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Dense Quantum Measurement 
Theory
Laszlo Gyongyosi1,2,3 & Sandor Imre2

Quantum measurement is a fundamental cornerstone of experimental quantum computations. The 
main issues in current quantum measurement strategies are the high number of measurement rounds 
to determine a global optimal measurement output and the low success probability of finding a global 
optimal measurement output. Each measurement round requires preparing the quantum system and 
applying quantum operations and measurements with high-precision control in the physical layer. 
These issues result in extremely high-cost measurements with a low probability of success at the end 
of the measurement rounds. Here, we define a novel measurement for quantum computations called 
dense quantum measurement. The dense measurement strategy aims at fixing the main drawbacks 
of standard quantum measurements by achieving a significant reduction in the number of necessary 
measurement rounds and by radically improving the success probabilities of finding global optimal 
outputs. We provide application scenarios for quantum circuits with arbitrary unitary sequences, and 
prove that dense measurement theory provides an experimentally implementable solution for gate-
model quantum computer architectures.

Quantum measurement is a crucial subject in quantum computation and communication1–31. The aim of quan-
tum measurement is to extract valuable and useable information from the measured quantum system. The 
measurement operator connects the quantum world and our traditional, classical world. While the input of the 
measurement can be a superposed or entangled quantum system, the output of the measurement is classical 
information (i.e., bitstrings). Quantum measurements can be performed in different ways, for example via pro-
jective32–39 or POVM (positive-operator valued measure) measurements35,40–46.

Quantum measurement is required element in high-complexity quantum computations, in high-performance 
quantum information processing and in quantum computer architectures. The main issues of current quantum 
measurement strategies are the high number of measurement rounds and the probability of successfully finding 
a global optimal measurement output. The necessity of a high number of measurement rounds requires preparing 
the input quantum system and applying quantum operations with high-precision control in the physical layer 
through several rounds, which results in a high-cost procedure overall that is not tractable in any experimental 
setting. The repetition of a measurement round therefore requires in each round the careful preparation of a 
quantum register of quantum states that are then fed into a quantum circuit that realizes an arbitrary unitary 
sequence. In each round, the output of the quantum circuit is measured by a measurement array M, which pro-
duces a classical output string z. The aim is then to find a global optimal output z* that describes the properties of 
the output quantum system with the highest accuracy according to quality measurement functions. An example 
of a high-cost application of standard measurement is measuring the output of a quantum circuit applied to real-
ize quantum computations where the quantum circuit is set to perform a unitary operation U. Without loss of 
generality, the n-length input quantum system X  of the quantum circuit is assumed to be a superposed quantum 
system that is fed into the circuit. Then, the n-length output quantum system =Y U X  is measured by the 
measurement operator M, which produces a string z and, after repeating the procedure R0 times, yields the global 
optimal string z* with success probability ⁎zPr ( )R0

. Assuming that U is an arbitrary quantum circuit and M is a 
standard measurement, the measurement procedure requires high repetition numbers, while the success proba-
bility remains low (An example is the application of standard quantum measurements in quantum computers, 
where for ≈R 1000  standard measurement rounds, the achievable success probability is approximately 

≥ .⁎zPr ( ) 0 01R0
13). Since each measurement round requires high-cost and high-precision quantum state prepara-

tions and quantum operations, the total cost to find the global optimal z* is very high in a practical setting. To 
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avoid the issues of a high number of measurement rounds and the low success probability of quantum measure-
ments, a novel measurement is essential for quantum computations.

Here, we define a novel measurement for quantum computations called dense quantum measurement. The 
dense measurement strategy aims at fixing the drawbacks of standard quantum measurements by achieving a 
radical reduction in the number of necessary measurement rounds and by significantly improving the success 
probabilities of finding global optimal outputs (see Theorem 1 for the system model). Dense quantum measure-
ment requires only R R0 measurement rounds, such that R rounds leads to a success probability of 



⁎ ⁎z zPr( ) Pr ( )R0
. The dense measurement strategy is rooted in the theory of compressed sensing47–50, which 

allows recovering noisy signals with a high efficiency in the field of traditional communications. Dense quantum 
measurement utilizes an Mr randomized measurement operator that is defined as an n-bit length vector 

= …M b M b M( , , )r B n B
T

1 , where bi is a random variable, ∈b {0, 1}i , = = .Pr(0) Pr(1) 0 5, associated with the 
measurement of the i-th quantum state of the output quantum system, while MB is a quantum measurement in the 
computational basis B; thus, =b M 0i B  if =b 0i  and =b M Mi B B if =b 1i . As follows, the MB measurement in the 
computational basis is discarded if =b 0i . Then, the measurement result is post-processed via unit   that inte-
grates algorithms to determine the global optimal string z* from the results of the randomized measurements.

As we prove (see Theorem 2), the number R0 of standard measurement rounds can be reduced to 
α=R Z K nlog ( )2 4  dense measurement rounds for an arbitrary quantum circuit, where ≥K L S( )0  and K n, 

while α > 0, >Z 0 are constants. At this number of measurement rounds, the success probability is 
= − ≈−⁎z nPr( ) 1 1nlog ( )3

 for any practical value of n. We also prove that if the output of the quantum circuit is 
a computational basis quantum state, then R0 can be reduced to γ= ( )( )R K log n

K
10  dense measurement 

rounds, where γ > 0 is a constant, such that = − − ≈⁎z RPr( ) 1 2exp( ) 1, for any R (see Theorem 3).
The novel contributions of our manuscript are as follows:

	 1.	 We define a novel quantum measurement theory called dense quantum measurement.
	 2.	 We prove that dense measurement reduces the number of required measurement rounds to find a global 

optimal output.
	 3.	 We prove that dense measurement significantly improves the success probability of finding a global opti-

mal output.
	 4.	 We provide an application scenario for quantum circuits with arbitrary unitary sequences, and for 

the dense measurement of computational basis quantum states in gate-model quantum computer 
environment.

	 5.	 We reveal that the primary advantages of dense quantum measurement theory are the significantly lower 
measurement rounds and significantly higher success probabilities.

This manuscript is organized as follows. In Section 2, the related works are summarized. In Section 3, the 
problem statement is given. In Section 4, preliminaries are summarized. Section 5 proposes the theorems and 
proofs. Section 6 provides a performance evaluation. Finally, Section 7 concludes the paper. Supplemental infor-
mation is included in the Appendix.

Related Works
The related works on quantum measurement theory, gate-model quantum computers and compressed sensing 
are summarized as follows.

Quantum Measurement Theory.  Quantum measurement has a fundamental role in quantum mechanics 
with several different theoretical interpretations32–44. The measurement of a quantum system collapses of the 
quantum system into an eigenstate of the operator corresponding to the measurement. The measurement of a 
quantum system produces a measurement result, the expected values of measurement are associated with a par-
ticular probability distribution.

In quantum mechanics several different measurement techniques exist. In a projective measurement32–39, the 
measurement of the quantum system is mathematically interpreted by projectors that project any initial quantum 
state onto one of the basis states. The projective measurement is also known as von Neumann measurement32. In 
our manuscript the projective measurement with no post-processing on the measurement results is referred to 
as standard measurement (It is motivated by the fact, that in a gate-model quantum computer environment the 
output quantum system is measured with respect to a particular computational basis).

The von Neumann measurements are a special case of a more general measurement, the POVM measure-
ment35,40–44. Without loss of generality, the POVM is a generalized measurement that can be interpreted as a von 
Neumann measurement that utilizes an additional quantum system (called ancilla). The POVM measurement 
is mathematically described by a set of positive operators such that their sum is the identity operator51–53. The 
POVM measurements therefore can be expressed in terms of projective measurements (see also Neumark’s dila-
tion theorem54–56).

Another subject connected to quantum measurement theory is quantum-state discrimination57–61 that covers 
the distinguishability of quantum states, and the problem of differentiation between non-orthogonal quantum 
states.

Gate-Model Quantum Computers.  The theoretical background of the gate-model quantum computer 
environment utilized in our manuscript can be found in12 and13.

https://doi.org/10.1038/s41598-019-43250-2
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In13, the authors studied the subject of objective function evaluation of computational problems fed into a 
gate-model quantum computer environment. The work focuses on a qubit architectures with a fixed hardware 
structure in the physical layout. In the system model of a gate-model quantum computer, the quantum computer 
is modeled as a sequence of unitary operators (quantum gates). The quantum gates are associated with a particu-
lar control parameter called the gate parameter. The quantum gates can process one-qubit length and multi-qubit 
length quantum systems. The input quantum system (particularly a superposed quantum system) of the quan-
tum circuit is transformed via a sequence of unitaries controlled via the gate parameters, and the output qubits 
are measured by a measurement array. The measurement in the model is realized by a projective measurement 
applied on a qubits that outputs a logical bit with value zero or one for each measured qubit. The result of the 
measurement is therefore a classical bitstring. The output bitstring is processed further to estimate the objective 
function of the quantum computer. The work also induces and opens several important optimization questions, 
such as the optimization of quantum circuits of gate-model quantum computers, optimization of objective func-
tion estimation, measurement optimization and optimization of post-processing in a gate-model quantum com-
puter environment. In our particular work we are focusing on the optimization of the measurement phase.

An optimization algorithm related to gate-model quantum computer architectures is defined in12. The optimi-
zation algorithm is called “Quantum Approximate Optimization Algorithm” (QAOA). The aim of the algorithm 
is to output approximate solutions for combinatorial optimization problems fed into the quantum computer. The 
algorithm is implementable via gate-model quantum computers such that the depth of the quantum circuit grows 
linearly with a particular control parameter. The work also proposed the performance of the algorithm at the uti-
lization of different gate parameter values for the unitaries of the gate-model computer environment.

In62, the authors studied some attributes of the QAOA algorithm. The authors showed that the output distribu-
tion provided by QAOA cannot be efficiently simulated on any classical device. A comparison with the “Quantum 
Adiabatic Algorithm” (QADI)63,64 is also proposed in the work. The work concluded that the QAOA can be imple-
mented on near-term gate-model quantum computers for optimization problems.

An application of the QAOA algorithm to a bounded occurrence constraint problem “Max E3LIN2” can be 
found in15. In the analyzed problem, the input is a set of linear equations each of which has three boolean varia-
bles, and each equation outputs whether the sum of the variables is 0 or is 1 in a mod 2 representation. The work is 
aimed to demonstrate the capabilities of the QAOA algorithm in a gate-model quantum computer environment.

In65, the authors studied the objective function value distributions of the QAOA algorithm. The work con-
cluded, at some particular setting and conditions the objective function values could become concentrated. A 
conclusion of the work, the number of running sequences of the quantum computer can be reduced.

In66, the authors analyzed the experimental implementation of the QAOA algorithm on near-term gate-model 
quantum devices. The work also defined an optimization method for the QAOA, and studied the performance of 
QAOA. As the authors found, the QAOA can learn via optimization to utilize non-adiabatic mechanisms.

In67, the authors studied the implementation of QAOA with parallelizable gates. The work introduced a 
scheme to parallelize the QAOA for arbitrary all-to-all connected problem graphs in a layout of qubits. The pro-
posed method was defined by single qubit operations and the interactions were set by pair-wise CNOT gates 
among nearest neighbors. As the work concluded, this structure allows for a parallelizable implementation in 
quantum devices with a square lattice geometry.

In14, the authors defined a gate-model quantum neural network. The gate-model quantum neural network 
describes a quantum neural network implemented on gate-model quantum computer. The work focuses on the 
architectural attributes of a gate-model quantum neural network, and studies the training methods. A particular 
problem studied in the work is the classification of classical data sets which consist of bitstrings with binary labels. 
In the architectural model of a gate-model quantum neural network, the weights are represented by the gate 
parameters of the unitaries of the network, and the training method acts these gate parameters. As the authors 
stated, the gate-model quantum neural networks represent a practically implementable solution for the realiza-
tion of quantum neural networks on near-term gate-model quantum computer architectures.

In68, the authors defined a quantum algorithm that is realized via a quantum Markov process. The analyzed 
process of the work was a quantum version of a classical probabilistic algorithm for k-SAT defined in69. The work 
also studied the performance of the proposed quantum algorithm and compared it with the classical algorithm.

For a review on the noisy intermediate-scale quantum (NISQ) era and its technological effects and impacts on 
quantum computing, see1.

The subject of quantum computational supremacy (tasks and problems that quantum computers can solve but 
are beyond the capability of any classical computer) and its practical implications are studied in2. For a work on 
the complexity-theoretic foundations of quantum supremacy, see3.

A comprehensive survey on quantum channels can be found in23, while for a survey on quantum computing 
technology, see70.

Compressed Sensing.  In traditional information processing, compressed sensing47 is a technique to reduce 
the sampling rate to recover a signal from fewer samples than it is stated by the Shannon-Nyquist sampling 
theorem (that states that the sampling rate of a continuous-time signal must be twice its highest frequency for 
the reconstruction)47–50. In the framework of compressed sensing, the signal reconstruction process exploits the 
sparsity of signals (in the context of compressed sensing, a signal is called sparse if most of its components are 
zero)50,71–75. Along with the sparsity, the restricted isometry property50,71,75 is also an important concept of com-
pressed sensing, since, without loss of generality, this property makes it possible to yield unique outputs from the 
measurements of the sparse inputs. The restricted isometry property is also a well-studied problem in the field of 
compressed sensing76–80.

A special technique within compressed sensing is the so-called “1-bit” compressed sensing81–83, where 1-bit 
measurements are applied that preserve only the sign information of the measurements.

https://doi.org/10.1038/s41598-019-43250-2
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The application of compressed sensing covers the fields of traditional signal processing, image processing and 
several different fields of computational mathematics84–91.

The dense quantum measurement theory proposed in our manuscript also utilizes the fundamental concepts 
of compressed sensing. However, in our framework the primary aims are the reduction of the measurement 
rounds required to determine a global optimal output at arbitrary unitaries, and the boosting of the success prob-
ability of finding a global optimal output at a particular measurement round. The results are illustrated through a 
gate-model quantum computer environment.

Problem Statement
Let X  be the superposed input system of a quantum circuit with a QG quantum gate structure, formulated by n 
quantum states, as

∑=X
d

z1 ,
(1)n

z

where d is the dimension of the quantum system, z  is a computational basis state and θ
→

U( ) is the unitary opera-
tion of QG, defined as a sequence of L unitaries

θ θ θ θ
→

= …− −U U U U( ) ( ) ( ), , ( ), (2)L L L L1 1 1 1

where θ
→

 is the L-dimensional vector of the gate parameters of the unitaries (gate parameter vector):

θ θ θ
→

= … .( , , ) (3)L
T

1

In (2), an i-th unitary gate θU( )i i  is evaluated as

θ θ= −U i P( ) exp( ), (4)i i i

where P is a generalized Pauli operator formulated by the tensor product of Pauli operators σ σ σ{ , , }X Y Z .
In a standard measurement setting, the Y  output of QG is

θ=
→

Y U X( ) (5)

measured by a M measurement operator, which yields an output string z as

= .z M Y (6)

The global optimal output string z* is an output string that yields the optimal estimation ⁎C z( ) at a particular 
objective function C fed into the quantum circuit as a maximization problem

=
∀

⁎C z C z( ) max ( ), (7)m
m

where C z( )m  is the estimate yielded in an m-th measurement round, = …m R1, , 0, while zm is the output string 
yielded in the m-th round.

Without loss of generality, after R0 measurement rounds, the probability that the global optimal output string 
z* is determined is ⁎zPr ( )R0

; thus, ⁎C z( ) can be found with the same success probability,

= .⁎ ⁎C z zPr ( ) Pr ( ) (8)R R0 0

The problems connected to the general measurement strategy to find z* are the high number of R0 repetitions 
and the low ⁎zPr ( )R0

 success probability. Consequently, the standard measurement procedure requires high-cost 
quantum state preparations, the application of high-cost measurement arrays and high-precision control and 
calibrations in the physical layer.

Problems 1–3 summarize the problems to be solved.

Problem 1 (System Model). Define a novel quantum measurement strategy for the significant reduction of the R0 
measurement rounds of standard measurements and for the significant improvement of the ⁎zPr ( )R0

 success probabil-
ity in determining a global optimal output z*.

Problem 2 (General application). Define R and ⁎zPr( ) for an arbitrary quantum circuit with θ
→

U( ). Prove the num-
ber R of measurement rounds, R R0, and the ⁎zPr( ) success probability, 



⁎ ⁎z zPr( ) Pr ( )R0
.

Problem 3 (Dense measurement of computational basis quantum states). Define R and ⁎zPr( ) for an arbitrary quan-
tum circuit with θ

→
=U U( ) B, where UB sets the computational basis B (Throughout the manuscript, the term “com-

putational basis” refers to a basis B, for which ≤L S K( )0  holds at a given =S BX, where X is an input system). Prove 
the number R of measurement rounds, R R0, and the ⁎zPr( ) success probability, 



⁎ ⁎z zPr( ) Pr ( )R0
.

The resolutions of Problems 1–3 are given in Theorems 1–3, respectively.

https://doi.org/10.1038/s41598-019-43250-2
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Preliminaries
Sub-Gaussian Distributions.  A random variable X is sub-Gaussian, if for the probability distribution of X,

κ| | ≥ ≤ κ−X C ePr( ) (9)C
1

2
2

holds for κ∀ > 0, where

>C C, 0 (10)1 2

are sub-Gaussian parameters.
By theory, if X is sub-Gaussian with

 =X( ) 0, (11)

then there exists a constant c* depending on only C1, C2 such that

 η η≤ ⁎X c(exp( ) exp( )) (12)2

for η∀ ∈ R.
If (12) holds, then (11) is satisfied such that the C1 sub-Gaussian parameter of X is

=C 2, (13)1

and C2 is as

= .⁎C
c
1

4 (14)2

An ×M N  random matrix M is a sub-Gaussian random matrix, if

κ≥ ≤ κ−( )M C ePr (15)j k
C

, 1
2

2

for κ∀ > 0, where Mj k,  is the (j, k)-th element of M, ∈j M[ ], ∈k N[ ], where

>C C, 0 (16)1 2

are sub-Gaussian parameters.

Methods
System Model.  Theorem 1 (Dense measurement). A QG structure with unitary θ θ

→
= ′

→
U U U( ) ( )B , where the 

unitary sets an arbitrary computational basis B for an n-length input X  as =U X SB , such that ≤L S K( )0 , 
K n, holds for the L0-norm of S, where S is a classical representation of S , while θ′

→
U( ) is the actual setting of the 

unitaries of QG at S  and with a Mr random measurement operator, allows the determination of the global optimal 
output z* and global optimal estimate ⁎C z( ) at a particular objective function C as ε δ χ= ≥Pr( )K  holds, where δK 
and χ are constants depending on Q M θ= ′

→
U( ), where = …M M( , , )r r

R(1) ( )  and Mr
m( ) is the measurement oper-

ator of the m-th dense measurement round = …m R1, , .

Proof. First, we rewrite (2) as

θ θ
→

= ′
→

U U U( ) ( ), (17)B

where UB is a unitary that sets a computational basis B and θ′
→

U( ) is a unitary operation that sets the unitaries, such 
that

θ θ θ θ

θ θ

′
→

′
→

= ′
→

′
→

= ′
→

′
→

=

= =

† † †

† †

†

†

U U U U U U U U

U U U U

U IU

U U I

( ) ( ( )) ( ) ( ( ))

( ) ( ( ))

, (18)

B B B B

B B

B B

B B

where I is the identity and θ′
→

 is the L-dimensional vector of the gate parameters of θ′
→

U( ). Applying the unitary UB 
on input system X  yields the n-length quantum system = …S s s, , n1 ,

=S U X , (19)B

where the computational basis B for UB in (17) is selected such that for the L0-norm of S the following relation 
holds

= ≤L S S K( ) , (20)0 0

https://doi.org/10.1038/s41598-019-43250-2
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where

=S BX (21)

is a classical representation of S , X is a classical representation of X  and K n. Therefore, B can be an arbitrary 
computational basis for which (20) holds at a given (21) (For example, if B is the Fourier basis, then UB realizes a 
quantum Fourier transform).

The output of QG at (17) and (19) is therefore written as

θ θ

θ

θ

→
= ′

→

= ′
→

= ′
→

=
= …

U X U U X

U U X

U S
G
g g

( ) ( )

( ) ( )

( )

, , , (22)

B

B

n1

whose state is measured by an Mr random measurement operator, defined as an n-bit length vector

= …M b M b M( , , ) , (23)r B n B
T

1

where bi is a random variable,

=





= .
= .

b
0, with Pr(0) 0 5
1, with Pr(1) 0 5

,
(24)

i

associated with the measurement of the i-th quantum system gi  of G  in (22), and MB is a measurement in the 
computational basis B.

Thus, the measurement of the i-th quantum system gi  of G  is defined via the following rule:

=





=
=

.b M
b

M b
0, if 0,

, if 1 (25)
i B

i

B i

In other words, the measurement result M g( )r i  is kept only if =b 1i  in (23); otherwise, the measurement result 
is discarded and replaced by a zero element. This results output yi, as

=






=
=

.y
b

M g b
0, if 0,

( ) if 1 (26)
i

i

B i i

This measurement strategy defines Mr (23) as a random Bernoulli vector47–50. Then, the n-bit length output Y, is as

θ

β
β

=

= ′
→

= ′
= Λ
= ′

Y M G

M U S
M S

S

( )

( )

, (27)

r

r

r

C

C

where ′M r is

θ′ = ′
→

M M U( ) (28)r r

while βC is an n-length classical vector formulated via the bi bits of (24) as

β = …b b( , , ) , (29)C n
T

1

and

β β θ′ = ′
→

U( ), (30)C C

and Λ is

θΛ = ′
→

.U S( ) (31)

https://doi.org/10.1038/s41598-019-43250-2
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As follows, applying Mr (23) on G  (22) is equivalent to applying ′M r  (28) on the computational basis state S  
(19).

As (27) is determined via (23), the goal is to determine C(z) at a particular objective function C via a 
post-processing  .

First, from Y (27), the computational basis vector S can be recovered as S  via  , as a minimization50,

=S L Sargmin ( )
(32)S

1

such that

β= ′Y S (33)C

where L1 is the L1-norm. The   unit utilizes a basis pursuit algorithm47–50 for the L1-minimization in (32). Then, 
using (32), Λ

∼
 is defined as

θΛ = ′
→

.
∼

U S( ) (34)

Thus, from (34), the output vector z is evaluated as

θ

=

= Λ

=
→

∼

∼

−

−

z B Y

B

U X

( )

( )

( ) , (35)

1

1



where Y( )  is the post-processing (32) applied on Y, B−1 is the inverse basis transformation and ∼X  is a classical 
representation of X . As follows, from (35), the C(z) estimate yields

= .−C z C B Y( ) ( ( )) (36)1

Then, assume that the procedure repeats for R rounds. The R rounds of dense measurement are defined via an 
×n R measurement matrix  as

= …M M( , , ), (37)r r
R(1) ( )

where Mr
m( ) is an n-size random measurement vector (23) of the m-th measurement round = …m R1, , , as

= …M b M b M( , , ) , (38)r
m m

B n
m

B
T( )

1
( ) ( )

where bi
m( ) is the i-th bit of Mr

m( ) defined via (24), and ′M r
m( ) of the m-th round is

θ′ = ′
→

M M U( ), (39)r
m

r
m( ) ( )

and β′C
m( ) of the m-th round is

β β θ′ = ′
→

U( ), (40)C
m

C
m( ) ( )

where

β = … .b b( , , ) (41)C
m m

n
m T( )

1
( ) ( )

For the R rounds, define the ×n R orthogonal matrix  as

θ= ′
→

= ′ … ′U M M( ) ( , , ), (42)r r
R(1) ( )Q M

and the measurement output matrix YR as

= = …Y S Y Y( , , ), (43)R R(1) ( )

where Y(m) is the measurement result vector (33) of the m-th round.

The problem is therefore to find the optimal value of R, such that the total error probability at the end of R 
rounds

ξ≠ =⁎z zPr( ) (44)

https://doi.org/10.1038/s41598-019-43250-2
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picks up a given arbitrary value ξ that is determined via the success of the L1 minimization (32) in the   unit.

After some argumentations on the probability distribution of  (42), at R measurement rounds a concentration 
relation can be written as

κ

κ

κ

| | 〉 − | 〉 | ≥ | 〉

= | | 〉 − | 〉 | ≥ | 〉

≤ −

 

 

L S S S

L G G G
c R

Pr( ( ( )) ( ) ( ( )))

Pr( ( ( )) ( ) ( ( )))
2exp( ), (45)

2
2 2 2

2
2 2 2

2

Q

M

where c is a constant depending on the sub-Gaussian parameters C1, >C 02  (see Section 4.1) of the sub-Gaussian 
matrix  (42), L2 is the Euclidean norm and 2 is the 2-norm of a quantum system, ψ ψ= ∑ = x( ) ( ) 1x

2 2 , 
where ψ =x x( ) Pr( )2  and ∫ ∫ ψ= =x dx x dxPr( ) ( ) 12 , while κ is κ ∈ (0, 1).

By theory, the K-th restricted isometry constant47–50 δ δ= ( )K K  of matrix  is the smallest χ ≥ 0 such that

χ χ− ≤ ≤ + S L S S(1 ) ( ) ( ( )) (1 ) ( ), (46)2
2

2 2

for ∀ S where ≤L S K( )0 .

Then, for a given χ, the restricted isometry constant47–50 δK of Q M θ= ′
→

U( ) satisfies relation δ χ<K  with 
probability

δ χ ε< = −Pr( ) 1 (47)K

where ε ∈ (0, 1), if R is selected as

χ ε
=










+









 +




















R A K n
K

1 9 2log 2log 2 1 ,
(48)2

where

= .A
c
2

3 (49)

The motivation for the selection of R is as follows. The value of R in (48) guarantees that the relation δ χ<K  holds 
with probability ε−1 , as it is given in (47). If R is greater than (48), then δ χ ε< > −Pr( ) 1K , while if R is lower 
than the value given in (48), then δ χ ε< < −Pr( ) 1K . As a corollary, the lowest value of R to satisfy the relation 
δ χ<K  with probability at least ε−1 , is as given in (48). To prove (48), express δK via (46) as

δ = −
ϒ⊂ ϒ =

ϒ ϒ
⁎L Isup ( ),

(50)
K

n K[ ],
2  

where ϒ is subset, ϒ is a submatrix, I is the identity matrix, ϒ  is the cardinality of subset ϒ and = …n n[ ] {1, , } 
is the set of natural numbers not exceeding n.

The formula of (50) is equivalent to (46), since (46) can be rewritten as

 χ′ − ′ ≤ ′ϒ  L S S S( ( )) ( ) ( ) (51)2
2 2 2

for ∀ ϒ ⊂ n[ ], ϒ ≤ K  and ′ ⊂S S. Let

= ′ϒ ϒY S , (52)

and

= ′ϒZ H S , (53)

where H is a Hermitian matrix,

= −ϒ ϒ
⁎H I, (54) 

then

− ′ = − ′ ′
= ′

ϒ ϒ ϒ

ϒ

L Y S Y Y S S
Z S

( ( )) ( ) , ,
, (55)

2
2 2

Therefore, L H( )2  can be expressed as a maximization
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=
′

′′

ϒ



L H
Z S

S
( ) max

,
( ) (56)S

2 2

that leads to relation

χ≤ .
ϒ⊂ ϒ =

L Hmax ( )
(57)n K[ ],

2

Then, the union bound takes over all ( )n
K

 subsets ϒ ⊂ n[ ] of cardinality K, yields the relation of

∑δ χ χ

χ

χ

≥ ≤ ≥

≤ + − − Ω

≤ + − − Ω

Ω

Ω

ϒ⊂ ϒ =

( )( )
( )( )

L H

n
K c R

c R

Pr( ) Pr( ( ) )

2 1 exp( (1 2 ) )

2 1 exp( (1 2 ) ), (58)

K

K

en
K

K K

sup
2

2 2 2

2 2 2

n K[ ],

where we used that for integers ≥ >m k 0, ≤ ≤( )( ) ( )m
k

m
k

k em
k

k
 by theory47–50.

It can be verified that in (58) for ϒ ⊂ n[ ] with ϒ = K , the relation

χ ε< = −L HPr( ( ) ) 1 (59)2

holds, if

χ ε
=






+



















R
c

K2
3

7 2log 2 1 ,
(60)2

since for

κ χ= − Ω(1 2 ) (61)

it can be verified that

χ χ≥ ≤


 +

Ω


 − − Ω .L H c RPr( ( ) ) 2 1 2 exp( (1 2 ) )

(62)

K

2
2 2

Thus, (59) is satisfied only if

χ ε
=

− Ω








 +

Ω


 +



















.R

c
K1

(1 2 )
log 1 2 log 2 1

(63)2 2

Then, setting Ω in (63) to

Ω =
−.e

2
1 (64)3 5

so that

− Ω
≤

1
(1 2 )

4
3 (65)2

and



 +

Ω


 − Ω

≤log 1 2 1
(1 2 )

14
3

,
(66)2

yields (60)50.

Note that it also can be shown that for Ω ∈ .(0, 0 5) in (64), there exists a finite subset Γ of a unit ball 
= ⊂ ϒ ≤ϒ X X X{ , supp , ( ) 1}2  such that Γ  is

Γ ≤


 +

Ω


1 2

(67)

K

and
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− ≤ Ω
∈Γ

L z xmin ( ) (68)x
2

for ∀ ∈ ϒz , such that for ⊂ Γx



∑
κ

κ

κ

κ

| | 〉 − | 〉 | ≥ | 〉

≤ | | 〉 − | 〉 | ≥ | 〉

≤ |Γ| −

≤ + −

∈Γ

Ω

 

 

( )

L x x x

L x x x

c R

c R

Pr( ( ( )) ( ) ( ( )))

Pr( ( ( )) ( ) ( ( )))

2 exp( )

2 1 exp( ), (69)

x

K

2
2 2 2

2
2 2 2

2

2 2

and

κ

κ

| | 〉 − | 〉 | < | 〉 ∀ ⊂ Γ

= − + − .
Ω

 

( )
L x x x x

c R

Pr( ( ( )) ( ) ( ( )), )

1 2 1 exp( ) (70)
S

2
2 2 2

2 2



By finding the values of Ω and κ, the relation

χ− = ≤L z z L H( ( )) ( ) ( ) (71)2
2 2

2

can be satisfied for ∀ ∈ ϒz  .

It can be proven at H (54) and

=W H x , (72)

for ∀ ⊂ Γx  that the relation

κ<W x, , (73)

holds. Thus, for a given z and ⊂ Γx , such that − ≤ Ω ≤L z x( )2
1
2

,

κ

κ

= + −
≤ + −

< + + −

≤ + Ω

 

V z W x D z x
W x D z x

L H z x z x
L H

, , ,
, ,

( ) ( ) ( )
2 ( ) (74)

2
2 2

2

where

=V H z , (75)

and

= + .D H z x (76)

Then, a maximization over ∀ ∈ ϒz   yields

κ< + Ω.L H L H( ) 2 ( ) (77)2 2

Thus,

κ
≤

− Ω
.L H( )

1 2 (78)2

As follows, there exists (61) such that χ<L H( )2  holds, and combining it with (70) verifies the relation of (62).

To conclude the results, setting Ω in (58) with equality in (64) leads to δ χ<K  with probability 
δ χ ε< = −Pr( ) 1K , as the R value of measurement rounds is

= + +

= + + .

χ ε

χ ε

( )
( )

( )
( )( )

( ) ( )
( )( )

R K K

K

log log 2

9 2log 2log 2
(79)

c
n

K

c
n
K

1 4
3

10 14
3

4
3

1

2
3

1 1

2

2
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◼
Note that if R is selected to be greater than (79), the probability is increased to δ χ ε< > −Pr( ) 1K .

Dense Measurement Rounds in Gate-Model Quantum Computers.  Arbitrary Unitary 
Sequences.  The next theorem reveals that the number R of dense measurement rounds can be used to determine 
z* with an error probability ζ = −n nlog ( )3

, such that R depends only on the properties of the unitaries, while it does 
not depend directly on the actual ζ .
Theorem 2 (Dense measurements at a θ

→
U( ) quantum gate structure). For an arbitrary unitary UB in 

θ θ
→

= ′
→

U U U( ) ( )B  with ≤L S K( )0 , the global optimal z* and estimate ⁎C z( ) can be determined via α=R Z K nlog ( )2 4  
dense measurement rounds, with probability = = − −⁎ ⁎z C z nPr( ) Pr( ( )) 1 nlog ( )3

, where θ≥
→

∈
Z n Umax ( )

k q n
q k

, [ ]
, , 

θ
→

U( )q k,  is the q-th element of the k-th column of θ
→

U( ), while α > 0 is a constant.
Proof. Let assume that θ

→
U( ) can be decomposed as θ′

→
U U( )B , and the following bound can be formulated for 

the entries of θ
→

U( ),

θ
→

≤
∈

U Z
n

max ( ) ,
(80)k q n

q k
, [ ]

,

where θ
→

U( )q k,  is the q-th element of the k-th column of θ
→

U( ), and

θ θ θ
→

=
→ →

.⁎U U U( ) ( ) ( ( )) (81)q k q k q k, , ,

Let assume that the size of θ
→

U( ) is ×n n, with columns uk, = …k n1, , . Then let vk be the normalization of 
uk as

=v nu , (82)k k

where the normalized columns form an orthonormal system, and let ϕkl be the inner product of two normalized 
columns vk and vl, as

ϕ = =
n

v
n

v u u1 , 1 , ,
(83)kl k l k l

that can be rewritten as

∑ ∑ϕ θ θ=
→ →

=
= =

† †

n
nU nU

n
nu nu1 ( ) ( ) 1 ,

(84)
kl

q

n

q k q l
q

n

k q l q
1

, ,
1

, ,

where θ=
→

u U( )i j j i, ,  and θ=
→

v nU( )i j j i, , . Therefore, in (84), the sum operator runs over the n elements of the k-th 
column of unitary θ

→
U( ), and the n elements of the l-th column of θ

→†U ( ), respectively.
Then, at UB and θ′

→
U( ), some argumentations on bounded orthonormal systems straightforwardly yields the 

boundedness condition50

≥ ′
∈

Z b umax , ,
(85)k q n

q k
, [ ]

where bq is the q-th column of UB.
Then, for the maximal entry of θ

→
U( )q k, , a bound can be established via the normalized columns, as

θ

≥ =

= =
→

.

∈ ∈

∈ ∈

Z v nu

n u n U

max max

max max ( )
(86)

k q n
k q

k q n
k q

k q n
k q

k q n
q k

, [ ]
,

, [ ]
,

, [ ]
,

, [ ]
,

As follows, the bounds in (85) and (86) are equivalent to (80).
Then, by introducing a projector QR

 that selects a subset of θ
→

U( ) in the R rounds, the  (37) measurement 
operator applied on a unitary θ

→
U( ) can be rewritten as

M P θ=
→

U( ( )), (87)QR

where ⊂Q n[ ]R  is a subset of R elements selected uniform at random from all subsets of [n] of cardinality R, 
=Q RR ,

= … .Q q q{ , , } (88)R R1

As follows, the YR (43) measurement result can be rewritten as
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  θ θ θ=
→

= ′
→

= ′
→

.( ) ( )Y U X U U X U S( ( )) ( ) ( ) (89)
R

Q Q B QR R R

It is required to verify that the ξ error probability (44) at a projector Q in (87) is bounded by an ξ⁎ error probabil-
ity associated with the selection of rows uniformly and independently at random from θ

→
U( )50.

Thus, we define set ′ ⊂Q n[ ]R  with the same cardinality as (88), such that its elements are selected inde-
pendently and uniformly at random from [n], ′ =Q RR

′ = ′ … ′ .Q q q{ , , } (90)R R1

Then, let ⊂Q n[ ]k  be a subset of ≤k R selected uniform at random from all subsets of [n] of cardinality k, 
=Q kk ,

= … .Q q q{ , , } (91)k k1

For any subset ∈Q n[ ], we define a failure event Q( )  as

θ≡





≠ . . = ′
→

∀





 ( )Q S L S Y U S S( ) argmin ( ), s t ( ) , for ,
(92)S

Q1E P

i.e., the event that the L1-minimization (i.e,. a basis pursuit algorithm in ) allows no to determine every S from 
(89) on Q (Note that the success probability of an L1-minimization in   to determine S is independent from the 
normalization of the measurement operator).

It can be verified, that for ⊂ Q Q,

 ⊂Q Q( ) ( ), (93)

and for ≤k R,

 ξ ξ= ≤ =Q QPr( ( )) Pr( ( )) , (94)R k k

and if ′ =Q kR  holds for ≤k R, then

 ′ =Q Q( ) ( ), (95)R k

where (·) is the distribution.
Therefore, the

ξ′ = ⁎QPr( ( )) (96)R

probability of event  ′Q( )R  at ′ =Q kR  is as

∑

∑ ∑

ξ

ξ ξ

ξ

= ′ ′ = ′ =

= ′ = ≥ ′ =

=

=

= =

⁎ Q Q k Q k

Q k Q k

Pr( ( ) ( ))Pr( )

Pr( ) Pr( )

, (97)

k

R

R R R

k

R

k R
k

R

R

1

1 1

thus the error probability ξ is bounded by ξ⁎.
As follows, using projector Q in (87), an L1-minimization (basis pursuit)47–50 in the   post-processing phase 

allows to determine the global optimal z* from (89), with probability

= − −⁎z nPr( ) 1 , (98)nlog ( )3

as

α=R Z K nlog ( ) (99)2 4

holds, where α > 0, and ξ is evaluated via (44) as

ξ = ≠ = .−⁎z z nPr( ) (100)nlog ( )3

The value determined for R in (99) is based on the following fact. It can be shown50, that at a particular α > 0 
and ≥Z 1, there exists a constant a, ∈a (0, 1), such that for a given a, the relation

δ ≤ a (101)K

holds with probability (98), if
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α≥R Z K nlog ( ), (102)a
1 2 4
2

where

δ δ= ( ) (103)K K R
1

is the K-th restricted isometry constant of 
R
1 , that is the smallest ≥a 0 such that

− ≤ ≤ + ( )( )a S L S a S(1 ) ( ) ) (1 ) ( ) (104)R
2

2
1

2
2

while  is as given by (42); holds for ∀ S, with ≤L S K( )0 . Since for (99), α > 0 holds and ≥Z 1 is satisfied via 
(86), the result in (99) is straightforwardly follows from in (102) at

= .a 1 (105)

Thus, at (99) dense measurement rounds the global optimal output z*

= Λ−⁎ ⁎z B ( ), (106)1

is yielded with probability

ξ= −⁎zPr( ) 1 , (107)

where Λ⁎ is the optimal Λ
∼

 determined via  . Therefore the C(z*) global optimal estimate of a particular objective 
function C can be determined with probability =⁎ ⁎Pr C z Pr z( ( )) ( ) as

=
∀

⁎C z C z( ) max ( ), (108)m
m

where C(zm) is the estimate yielded in an m-th round, = …m R1, , , zm is the recovered output vector in the m-th 
round, which concludes the proof. ◼

The steps of the dense measurement for an arbitrary U θ
→

( ) are summarized in Procedure 1.

Figure 1 depicts an application of dense quantum measurement in quantum computations. Figure 1(a) shows 
an arbitrary QG quantum circuit with a U θ

→
( ) sequence (where θ

→
 sets the unitaries of the quantum circuit) and 

standard measurement M with R0 measurement rounds and success probability ⁎zPr ( )R0
. Figure 1(b) shows dense 

quantum measurement in a general case U θ
→

( ), such that the QG structure is prepared to realize θ θ
→

= ′
→

U U U( ) ( )B , 
where unitary UB sets a computational basis as =S U XB  with relation L0(S) for the L0-norm of S (S is a classical 
value resulting from the measurement), while U θ′

→
( ) is the actual setting of the unitaries of QG to provide output 

θ= ′
→

G U S( ) , such that θ θ′
→

=
→

U S U X( ) ( ) . The output is measured via a randomized measurement Mr. The 
measurement result is then post-processed via unit   to achieve R R0 and 



⁎ ⁎z zPr( ) Pr ( )R0
.

Dense Measurements of Computational Basis Quantum States.  The next theorem reveals that the number of 
dense measurement rounds can be reduced if the unitaries of the quantum circuit are set as θ

→
=U U( ) B, i.e., if the 

output of the quantum circuit is a computational basis state =S U XB .
Theorem 3 (Number of dense measurement rounds at θ

→
=U U( ) B). At θ

→
=U U( ) B, the optimal z* and C(z*) can 

be determined via ξ ξ= +R c K n K c( ) log(10 / ) log(2/ )1 2  dense measurement rounds, where ξ ∈ (0, 1) is the error 
probability of z*, while >c 01  and >c 02  are constants, that yields = ( )( )R K log n

K
10 , with ξ = −R2exp( ).

Proof. In this setting, the unitaries of the QG quantum gate structure are set such that

θ
→

=U U( ) (109)B

holds, therefore the output of QG at an n-length input X  is

Procedure 1.  Dense Measurements at arbitrary unitary U θ
→

( ).
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=U X S , (110)B

i.e., it outputs an n-length computational basis quantum state S , with relation ≤L S K( )0 , K n.
The R measurements are performed according to the ×n R measurement matrix  as defined in (37).
Since θ

→
U( ) is set as given in (109), the measurement results of the R rounds formulate R dimensional output 

= …Y Y Y( , , )R R(1) ( )  as

=Y S , (111)R 

where the output of the m-th round is

β= =Y M S S, (112)m
r

m
C

m( ) ( ) ( )

where Mr
m( ) is as given in (38), while βC

m( ) is as in (41).

Figure 1.  (a) A standard quantum measurement setting. The | 〉X  superposed input quantum system is fed into 
the QG quantum gate structure. The QG structure realizes the unitary θ

→
U( ) and outputs θ| 〉 =

→
| 〉Y U X( ) . The 

output is measured by a standard (projective) measurement operator M in a computational basis, which results 
in an optimal output z* after R0 measurement rounds (depicted by the dashed line) with a success probability of 

⁎zPr ( )R0
. (b) The dense quantum measurement procedure. The | 〉X  superposed input quantum system is fed into 

the QG quantum gate structure. The QG structure is set to realize the unitary θ θ
→

= ′
→

U U U( ) ( )B . The Mr 
randomized measurement yields θ= ′

→
| 〉Y M U S( ( ) )r , which is post-processed along with =S BX via unit  . 

Unit   performs an L1-norm minimization and outputs the global optimal z* after R R0 rounds (depicted by 
the dashed line), with a high success probability of 



⁎ ⁎z zPr( ) Pr ( )R0
.

Figure 2.  (a) The Pr(C(z*)) success probabilities for θ θ
→

= ′
→

U U U( ) ( )B , in function of the dense measurement 
rounds R, α=R Z K nlog ( )2 4 , at =n 1000, and =K 2, 5, 10, 20, α = . ×=

−2 47 10K 2
4, α = . ×=

−1 36 10K 5
4, 

α = . ×=
−8 46 10K 10

5, α = . ×=
−6 17 10K 20

5, and =Z n . (b) The Pr(C(z*)) success probabilities for 
θ θ
→

= ′
→

U U U( ) ( )B , in function of R at =K 10, for n = 101, 102, 103, 104, 105, 106.
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It further can be verified that  is a sub-Gaussian random matrix, thus there exists a constant λ > 0 depend-
ing only on the C1, C2 sub-Gaussian parameters (see Section 4.1) of  such that for a given χ, the restricted 
isometry constant47–50 δ δ= ( )K K   of , satisfies relation δ χ<K  with probability

δ χ ε< = −Pr( ) 1 , (113)K

if

λ
χ

ε= +R K n K1 ( log(10 / ) log(2/ )),
(114)2

where δ δ= ( )K K  is the K-th restricted isometry constant of , which is the smallest χ ≥ 0 such that

χ χ− ≤ ≤ + S L S S(1 ) ( ) ( ( )) (1 ) ( ), (115)2
2

2 2

for ∀ S, with ≤L S K( )0 . Note, that at ε = −
χ λ( )2exp R

22
, (114) picks up the value of λ=

χ ( )( )R K2 log n
K

1 10
2 .

Then, some argumentation on the L1-minimization based recovery via basis pursuit in the   unit, yields a 
condition for the 2K-th restricted isometry constant, δ2K of  as

δ < .
1
3 (116)K2

The condition in (116) allows to determine any S  in the   post-processing as a unique solution of

=S L Sargmin ( )
(117)S

1

subject to

β=Y S, (118)R
C
R

with success probability

ε ξ= − = −SPr( ) 1 1 , (119)

where βC
R is as

β β β= …( , , ), (120)C
R

C C
R(1) ( )

such that for every S there exists a unique solution of (117).
Thus, in an m-th measurement round, output vector zm is evaluated as

θ

=

=
=

=
→

∼

∼



z Y
S
U X

U X

( )

( ) , (121)

m
m

B

( )

where Y(m) is given in (112).
Since (116) puts a strict bound on χ, it allows us to rewrite (114) at a particular

ξ ε= (122)

as

ξ
ξ

=






 +











R c K n
K

c( ) log 10 log 2 ,
(123)

1 2

where c1, >c 02  are constants depend only on the C1, C2 sub-Gaussian parameters (see Section 4.1) of .
Therefore, the global optimal z* can be determined via R rounds via  , without loss of generality as

γ=













R K n

K
log 10 ,

(124)


where γ > 0 is a constant, that yields C(z*) via (108). Thus, at γ = 1, the success probability is

ξ
=
= − − = −

⁎ ⁎z C z
R

Pr( ) Pr( ( ))
1 2exp( ) 1 , (125)

that concludes the proof. ◼
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The steps of the dense measurement for an computational basis quantum states are summarized in Procedure 2.

Ethics statement.  This work did not involve any active collection of human data.

Performance Evaluation
In this section, we analyze the =⁎ ⁎C z zPr( ( )) Pr( ) success probabilities of finding the global optimal output z*, 
and global optimal estimate C(z*) in function of R, for an arbitrary objective function of the quantum computer 
with a QG quantum circuit, and arbitrary objective function C. First the θ θ

→
= ′

→
U U U( ) ( )B  setting is discussed, 

then the θ
→

=U U( ) B situation is proposed.
In Fig. 2, a dense measurement at the θ θ

→
= ′

→
U U U( ) ( )B  case is depicted. In this case, R is evaluated as given in 

(99). In Fig. 2(a) the length of the measured quantum system is fixed to =n 1000, while K varies between 5 and 
20. In Fig. 2(b), the value of K is fixed to =K 10, while n varies between =n 101 and =n 106. For a comparison 
the results of R0 standard measurements13 are also depicted in both figures with dashed gray lines ( =R 1000 , 

= ≥ .⁎ ⁎C z zPr ( ( )) Pr ( ) 0 01R R0 0
).

In Fig. 3, a θ
→

=U U( ) B situation is depicted. In this case, a computational basis quantum state is outputted by 
the QG structure, and R is evaluated as given in (124). In Fig. 3(a) the length of the measured quantum system is 
fixed to =n 1000, while K varies between 5 and 20. In Fig. 3(b), the value of K is fixed to =K 10, while n varies 
between =n 101 and n = 106.

Conclusions
Here, we defined a novel measurement technique called dense measurement for quantum computation. Dense 
measurement utilizes a random measurement strategy and a post-processing unit to eliminate the main draw-
backs of standard measurement techniques. The dense measurement method provides two fundamental results. 
First, it significantly increases the success probability of finding a global optimal measurement result. Second, 
it radically reduces the number of measurement rounds required to determine a global optimal measurement 
result. We demonstrated the results through an application of dense measurements with quantum circuits that 
realize arbitrary unitary operations. We proved the results of dense measurement theory for the measurement of 
arbitrary quantum states and for the measurement of computational basis quantum states in gate-model quantum 
computer environment.

Data Availability
This work does not have any experimental data.

Figure 3.  (a) The Pr(C(z*)) success probabilities for computational basis quantum states, θ
→

=U U( ) B, in 
function of the measurement rounds R, γ= ( )R K log n

K
10 , at =n 1000, =K 2, 5, 10, 20 and γ = 1. (b) The 

Pr(C(z*)) success probabilities for computational basis quantum states, θ
→

=U U( ) B, in function of R at =K 10, 
for n = 101, 102, 103, 104, 105, 106.

Procedure 2.  Dense measurements at θ
→

=U U( ) B.
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