozome (v4.1; https://genome.
jgi.doe.gov). To obtain enough annotation information, the cod-
ing sequences were first blasted against the non-redundant (nr)
protein database (Pruitt et al. 2007) and then the blast hits were
mapped to Gene Ontology (GO; http://geneontology.org) terms.
With the newly annotation result, we searched keywords related
to tree growth and development, such as “brassinosteroid,”
“gibberellin,” “leaf,” “xylem,” “photosynthesis,” “salt,” and
“disease.” Consequently, 248 genes nearby the significant SNPs
corresponded to at least one of the 17 keywords; all but one SNP
(DSC13H2) had at least one candidate genes related to these
words (Supplementary Table S8; Figure 4). It can be seen that
there were 13, 8, 17, and 8 SNPs that had candidate genes in-
volved in brassinosteroids, gibberellins, auxins, and cytokinins,
respectively. These hormones were confirmed to have direct
effects on plant height (Dubouzet et al. 2013). Furthermore, 7
SNPs possessed candidate genes related to leaf growth and devel-
opment, 12 to root, 10 to flower, 21 to seed, 14 to embryo, 8 to
shoot, and 4 to xylem. For responses to stress, 20 SNPs owned
candidate genes for salt stress, 19 for heat stress, 6 for cold stress,
and 12 for water deprivation or activity. It was surprising that up
to 30 SNPs were identified with candidate genes related to photo-
synthesis, which plays an important role in the tree growth and
development (Wang et al. 2017). In addition, 20 SNPs were found
to be associated with candidate genes for disease resistance.
Particularly, for the 15 significant SNPs consistent with the

Figure 2 Manhattan plot of genome-wide association analysis of tree height in the randomized complete block experiment. The horizontal line
indicates the genome-wide significant threshold of 6.36, a base 10 logarithm of P-value based on the Bonferroni correction at the 0.01 significant level.
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previous identified QTLs (Supplementary Table S7), we observed
that all but one SNP (DSC05H1) had candidate genes that re-
sponse to hormones or involve hormone activities, that all but
two (DSC10H2 and DSC13H1) directly affected the growth and de-
velopment of different tissues such as leaf, root, seed, and xylem,
that all but three (DSC10H1, DSC10H2, and DSC14H1) were re-
lated to response to stresses or resistance to diseases, and that
all but four (DSC05H1, DSC07H3, DSC10H2, and DSC14H1) were
involved in photosynthesis.

To further understand the function of the 248 candidate genes
described above, we conducted the GO enrichment analysis using
all the 34,698 genes in the annotation database of P. trichocarpa
(v4.1) as a reference set. As a result, 289 GO terms were signifi-
cantly enriched with the FDR value <0.05, of which 223 belonged
to the category of biological process, 40 to molecular function,
and 26 to cellular component (Supplementary Table S9).
Interestingly, almost all the searched words except “disease”
were contained in at least one significant GO terms in the cate-
gory of biological process (Table 3). For the four hormones, these
GO terms included “response to brassinosteroid” (GO:0009741),
“response to gibberellin” (GO:0009739), “response to auxin”
(GO:0009733), and “response to cytokinin” (GO:0009735). For the
tree tissues, the significantly enriched GO terms contained the

developments of leaf (GO:0048366), root (GO:0048364), flower
(GO:0009908), seed (GO:0048316), embryo (GO:0009790), shoot
(GO:0048367), and xylem (GO:0010089). For the responses to
stress, the similar GO terms consisted of responses to salt stress
(GO:0009651), to heat (GO:0009408), to cold (GO:0009409), and to
water deprivation (GO:0009414). Also, we found that the most
enriched GO terms in Table 3 was “photosynthesis” (GO:0015979)
with the smallest FDR value of 7.48E-24. Although no significant
GO terms were found to be related to disease, there existed sev-
eral significantly enriched descriptions related to disease resis-
tance when we used annotations resulted from the blast hits in
the enrichment analysis with Blast2Go (Supplementary Table
S10). The reason that no significant GO terms were related to dis-
ease in this study may be due to the fact that there are only 2 GO
terms (GO:0009614, GO:0106093) related to disease in the current
GO database (http://geneontology.org).

We also performed GO enrichment analyses to investigate the
difference of candidate gene functions between the significant
SNP group with positive effects and the group with negative
effects (Figure 3). There were 71 and 177 candidate genes for the
positive- and negative-effect groups, respectively. Two GO en-
richment analyses were conducted with the 71 and 177 candidate
genes as test sets separately and all the 34,698 genes as the

Table 2 Summary of the significant SNPs associated with the tree height on chromosomes and scaffolds

SNP ID Chromosome Position Segregation type -log10(P-value) R2 (%)

DSC01H1* Chr01 17015054 ab�aa 7.42 1.17
DSC01H2 Chr01 21306230 aa�ab 6.40 1.70
DSC01H3* Chr01 43104197 aa�ab 8.52 2.43
DSC01H4 Chr01 47744299 aa�ab 7.04 1.47
DSC03H1 Chr03 2674990 ab�aa 7.95 1.02
DSC03H2 Chr03 20842084 aa�ab 7.37 2.34
DSC04H1* Chr04 4423234 aa�ab 8.04 1.84
DSC04H2 Chr04 20708892 aa�ab 8.02 1.59
DSC04H3 Chr04 21344054 ab�aa 8.07 2.39
DSC05H1* Chr05 336929 aa�ab 8.18 0.26
DSC05H2* Chr05 14685227 aa�ab 8.15 1.84
DSC05H3* Chr05 14808652 ab�aa 7.12 1.99
DSC06H1 Chr06 810179 aa�ab 6.52 1.35
DSC06H2 Chr06 7733888 aa�ab 7.10 1.19
DSC06H3* Chr06 13575979 ab�aa 7.17 1.58
DSC06H4* Chr06 16203991 aa�ab 8.38 1.13
DSC07H1 Chr07 9357528 ab�aa 7.00 1.60
DSC07H2 Chr07 9920573 aa�ab 7.21 2.38
DSC07H3* Chr07 10256748 aa�ab 6.45 0.64
DSC08H1 Chr08 13071948 ab�aa 7.87 1.54
DSC08H2 Chr08 15844780 ab�aa 6.42 1.47
DSC08H3 Chr08 17642966 aa�ab 7.96 2.05
DSC08H4 Chr08 18644603 ab�aa 6.40 1.22
DSC09H1* Chr09 11900120 ab�aa 6.57 1.48
DSC10H1* Chr10 4825843 aa�ab 9.79 1.96
DSC10H2* Chr10 8084409 ab�aa 7.53 0.58
DSC11H1 Chr11 10094625 aa�ab 7.03 0.46
DSC11H2 Chr11 16687705 aa�ab 7.13 1.97
DSC12H1 Chr12 4890486 ab�aa 7.07 1.33
DSC13H1* Chr13 4732990 ab�aa 7.62 1.99
DSC13H2 Chr13 10764896 aa�ab 6.44 1.72
DSC14H1* Chr14 14722576 aa�ab 7.27 1.22
DSC14H2 Chr14 16676502 aa�ab 6.36 1.99
DSC15H1 Chr15 6813100 ab�aa 7.47 1.37
DSC16H1* Chr16 9864836 ab�aa 6.45 1.11
DSC17H1 Chr17 7378390 ab�aa 7.26 1.09
DSC17H2 Chr17 10908093 ab�aa 8.00 2.01
DSC19H1 Chr19 5741825 aa�ab 6.66 1.65
DSC19H2 Chr19 13202165 ab�aa 6.81 0.99
DSC19H3 Chr19 13578941 ab�aa 8.82 2.64
DST45H1 scaffold_45 28115 ab�aa 7.06 1.93

* Consistent significant SNPs in position with QTLs of tree height in Populus identified in previous studies.
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reference set. The results showed that 95 GO terms were signifi-
cantly enriched for the positive group and 220 for the negative
group (Supplementary Tables S11 and S12). We observed that
there were 73 GO terms enriched in both groups, such as
“response to hormone,” “photosynthesis,” and “post-embryonic
development.” However, there were 22 unique GO terms enriched
in the positive group and up to 147 in the negative group. In
the positive group, the unique enriched GO terms included

“auxin-activated signaling pathway,” “stigma development,”
“flower development,” and the others (Supplementary Table S11),
whereas in the negative group those unique GO terms included
“response to brassinosteroid,” “shoot system development,”
“xylem development,” etc. (Supplementary Table S12). Although
the candidate genes were involved in many GO terms, these
unique GO terms could be used to link the two groups of signifi-
cant SNPs.

Figure 3 Scatter plots of SNP effects over the eight time points. Positive effect plots are labeled with purple and negative effect plots with light yellow.
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Discussion
Application of traditional experimental design for
GWAS
The RCBD is one of the most widely used experimental designs in
traditional forest breeding program for estimating genetic param-
eters (Wright 1976; Williams et al. 2002). However, this kind of
test experiments was rarely directly used with mvLMM to identify
the associations between molecular markers and phenotypic
traits, such as GWAS and QTL mapping, possibly due to the lack
of suitable software. In this study, we first used mvLMM to per-
form GWAS of tree height with longitudinal measurements from
the traditional RCBD in Populus. The poplar hybrid F1 clones were
planted repeatedly not only among blocks but also within plots in
the RCBD. One advantage of these repeated clones is to allow us
to obtain repeated phenotypic data for a genotype that originated

from a seed. Theoretically, the repeated data can control spatial

effects in field and reduce the systematic errors, thus improving

the accuracy and power in GWAS. Another advantage is that

each genotype can be preserved almost forever especially in for-

est trees because the repeated plants provide redundancy for the

same genotype in the case of natural damages caused by insect,

disease or wind. On the contrary, in most previous GWAS or QTL

mapping studies in Populus (Bradshaw and Stettler 1995; Monclus

et al. 2012; Du et al. 2016; Liu et al. 2018), phenotypic traits were

measured from single plants with different genotypes in natural

populations or a full-sib family such as the traditional BC and F2

populations in inbred lines and the F1 hybrid population in out-

bred species. In these populations, each tree corresponds to a

unique genotype so that either the number of genotypes could

gradually reduce over times or distortion measurements could be

Figure 4 Significant SNPs with potential candidate genes related to biological functions and processes. All but one SNP (DS13H2) possessed candidate
genes related to the tree growth and development of leaf, root, flower, seed, embryo, shoot, and xylem, to stress responses of salt, heat, cold, and water
deprivation, and to disease resistance, or involved in brassinosteroid, gibberellin, auxin, cytokinin, and photosynthesis.
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produced on some genotypes owing to the natural damages.
Such reduction in genotype number or existence of distortion
measurements would greatly affect the genetic parameter esti-
mation and thus discount the power of GWAS or QTL mapping.
Overall, the RCBD established with poplar clones in this study
provided a unique population for effectively studying the molec-
ular mechanism underlying important traits in Populus.

Implementation of GWAS with longitudinal
measurements from the RCBD
We successfully applied mvLMM to the GWAS of tree height with
longitudinal measurements from the RCBD in this study. Because
of the unique population structure and the multiple phenotypic
measurements, we cannot directly apply current available GWAS
software to simultaneously estimate the genetic variance compo-
nents of tree heights at the 8 time points. Generally, the software
such as EMMA (Kang et al. 2008), EMMAX (Kang et al. 2010), and
GEMMA (Zhou and Stephens 2012) are usually applied in animal
and human GWAS by incorporating the minor allele effect of a
bi-allelic SNP into LMM, in which only one column with elements
of 0, 1, and 2 for SNP genotype effects is added in the design ma-
trix of fixed effects. However, there were triallelic SNPs in our
SNP data set (Table 1), which segregated in 1:1 (aa�bc and ab�cc),
1:2:1 (ab�bb), or 1:1:1:1 (ab�ac). Apparently, these SNPs cannot be
applied into the GWAS software only for biallelic SNPs. To solve
this problem, we used SNP genotype effects of each SNP in the
LMM (1) with the restriction of the sum of expected genotype
effects equal to zero. Next, the function emmremlMultivariate in
the R package EMMREML was used to calculate the estimates of
the genetic and residual matrices of variances. This function is

flexible for the design matrix of the fixed effects and focuses on
dealing with multivariate phenotypic traits, but it cannot flexibly
provide statistics for testing SNPs if their genotype effects corre-
spond to more than two columns in the design matrix. We re-
solved the hypothesis testing problem by converting the
multivariate LMM (1) into univariate LMM through matrix vecto-
rization (Searle et al. 2006) (pp. 458) and then conducting the hy-
pothesis test using formula (3) as constructed in Kang et al. (Kang
et al. 2008).

The issue of additive genetic relationship matrix
One of the crucial parts in the LMMs is the additive genetic rela-
tionship matrix which reflects population structure and directly
affects the estimate of background genetic variance. The rela-
tionship matrix is the kinship matrix multiplied by 2 (Lynch and
Walsh 1998; Bae et al. 2016), which can be inferred by pedigree- or
marker-based methods (Thornton and McPeek 2007; VanRaden
2008; Yang et al. 2010). Although various marker-based methods
for inferring a kinship matrix with a large number of SNPs have
been proposed, they showed small differences in correcting popu-
lation structure (Nievergelt et al. 2007) and some of them had the
limitation that the estimated kinship matrix may not be guaran-
teed to be positive semidefinite, which could distort the genetic
parameter estimations (Kang et al. 2008). Moreover, these
marker-based methods were typically based on the markers each
segregating in three genotypes, that is, the homozygote, hetero-
zygote, and other homozygote. The genotype effects were usually
assumed to be a scale of 1, 0, and -1 with frequencies of p2

i ,
2pið1� piÞ, and ð1� piÞ2, respectively. The variance of the geno-
type effects can be derived as a scale of2pið1� piÞ and it was used

Table 3 Some significantly enriched GO terms related to plant hormones, to the development of tree tissues, and to response to stresses,
or involved in photosynthesis

GO ID GO Name FDR P-value Nr
test

Nr
reference

Non Annot
test

Non Annot
reference

GO:0009741 Response to brassinosteroid 1.1E–8 9.86E–11 9 42 239 34408
GO:0009742 Brassinosteroid mediated sig-

naling pathway
4.91E–5 7.06E–7 6 38 242 34412

GO:0016131 Brassinosteroid metabolic
process

0.0121 3.28E–4 4 42 244 34408

GO:0009739 Response to gibberellin 1.28E–4 1.94E–6 6 46 242 34404
GO:0009733 Response to auxin 2.69E–15 1.22E–17 22 229 226 34221
GO:0009734 Auxin-activated signaling path-

way
6.84E–9 5.95E–11 12 106 236 34344

GO:0009735 Response to cytokinin 8.76E–7 9.15E–9 7 31 241 34419
GO:0009736 Cytokinin-activated signaling

pathway
1.76E–6 1.98E–8 6 19 242 34431

GO:0009690 Cytokinin metabolic process 0.0039 8.86E–5 4 29 244 34421
GO:0048366 Leaf development 0.021 6.15E–4 5 90 243 34360
GO:0009965 Leaf morphogenesis 0.037 0.0011 3 26 245 34424
GO:0048364 Root development 6.87E–4 1.24E–5 7 100 241 34350
GO:0022622 Root system development 6.87E–4 1.24E–5 7 100 241 34350
GO:0009908 Flower development 0.0129 3.54E–4 7 175 241 34275
GO:0048316 Seed development 4.45E–10 3.41E–12 16 195 232 34255
GO:0090351 Seedling development 0.0064 1.55E–4 4 34 244 34416
GO:0009845 Seed germination 0.0468 0.0015 3 29 245 34421
GO:0009790 Embryo development 3.18E–5 4.09E–7 9 120 239 34330
GO:0048367 Shoot system development 1.81E–9 1.55E–11 18 295 230 34155
GO:0010016 Shoot system morphogenesis 2.15E–6 2.44E–8 8 58 240 34392
GO:0010089 Xylem development 0.009 2.28E–4 3 14 245 34436
GO:0010087 Phloem or xylem histogenesis 0.0121 3.28E–4 4 42 244 34408
GO:0015979 Photosynthesis 7.48E–24 7.81E–27 29 213 219 34237
GO:0009651 Response to salt stress 1.99E–22 3.46E–25 24 130 224 34320
GO:0009408 Response to heat 1.78E–13 1.01E–15 16 110 232 34340
GO:0009409 Response to cold 0.0172 4.8E–4 5 85 243 34365
GO:0009414 Response to water deprivation 1.01E–6 1.08E–8 9 76 239 34374
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to generate the relationship matrix (VanRaden 2008). However, in
this study, the majority of SNPs are segregated only in two geno-
types expressed as aa and ab with frequencies of pi and 1� pi

(Table 1), which is attributed to the two highly heterozygous
parents of the F1 hybrid population (Mousavi et al. 2016; Tong
et al. 2016). Apparently, the variance of the two genotype effects
is totally different from that of the three genotype effects.
Therefore, the relationship matrix cannot be properly calculated
from our SNP data with currently available software such as
TASSEL and EMMA. Nevertheless, we noted that our samples
were all from a full-sib family of two unrelated parents in
Populus. In theory, the coefficient of kinship (or coancestry) is
expected to be 0.25 for full-sibs assuming random mating
(Loiselle et al. 1995; Lynch and Walsh 1998). This led to the rela-
tionship matrix with elements of ones on the diagonal and 0.5
elsewhere, which was applied as a pedigree-method in this study.

P-value threshold and the number of significant
SNPs
The LMM is one of the most popular approaches in GWAS, but it
tests one SNP at a time so as unable to simultaneously identify
many loci that underlie the objective trait. For this reason, it is
critical to determine the P-value threshold for significant SNPs by
performing multiple testing. The most commonly used methods
for multiple hypothesis testing include the Bonferroni correction
and Benjamini–Hochberg (BH) procedure (Benjamini and
Hochberg 1995). The Bonferroni correction is considered to be
more conservative and certainly to result in less significant SNPs
than the BH method. Both methods limit the false positive rate,
but they very likely inflate the false-negative rate. We used the
Bonferroni correction to determine the P-value threshold under a
lower common significant level of 0.01, leading to 41 significant
SNPs detected for the tree height. This means that the expected
number of false-positive SNPs was less than one, but the number
of negative false SNPs was uncertain. Such a medium number of
extremely significant SNPs each explaining a small fraction of
the phenotypic variance (0.26%–2.64%) is in accord with the infin-
itesimal model, assuming that a quantitative trait is typically
controlled by an infinite number of genes each with a tiny effect
(Fisher 1919; Bulmer 1971). Considering those cases of up to 100
significant SNPs found for a complex trait, such as in animal and
crop GWAS (Ober et al. 2012; Bali et al. 2018), it is very likely that
there exist a lot of undetected SNPs that have much smaller
effects and explain the rest portion of the phenotypic variance in
this study. However, we virtually identified far many more loci
associated with tree height than QTLs detected in the previous
QTL mapping studies in Populus (Bradshaw and Stettler 1995; Wu
1998; Monclus et al. 2012; Du et al. 2016; Liu et al. 2017). This could
be attributed to the application of the traditional RCBD and the
use of longitudinal phenotypic measurements in the LMM, en-
hancing the power of detecting association of SNPs to the tree
height.

Alternative approach for finding candidate genes
We used the nearby genes for each significant SNP to investigate
candidate genes that could be related to the tree height under
study. The genes nearby each SNP spanned a physical region
with a mean length of 2.03 Mb and a standard deviation of
1.17 Mb. This approach could be called the proximate strategy,
which has been frequently used for finding candidate genes in
GWAS or QTL studies (Monclus et al. 2012; Geng et al. 2015; Su
et al. 2017; Vanous et al. 2018). Alternatively, LD analysis can be
used to search candidate genes with procedures as described by

(Slaten et al. 2020). As a comparison, we also tried this method to
find candidate genes that are in LD with the significant SNP. First,
LD threshold was determined by performing LD decay analysis
with all the SNPs using the software package PopLDdecay (Zhang
et al. 2019). The resut showed that LD decayed rapidly to about
r2 ¼ 0:2 corresponding to a physical distance of �650 bp
(Supplementary Figure S2), which was consistent with the reports
in the literature that LD decayed at a short distance of 100-
1500 bp in outcrossing species and that the threshold of r2 ¼ 0:2
can be used at which LD stops to exist. Next, we used this thresh-
old to find the candidate genes of a significant SNP on the condi-
tion that r2 � 0:2 between an SNP within a gene and this
significant SNP. As a result, a total of 94 candidate genes were
found for 31 significant SNPs, most (73.40%) of which were in low
LD (r2 < 0:5) with their corresponding significant SNPs
(Supplementary Table S13). Unfortunately, few of these candi-
date genes had meaningful descriptions about the growth and
development of tree height. This undesirable result could be
explained by the fact that many genes around a significant SNP
did not contain any SNPs due to the less number of SNPs avail-
able in this study as compared to the number of genes on the ref-
erence genome (22,670 versus 34,699), so that they had no chance
to be chosen as candidate genes through LD analysis. Therefore,
it was an appropriate way to use the proximate strategy for
studying candidate genes of the significant SNPs in this study.

Conclusion
The combined use of the traditional RCBD along longitudinal
measurements could greatly improve the power of GWAS, lead-
ing to identifying far more significant SNPs associated with tree
height than QTLs detected in previous studies in Populus. The
detected SNPs were distributed on all but 2 chromosomes and
explained a large portion of the phenotypic variance. Most of
these SNPs possessed potential candidate genes that were signifi-
cantly related to the growth and development of different tissues,
to stress responses, and to disease resistance, or involved in sev-
eral plant hormones. The result would enhance understanding of
molecular mechanism for growth traits and would accelerate
marker-assisted breeding programs in such species.
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