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BACKGROUND: Mammography is widely used for breast cancer screening but suffers from a high false-positive rate. Here, we
perform the largest comprehensive, multi-center study to date involving diverse ethnic groups, for the identification of circulating
miRNAs for breast cancer screening.
METHODS: This study had a discovery phase (n= 289) and two validation phases (n= 374 and n= 379). Quantitative PCR profiling
of 324 miRNAs was performed on serum samples from breast cancer (all stages) and healthy subjects to identify miRNA biomarkers.
Two-fold cross-validation was used for building and optimising breast cancer-associated miRNA panels. An optimal panel was
validated in cohorts with Caucasian and Asian samples. Diagnostic ability was evaluated using area under the curve (AUC) analysis.
RESULTS: The study identified and validated 30 miRNAs dysregulated in breast cancer. An optimised eight-miRNA panel showed
consistent performance in all cohorts and was successfully validated with AUC, accuracy, sensitivity, and specificity of 0.915, 82.3%,
72.2% and 91.5%, respectively. The prediction model detected breast cancer in both Caucasian and Asian populations with AUCs
ranging from 0.880 to 0.973, including pre-malignant lesions (stage 0; AUC of 0.831) and early-stage (stages I–II) cancers (AUC of
0.916).
CONCLUSIONS: Our panel can potentially be used for breast cancer screening, in conjunction with mammography.

British Journal of Cancer (2022) 126:472–481; https://doi.org/10.1038/s41416-021-01593-6

BACKGROUND
Mammography has been widely-used as a screening tool for
breast cancer despite its high false-positive rate, and its lack of
sensitivity in detecting cancer in dense breasts [1]. A high rate of
false positivity of 11–12% has been detected among women in
the United States who have undergone mammographic screening
[2, 3]. Minimally invasive methods such as miRNA-based liquid
biopsies can potentially overcome these disadvantages and
improve overall detection accuracy [4, 5]. MiRNAs are deemed
suitable as biomarkers because of altered miRNA expression
profiles in cancer that reflect disease development, as well as the
stability and the accessibility of circulating miRNAs in a myriad of
body fluids including blood, urine and saliva [6, 7].
MiRNAs are evolutionary conserved, single-stranded non-cod-

ing RNAs of 19–25 nucleotides that primarily function in
mediating the degradation or translational repression of mRNA
targets [7]. Under normal physiological conditions, miRNAs are key
components of feedback mechanisms for a wide range of
biological pathways such as cell proliferation, differentiation and
apoptosis [8]. Conversely, dysregulated miRNAs have been

implicated in carcinogenesis including supporting tumour growth
by inhibiting growth suppression, sustaining proliferative signal-
ling and resisting cell death, activating invasion and metastasis,
and promoting angiogenesis [6]. It is now known that miRNAs
regulate oncogenesis through their tumour suppressor or
oncogenic activities, with increasing evidence of aberrant miRNA
expression in a variety of malignancies [9].
In an effort to improve breast cancer detection, numerous

promising blood-derived miRNA biomarkers with superior dis-
criminative ability as compared to mammography, have been
reported in recent years [1, 10, 11]. The miRNAs miR-145, miR-21
and miR-221 are among the more frequently reported candidates
and demonstrate potential for the early detection of breast cancer
[12–15]. However, despite these findings, these breast cancer-
associated miRNA biomarker studies are still at the discovery
phase, with none successfully transitioned to clinical trials. This
could be due to various shortcomings. For example, the majority of
previously published circulating miRNA biomarker studies for
breast cancer were conducted in smaller sample sizes comprising
of a single ethnic group, and with one or no validation phase.
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Several studies on blood-based circulating miRNA signatures were
generated based on one discovery cohort, with the sample size of
less than 200 study subjects without subsequent validation cohorts
[11–14, 16]. Other studies had only one validation phase each [17–
20]. A prospective validation using 116 women [21] was carried out
as a follow-up to the study by Kodahl et al. [18]. However, in the
prospective study, the nine-miRNA signature (miR-15a, miR-18a,
miR-107, miR-133a, miR-139-5p, miR-143, miR-145, miR-365 and
miR-425) failed to differentiate between the non-cancer controls
and the ER+ or the ER− subtypes (AUC of 0.580 and 0.610,
respectively) [21], possibly due to insufficient validation of the
miRNA signature in the previous retrospective study.
Here, we have carried out the largest comprehensive, multi-

center study to date involving diverse ethnic groups comprising of
Caucasians and Asians, for the identification of circulating miRNAs
associated with breast cancer. Expression profiles of serum
miRNAs were elucidated from several independent cohorts of
breast cancer cases and non-cancer controls following an analysis
workflow that accounted for possible pre-analytic confounding
factors. The performance of potential circulating miRNAs was
established in three phases, with a discovery cohort and two
independent validation cohorts. Hence, we are the first to report a
miRNA-based breast cancer prediction model with high discrimi-
native ability in classifying breast cancer patients from non-cancer
individuals, and with the capability of identifying breast cancer in
both Caucasian and Asian populations.

METHODS
Study design and cohorts
This multi-centre case-control study was carried out in three phases: one
discovery phase and two validation phases. The three patient cohorts used
(Discovery Cohort, Validation 1 Cohort, and Validation 2 Cohort,
respectively) comprised samples from six different sources (Table 1). The
Discovery cohort comprised European Caucasian samples obtained from
the Asterand biobank (designated as Source 1) while the Validation 1 and 2
cohorts were a mix of Caucasian and Asian samples from five different
sources in USA, Ukraine, Russia, and Singapore (designated as Sources 2–5)
(Table 1). The Discovery and Validation cohorts included female subjects
diagnosed with stage 1 to stage 3 breast cancer of all subtypes
(Supplementary Table S1). The inclusion criteria for cases was women
diagnosed with breast cancer, and the inclusion criteria for controls was no
history of cancer in healthy female individuals. A blinded approach was not
done as our study design included two validation phases. Written informed
consent was obtained from all participants and the research was approved
by all relevant Institutional Review Boards (IRBs). Samples from the
Asterand and Tissue Solution biobanks were ethically collected under IRB-
approved protocols and fully consented.

Blood collection and serum processing
Peripheral blood samples (20ml) were drawn from subjects using
venipuncture and collected in serum tubes. Blood samples were clotted
for 30–60min and were centrifuged at 1300 rcf at room temperature for
20min. Sera were then aliquoted for immediate storage at −80 °C.

RNA Isolation
Total RNA was extracted from 200 µl of each serum sample using the
miRNeasy Serum/Plasma Kit (Qiagen, Hilden, Germany). This was done
according to the manufacturer’s recommendations, except for the following
modifications: (a) a set of three proprietary spike-in controls (MiRXES,
Singapore) was added, representing high, medium, and low levels of RNA,
into the sample lysis buffer (QIAzol Lysis Reagent, Qiagen) prior to sample RNA
isolation. The spike-in controls are 20-nucleotide RNAs with unique sequences
(distinct from any of the 2588 annotated mature human miRNAs in miRBase
version 21.0, RRID:SCR_003152) and are used to monitor RNA isolation
efficiency and normalise for technical variations during RNA isolation; (b)
bacteriophage MS2 RNA was added into sample lysis buffer (1 µg per ml of
QiaZol) to improve RNA isolation yield; (c) the samples were centrifuged at
18,000 × g for 15min at room temperature after mixing with chloroform; and
finally, (d) the RNA was eluted in 25 µl of RNase-free water.

RT-qPCR Detection of miRNA expression
For biomarker discovery, a highly-controlled RT-qPCR workflow was used to
quantify the expression of 324 miRNAs in each serum sample (Supplementary
Table S2). Serum RNA was reverse transcribed using miRNA-specific reverse
transcription (RT) primers according to manufacturer’s instructions (ID3EAL
Customized Individual miRNA RT Primer, MiRXES) on a Veriti™ Thermal Cycler
(Applied Biosystems, Foster City, CA, USA). Multiplexed RT reactions were
carried out using specific RT primers for 324 miRNAs. This proprietary list of 324
circulating miRNAs was selected based on experimental analysis of more than
1000 high confidence human miRNAs from several hundred serum and
plasma specimens. These 324 miRNAs are therefore those which have been
detected with high confidence in human serum and plasma samples. The RT
primers were divided into 10 multi-plex primer pools (50–60-plex per pool) to
minimise non-specific cross-overs and primer-primer interactions. For each
RNA sample, 10 multiplex RT reactions were performed, each with 2 µl of
isolated RNA. Synthetic templates for standard curves of each miRNA (6-log
serial dilution of 10 million to 100 copies) and a non-template control
(nuclease-free water spiked with MS2) were reverse transcribed concurrently
with the isolated sample RNA. Synthetic miRNA standard curves were used to
absolutely quantify sample miRNA expression copy numbers. To measure 324
miRNAs using quantitative PCR (qPCR), all cDNAs, including those from
synthetic miRNA standards, were pre-amplified using a 14-cycle PCR reaction
with Augmentation Primer Pools (MiRXES) on the Veriti™ Thermal Cycler.
Single-plex qPCR was then performed on the amplified cDNA samples using a
miRNA-specific qPCR assay (MiRXES) and ID3EAL miRNA qPCR Master Mix
according to manufacturer’s instructions (MiRXES). The qPCR reactions with
technical duplicates were carried out on the ViiA™ qPCR system (384-well
configuration, Applied Biosystems). Raw threshold cycle (Ct) values were
calculated using the ViiA™ 7 RUO software with automatic baseline setting and
a threshold of 0.5. RT-qPCR efficiency and potential cDNA amplification bias
were assessed by analysing the Ct values of the synthetic miRNA standards.
The absolute expression of each miRNA (number of copies present) in the
serum sample was calculated by intrapolation of sample Ct values with
synthetic miRNA standard curves and correcting for variations in RT-qPCR
efficiency. For biomarker validation, miRNA expression was quantified using
the same workflow described above, adjusted for the number of miRNAs to be
quantified.

Biomarker discovery
The absolute quantities of 324 candidate miRNAs in the serum of both breast
cancer cases and non-cancer controls were determined. The geNORM
(geNORM, RRID:SCR_006763) [22] and NormFinder (NormFinder, RRID:
SCR_003387) [23] software were used to identify endogenous reference
miRNAs that had stable expression across all samples and could be used to
normalise for varying sample RNA inputs for RT-qPCR. Three miRNAs with
stable expression were identified and used to normalise the expression levels
of miRNAs across samples: miR-128-3p, miR-652-3p, and miR-106b-3p
(Supplementary Fig. S1). The normalised miRNA expression values were used
to compare the expression levels of individual miRNAs between breast cancer
cases and non-cancer controls. Unsupervised hierarchical clustering was
carried out based on Euclidean distance of normalised miRNA expression levels
in two dimensions (samples and miRNA expression). The top miRNAs with p<
0.01 and magnitude of log2 fold change >0.5 were selected for validation
using the Validation 1 cohort. Statistical significance of differences in miRNA
expression was determined using Student’s t-test. All p-values were corrected
for multiple hypotheses testing using false discovery rate (FDR) adjustment
[24, 25]. Those miRNAs which were differentially expressed in both the
Discovery and Validation 1 cohorts were considered validated. A relaxed cut-off
of p< 0.05 with magnitude of log2 fold change >0.5 was used to identify
validated miRNAs for biomarker panel building and optimisation.

Biomarker panel building and optimisation
A two-fold cross-validation procedure that incorporated the sequential
forward floating search (SFFS) algorithm [26] and a logistic regression
model was used for building and optimising miRNA biomarker panels to
discriminate between breast cancer cases and non-cancer controls.
Starting from an empty panel, SFFS progressively searches for the next
best marker to add to the panel already chosen. It is a search strategy to
arrive at an optimal panel without conducting an exhaustive search of all
possible combinations. For each iteration of the cross-validation proce-
dure, SFFS will arrive at one optimal panel (one optimal two-miRNA panel,
one optimal three-miRNA panel, and so on). The SFFS was used to select
miRNA biomarkers for inclusion in each biomarker panel built. In each
iteration of the two-fold cross validation procedure, the samples included
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in the combined Discovery and Validation 1 cohorts (comprising a total of
663 samples from six sources) were randomly partitioned into two equal
groups: Group A and Group B. The proportion of subjects from each of the
six sources were partitioned equally in both Group A and B. During each
iteration of cross-validation, Group A was first used as the training set for
building a breast cancer prediction model while Group B was used as the
test set. The group assignments as training and testing sets were then
swapped. For every multi-miRNA biomarker panel optimised in each
iteration, a logistic regression prediction model was built and the
diagnostic ability of each panel was evaluated using the area under the
curve of the receiver operating characteristics (AUC) analysis. The cross-
validation procedure was carried out 200 times. Thus, 200 two-miRNA
panels, 200 three-miRNA panels, and so on, were optimised and tested.
The diagnostic power (AUC) of each optimised multi-miRNA panel for
classifying breast cancer and non-cancer patient samples was then
calculated and compared with other panels optimised in each iteration.
Using a logistic regression model incorporating multi-miRNA biomarker
panel expression measurements, a prediction algorithm score could be
calculated for each sample, with higher scores indicating increased risk of
cancer. A prediction algorithm score cut-off was then used to predict
breast cancer.

RESULTS
Discovery and validation of significant differentially regulated
miRNAs
The expression levels of 324 miRNAs, which have been previously
detected with high confidence in human serum, were quantified
in the Discovery Cohort of 289 Caucasian samples (183 breast
cancer samples and 106 non-cancer controls). All samples in this

cohort were obtained from a single source as shown in Table 1.
MiRNAs that were significantly differentially expressed between
breast cancer cases and non-cancer controls were identified by p-
value of unpaired Student’s t-test and fold change in expression. A
total of 86 miRNAs that were differentially expressed between
cancer cases and non-cancer controls with log2 (fold change)
more than 0.5 or less than −0.5 and p-value < 0.01 were identified
(Fig. 1a).
The ability of these 86 differentially expressed miRNAs to

differentiate between breast cancer cases and non-cancer controls
was also assessed using AUC analysis. Out of these 86 differentially
expressed miRNAs, 33 miRNAs had AUC > 0.5 and were selected
for validation in a mixed Caucasian-Asian cohort (Validation 1).
This cohort comprised of 374 samples (177 breast cancer cases
and 197 non-cancer controls) from five different sources (three
Caucasian and two Asian populations) as shown in Table 1.
Unsupervised hierarchical clustering based on the differential

expressions of the 33 top-ranked miRNA biomarker candidates
was carried out on the combined Discovery and Validation 1
cohort (663 samples comprising 360 breast cancer cases and 303
non-cancer controls). The cancer samples and the non-cancer
samples were partially separated after clustering based on
differential expression of these 33 miRNAs (Fig. 1b). Additionally,
samples from the same sources were not clustered together based
on their expression of these 33 miRNAs (Fig. 1b).
The log2 (fold change) calculated for these 33 miRNA biomarker

candidates in the Discovery cohort and Validation 1 cohort were
compared and had a Pearson’s correlation coefficient, r= 0.967

Table 1. Patient cohorts used in study.

Cohort: Discovery Validation 1 Validation 2

Non-cancer
(NC)/Cancer (C):

NC C NC C NC C

106 183 197 177 199 180

Source Ethnicity

1 Asterand biobank
(Europe)

Caucasian 106 (100%) 183 (100%) – – – –

2 Asterand
biobank (USA)

Caucasian – – 39 (19%) 39 (22%) 39 (19%) 40 (22%)

3 Tissue Solutions
biobank (Ukraine)

Caucasian – – 33 (17%) 23 (13%) 34 (17%) 24 (13%)

4 Tissue Solutions
biobank (Russia)

Caucasian – – 47 (24%) 48 (27%) 47 (24%) 48 (27%)

5 National University
Hospital

Asian
(Singapore)

– – 35 (18%) 38 (21%) 35 (18%) 38 (21%)

6 National Cancer Centre
Singapore

Asian
(Singapore)

– – 43 (22%) 29 (16%) 44 (22%) 30 (17%)

Age (years)

Mean 53.7 52.4 53.0 56.6 55.5 55.4

Median 53 51 52 57 56 55

Range 42–65 30–85 29–82 31–77 26–83 28–87

Sex

Male 0 0 0 0 0 0

Female 106 183 197 177 199 180

Cancer Stage

0 – 0 (0%) – 16 (9%) – 23 (13%)

I – 77 (42%) – 51 (29%) – 45 (25%)

II – 78 (43%) – 61 (34%) – 58 (32%)

III – 28 (15%) – 5 (3%) – 8 (4%)

IV – 0 (0%) – 3 (2%) – 3 (2%)

Unknown – 0 (0%) – 41 (23%) – 43 (24%)
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(p < 0.0001). Out of the 33 biomarker candidates identified from
the Discovery cohort, 30 miRNAs were differentially expressed in
breast cancer cases compared to non-cancer controls (p < 0.05 by
unpaired t-test) in the Validation 1 cohort (Fig. 1c). Three miRNA
biomarker candidates that showed non-significant differential
expressions (p > 0.05) in Validation 1 cohort were excluded from
the subsequent analysis, while the remaining 30 miRNA biomarker
candidates were used for the biomarker panel optimisation phase.

Optimisation of miRNA biomarker panels
To identify an optimal panel with good performance while
balancing the number of miRNAs included for the practicality of
clinical testing, multi-miRNA panels were assessed. The best-
performing multi-miRNA panel comprising between two to twelve
miRNAs were formed from the 30 validated miRNA biomarker
candidates using a two-fold cross-validation procedure that
incorporated a feature selection algorithm (SFSS). AUC of miRNA
panel performance in the training and test group was calculated
for 200 iterations of cross-validation with multi-miRNA panels
comprising two to twelve miRNAs (Fig. 2a). The median AUC for
breast cancer prediction from 200 iterations of training and testing

was calculated for each set of cross-validation experiments
comprising two to twelve miRNAs (Fig. 2b). The median AUC
increased significantly (p < 0.001) with increasing number of
miRNAs in the biomarker panels that consisted of two to eight
miRNAs, until it reached a plateau after the inclusion of eight
miRNAs on the panel (Fig. 2b); hence indicating that eight miRNAs
is the optimal number of biomarkers to be included on the panel.
The addition of more miRNAs did not lead to a statistically
significant increase in AUC. The optimal eight-miRNA biomarker
panel with the highest AUCs of 0.981 and 0.918 in the Discovery
and Validation 1 cohorts, respectively, was chosen for further
validation (Fig. 2c). This optimal panel included miR-133a-3p, miR-
497-5p, mir-24-3p, and miR-125b-5p, which were upregulated in
breast cancer cases compared to controls, and miR-377-3p, miR-
374c-5p, miR-324-5p and miR-19b-3p, which were downregulated
in breast cancer cases as compared to controls (Supplementary
Table S3). At the point of maximum classification accuracy,
sensitivity and specificity were 87.8% (95% CI, 80.2–93.0%) and
96.4% (95% CI, 90.8–99.1%) in the Discovery Cohort, and 77.4%
(95% CI, 73.6–80.8%) and 90.2% (95% CI, 87.3–92.5%) in the
Validation 1 Cohort (Fig. 2c).
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Validation of optimal eight-miRNA biomarker panel signature
Validation of the optimised eight-miRNA biomarker panel signa-
ture was carried out in the Validation 2 cohort which comprised of
379 samples (180 breast cancer and 199 non-cancer samples). The
AUC of the eight-miRNA biomarker panel in classifying breast
cancer and non-cancer samples was 0.915 (95% CI, 0.883–0.944)
(Fig. 3a). At the point of maximum classification accuracy,
sensitivity was 72.2% (95% CI, 67.4–76.6%) with a specificity of
91.5% (95% CI, 88.1–94.0%). When the Validation 1 and 2 cohorts
were separated by sample source, the eight-miRNA biomarker

panel had AUC ranging from 0.816 to 0.973 (Fig. 3b). Performance
was comparable between Caucasian and Asian sample sources
(Fig. 3b) and for early stage (stages 0, I and II) and late stage (stages
III and IV) breast cancers (Fig. 3c).

Breast cancer prediction algorithm based on miRNA
biomarker signature
A prediction algorithm based on a logistic regression model that
takes into account the expression levels of the eight miRNAs in the
biomarker panel was developed to calculate a cancer risk score.

0.95

0.90

0.85

0.80

0.75

0.95

0.90

0.842
0.827

0.870
0.886 0.893 0.901 0.907 0.912 0.917 0.919 0.922 0.922

0.890
0.908

0.919
0.927 0.933 0.939 0.943 0.947 0.950 0.951

0.85

0.80

0.75

1.00

1

0.9

0.7

0.6

0.5

0.4

AUC = 0.981 (0.96-1)

Specificity = 96.4% (90.8–99.1%) Specificity = 90.2% (87.3–92.5%)

Sensitivity = 87.8% (80.2–93.0%) Sensitivity = 77.4% (73.6–80.8%)

Accuracy = 89.8% (82.6–94.6%) Accuracy = 83.9% (80.4–86.8%)
AUC = 0.918 (0.893-0.942)

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0.8

1

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.8

Training set Test set

2

a

b

c

3

Training set (left) and test set (right) AUC from twofold cross-validation

4 5

Number of miRNAs in multi-miRNA panel

Number of miRNAs in multi-miRNA panel

A
U

C
 o

f 
m

u
lt

i-
m

iR
N

A
 p

an
el

M
ed

ia
n

 A
U

C

6 7 8 9 10 11 12

2

Discovery cohort

1 – Specificity

S
en

si
ti

vi
ty

S
en

si
ti

vi
ty

1 – Specificity

Validation 1 cohort

3 4 5 6 7 8 9 10 11 12

Fig. 2 Optimisation of multi-miRNA biomarker panels. a Boxplots of AUC of multi-miRNA biomarker panels (with 2–12 miRNAs), in both the
training and test sets, calculated from 200 iterations of the two-fold cross-validation process. The boxplot presents the 25th, 50th, and 75th
percentiles in panel AUC. b Median AUC for the training and test sets from 200 iterations of the two-fold cross-validation process for multi-
miRNA panels with 2–12 miRNAs. ***p < 0.001 (Student’s t-test). c ROC curves for breast cancer prediction performance of the optimal eight-
miRNA biomarker panel in the Discovery and Validation 1 cohorts. The point with the maximum classification accuracy is shown as the red
box. The sensitivity and specificity values at the maximum accuracy point are also shown. The 95% CI for these values is shown in the brackets.

R. Zou et al.

476

British Journal of Cancer (2022) 126:472 – 481



The median cancer risks score calculated from the prediction
algorithm were higher for cancer samples compared to non-
cancer samples across all cohorts regardless of sample source
(Fig. 4a). The panel effectively detects breast cancer of all stages,
including early stage breast cancers (stages 0, I and II) (Fig. 3c),
with cancer risk scores from breast cancer samples of all stages
falling in the same range that is higher than that of non-cancer
samples (Fig. 4b). The distribution of breast cancer samples by
stage in each cohort is shown in Table 1.

DISCUSSION
We describe here an eight-miRNA biomarker signature that can
differentiate between breast cancer patients and non-cancer
individuals, which was derived from a multi-ethnic study compris-
ing of a discovery phase followed by two validation phases. Our
miRNA-based signature could perform well in distinguishing breast
cancer cases from non-cancer controls as evidenced by a high AUC
of 0.915 achieved in validation phase 2, which comprised of both
Caucasians and Asians. These results imply that the performance of
our model is robust, accurate and effective in classifying individuals
diagnosed with breast cancer from those who are cancer-free.
Therefore, to our knowledge, the present study is the first to date to

describe the largest comprehensive multicenter study for the
development of a circulating miRNA-based breast cancer prediction
model that is applicable to both Caucasian and Asian populations.
The performance of the present miRNA-based prediction model

for the initial discovery and two validation phases were consistent,
as demonstrated by their respective AUCs of 0.981, 0.918 and
0.915. Likewise, when the validation phases 1 and 2 were analysed
based on the sub-cohorts obtained from different sample sources,
the range of AUCs generated in these sub-cohorts for both phases
were comparable, ranging from 0.816 to 0.933 in phase 1 and
from 0.880 to 0.973 in phase 2. These results highlight the high
reproducibility and accuracy of our model in differentiating breast
cancer cases from non-cancer controls for both Caucasians and
Asians, suggesting its potential universal usability for various
ethnicities. Our current findings are an important advancement for
breast cancer miRNA biomarker research as our study design,
analysis and results are unprecedented in the field.
Among the eight miRNAs in our signature, miR-133a-3p, miR-

497-5p, mir-24-3p, and miR-125b-5p were found to be upregu-
lated, whereas miR-377-3p, miR-374c-5p, miR-324-5p and miR-
19b-3p were found to be downregulated in breast cancer cases as
compared to controls. All of these miRNAs, except miR-133a-3p,
have been reported to be implicated in the pathophysiology of
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breast cancer. For example, both miR-24-3p and miR-125b-5p
have been identified as potential breast cancer biomarkers for the
early detection [27, 28], prognosis [29, 30], or prediction of
recurrence [31, 32]. Among the eight miRNAs discovered, there are
discrepancies reported between the present and previous studies
regarding the expression levels of miR-497-5p in breast cancer.
Based on our current observation, miR-497-5p was upregulated in
the serum samples of breast cancer patients whereas several
studies have reported the decreased expression of miR-497-5p in
breast cancer tissue samples and cell lines [33–36]. In a nude
mouse xenograft tumour model, the inhibitory role of miR-497-5p
in tumour growth and angiogenesis has been demonstrated [33]
while low miR-497-5p expression was associated with poor
prognosis of breast cancer patients [34]. For miR-377-3p, studies
have shown that miR-377-3p was one of the miRNA transcripts

that could predict tumour progesterone status with 100%
accuracy [37] and the Linc00339/miR-377-3p/HOXC6 axis repre-
sented a novel pathway in the progression of triple-negative
breast cancer [38]. MiR-374-5p has been shown to repress
development of breast cancer through TATA-box binding protein
associated factor 7 (TAF7)-mediated transcriptional regulation of
DEP domain containing 1 (DEPDC1) [39]. The expression of miR-
374-5p was downregulated in various breast cancer cell lines [39],
similar to our observation in this study. A six-miRNA signature
which included miR-324-5p has been discovered to be signifi-
cantly associated with the reduced overall survival of triple-
negative breast cancer [40]. MiR-19b-3p has also been shown to
be downregulated in hormone receptor-positive/HER2-negative
breast cancer [41]. With its high sensitivity and specificity in
identifying breast cancer from healthy tissues and its the
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involvement in regulation of genes in oncogenic pathways, miR-
19b-3p may serve as a diagnostic marker or therapeutic target for
breast cancer [41].
Although our model could not outperform the five-miRNA

signature (miR-1246, miR-1307-3p, miR-4634, miR-6861-5p and
miR-6875-5p) model reported by the largest breast cancer miRNA
biomarker study to date with an AUC of 0.971, it is noted that
the latter was based primarily on microarray profiling, a method
which is known to have poor specificity [42], and that only one
miRNA, miR-1246, was validated by qRT-PCR using 26 serum
samples [10]. For the performance comparison of the prediction
model in a Singaporean Chinese cohort, our present model was
able to achieve a better classification (AUC of 0.973) than the two-
miRNA combinations generated from miR-1, miR-92a, miR-133a
and miR-133b that were previously published (AUC of 0.900–0.910)
[43]. In another study, a plasma signature of miR-145 and miR-451
was identified and demonstrated an outstanding ability in
distinguishing breast cancer patients from healthy controls (AUC
of 0.931) following a blind validation [15]. Although Ng et al. [15]
conducted the study using multiple cohorts in different phases
[17], the total sample size was smaller than the present study. In
addition, a recent study reported a six-miRNA signature (miR-3124-
5p, miR-1184, miR-4423-3p, miR-4529-3p, miR-7855-5p, and miR-
4446-3p) with an AUC of 0.896 for discriminating high-risk women
who eventually diagnosed with breast cancer from those who
remained cancer-free [44]. However, a downside of this study was
that the model was only tested in a single cohort of 48 samples
[44].
Another observation from these studies is that there is a lack of

strong overlap of miRNAs between studies which could possibly
be attributed to differences between studies in sample type
(whole blood, plasma or serum), timing of blood collection (before
or after surgery), technology platform (microarray, RT-PCR or next-
generation sequencing), study design and differences in data
analysis. Hence, this suggests that for biomarker discovery
research, having multiple validation cohorts is of utmost
importance in order to verify the biomarker signature.
This study utilised qRT-PCR for miRNA profiling, since qRT-PCR is

deemed as the gold standard for nucleic acid quantification due
to the sensitivity and specificity of the method [42, 45]. Standard
curves were also used to determine the absolute expression (copy
number) of each miRNA target. In addition, since qRT-PCR is
commonly utilised in various multigene prognostic assays
including Oncotype DX [46], Breast Cancer Index [47], and
EndoPredict [48], this makes our miRNA-based breast cancer
prediction model more readily translatable as a molecular
diagnostic assay for clinical use.
Apart from miRNA biomarkers, there are other notable research

efforts assessing alternative blood-based bioanalytes for breast
cancer detection, such as the CancerSEEK study [49] and the
Circulating Cell-Free Genome Atlas (CCGA) study [50]. CancerSEEK
is a pan-cancer blood test intended for the identification of eight
cancer types including breast cancer, by evaluating mutations in
16 genes from cell-free DNA (cfDNA) and the expression of eight
protein biomarkers using multiplex PCR followed by next-
generation sequencing and immunoassays respectively [49].
Similarly, the CCGA study which is an on-going prospective
longitudinal cohort study that has enrolled approximately
15,000 study participants, also aims to develop a multi-cancer
detection blood test by profiling cfDNA using sequencing-based
methods [50]. Although these assays have been tested to detect
different cancer types and stages, their performance for identify-
ing breast cancer, especially in the early stages, is still under par.
For the CancerSEEK test, the median detection sensitivity for
breast cancer was 33% as compared to 98% for ovarian cancer,
whereas the median detection sensitivity for stage I of all cancer
types was only 43% as compared to 78% for stage III cancers [49].
Moreover, the tests developed by the CCGA study were poor in

identifying various breast cancer molecular subtypes with
sensitivities below 60% [51]. In contrast, our miRNA-based model
showed superior discrimination performance, even for differen-
tiating between healthy controls and those at pre-malignant
stages (stage 0) with the AUC, accuracy, sensitivity and specificity
of 0.831, 87.4%, 52.2% and 91.5%, respectively. In addition, the
AUC and sensitivity increased to 0.916 and 71.4%, respectively for
the detection of the pre-malignant stage and early-stage breast
cancers (stages 0–II).
There are limitations or challenges in this current study. Firstly,

while the present circulating miRNA-based prediction model
performed well in identifying breast cancer cases, the specificity of
the model for breast cancer as compared to other cancer types
warrants further investigation [1]. Secondly, pre-analytical con-
founding factors might be present in the study given that these
samples were sourced from different clinical centers and some
pre-analytical factors such as sample processing procedure,
storage duration, and transport condition could differ across the
centers [1]. Hence, for future studies, a standardised protocol for
sample collection, transport, processing, and storage should be
used to minimise possible confounding factors that may lead to
experimental biasness in the analysis of the predictive perfor-
mance of the model. Thirdly, as the present study was conducted
retrospectively, it is essential to further validate the miRNA-based
prediction model in a prospective or blinded study and to
benchmark the accuracy, sensitivity and specificity of our model
against the current gold standard for breast cancer screening [1].
Such studies could be done on individuals who participate in
routine annual or biennial mammogram screening, to ascertain its
predictive value through comparison with mammography in a
clinical setting. Future studies could also assess the performance
of this panel in detecting breast cancers belonging to various
subtypes, such as triple-negative breast cancers.
Together, this present study has generated a robust prediction

model for breast cancer, applicable for Caucasian and Asian
populations and patients of various cancer stages. The present
miRNA-based prediction model can be potentially developed as
an alternative modality for breast cancer screening, and may
reduce the number of biopsies resulting from false-positive
mammograms.
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