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HT-SuMD: making molecular dynamics simulations suitable for fragment-based
screening. A comparative study with NMR
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ABSTRACT
Fragment-based lead discovery (FBLD) is one of the most efficient methods to develop new drugs. We
present here a new computational protocol called High-Throughput Supervised Molecular Dynamics (HT-
SuMD), which makes it possible to automatically screen up to thousands of fragments, representing there-
fore a new valuable resource to prioritise fragments in FBLD campaigns. The protocol was applied to Bcl-
XL, an oncological protein target involved in the regulation of apoptosis through protein–protein interac-
tions. Initially, HT-SuMD performances were validated against a robust NMR-based screening, using the
same set of 100 fragments. These independent results showed a remarkable agreement between the two
methods. Then, a virtual screening on a larger library of additional 300 fragments was carried out and the
best hits were validated by NMR. Remarkably, all the in silico selected fragments were confirmed as Bcl-XL
binders. This represents, to date, the largest computational fragments screening entirely based on MD.

ARTICLE HISTORY
Received 20 August 2020
Revised 13 October 2020
Accepted 13 October 2020

KEYWORDS
FBLD; MD; NMR; Bcl-
XL; SuMD

1. Introduction

Since its introduction over 20 years ago, the technique of
Fragment-based lead discovery (FBLD) has turned out to be one
of the most effective methods in the development of new drugs.
Nowadays, a remarkable number of companies and university lab-
oratories adopt this approach in their pipeline, as demonstrated
by the presence of at least 30 FBLD-derived molecules in various
phases of clinical development1. The lower functionalisation and
chemical complexity typical of fragments (usually having less than
20 heavy atoms) result in weak interactions with the biological
target and thus in modest binding affinities, that span the range
from mM to high mM. Different from classical HTS, the aim of
FBLD is the identification of weak binding fragments, starting
from which, through an optimisation procedure, it is possible to
develop a mature candidate2. The screening of small fragments, in
comparison to traditional HTS screening, has several and notable
advantages: (i) it facilitates larger sampling of chemical space; (ii)
FBLD has a higher hit rate;(iii) the lead compounds obtained from
fragment-based campaigns have better ligand efficiency (LE) and
they are more hydrophilic2–4. Sensitive screening technologies are
essential to detect the weak interactions mediated by fragments:
NMR spectroscopy, isothermal titration calorimetry (ITC), differen-
tial scanning fluorimetry (thermal shift), surface plasmon reson-
ance (SPR), and X-ray crystallography represent robust approaches
for fragment screening. Protein-based NMR and X-ray crystallog-
raphy are widely adopted because they can provide detailed infor-
mation on the molecules binding mode. Structural data are a

valuable help in fragment maturation, but they are suitable only
for certain targets and they still require a very long time to be col-
lected and analysed, thus representing a bottleneck in drug dis-
covery campaigns. These limitations have made the integration of
computational methods for fragment screening increasingly
attractive. For instance, Molecular docking can be exploited to
evaluate in silico, within a relatively short time, up to millions of
fragments towards one specific target. Although several examples
of docking applications to FBLD are described in the literature, its
routine use remains challenging: the majority of scoring functions
are trained on mature compounds, which often renders them
inadequate to distinguish true binding fragments from false posi-
tives5–7. Computational protocols such as Multiple-Copy
Simultaneous Search (MCSS), providing an interactive map of a
protein binding site through the iterative reorientation of small
functional groups, have also gained increasing importance in the
field8 . The integration of molecular dynamics simulations (MD)
with FBLD is however more appealing since it would allow a bet-
ter investigation of molecular recognition, taking also into account
the flexibility of the protein target along time. Unfortunately,
binding is a rare event and its sampling using unbiased MD tech-
niques requires long-timescale simulations, making the approach
difficult to reconcile with HTS. A first pioneering attempt to over-
come these issues was performed using an adaptive MD simula-
tions scheme: six months were necessary to perform the
screening of about one hundred fragments (for a total of 5.85ms)
of simulations, using a massive GPU cluster9. Although the results
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collected were encouraging, the time required for the in silico
simulations was not very competitive, if compared to the classic
experimental approaches. Similarly, in a recent investigation, long
ms timescale MD simulations were exploited for the prediction of
fragments binding mode by Markov-state models (MSMs). Also in
this case, the convergence of the results was bound to an exten-
sive computation effort, making the technique scarcely prone to
large-scale implementation10.

In our laboratory, a methodology called supervised molecular
dynamics (SuMD) was recently developed. It is able to accelerate
the sampling of binding events to a nanosecond timescale, with-
out introducing any energetic bias to the simulation11–13. First
attempts in investigating the recognition of fragments with a
weak affinity (Kd in the milli- to the micromolar range) showed
that SuMD was able to reproduce the final bound-state reported
in experimentally solved structures with root mean square devia-
tions (RMSD) even below 1 Å12. Most interestingly, this technique
allows the ligand to dynamically explore the ligand-binding site.
This aspect is particularly relevant for weak ligands that are more
prone to fluctuate in the binding site, showing multiple binding
modes, rather than settle in a univocal conformation.

Here, we present for the first time the implementation of
SuMD in a High Throughput computational platform (HT-SuMD),
capable to screen thousands of fragments even in a small GPU
cluster. To test the performance in a real fragment screening cam-
paign, we carried out a parallel screening comparing the outcome
of HT-SuMD with a robust NMR-based experimental protocol. The
antiapoptotic member of the Bcl-2 family, Bcl-XL, was selected as
a case study. Bcl-XL is a protein suitable for NMR screening and
exemplary in FBLD because of its most well-known inhibitor ABT-
737, which was developed using a fragment-based approach14.
The Bcl-XL binding cleft accommodates the long helical domain of
BH3 proapoptotic proteins and, as a consequence, its vast site is
shaped by contiguous hydrophobic pockets (pocket P1 to P4)15.
One of the major challenges in Bcl-XL targeting is represented by
the flexibility of the helices surrounding the binding domain, spe-
cifically helix-3, which can adopt different conformations depend-
ing on the ligand hosted in the cleft16,17. The flexibility of the
binding site is challenging for those in silico structure-based strat-
egies, such as molecular docking, that cannot take into account
such significant target plasticity. All these reasons make Bcl-XL an
attractive system to challenge HT-SuMD performance, comparing
the in silico outcomes with NMR. It is worth remembering that
this target is not suitable for X-ray soaking fragment screening, a
fact that further limits the FBLD approach18,19.

2. Materials and methods

2.1. Molecular modelling: software and hardware overview

The MOE suite (Molecular Operating Environment, version
2019.0101) was exploited to perform most general molecular
modelling operations, such as protein and ligands preparation20.
All these operations were performed on an 8 CPU (IntelVR XeonVR
CPU E5-1620 3.50GHz) Linux workstation. In silico screening of
fragments was performed in an automated fashion by HT-SuMD, a
hybrid in house code, written in Python, Bash, and Tcl languages.
Molecular dynamics simulations were performed employing the
ACEMD engine on a GPU heterogeneous cluster composed of 20
NVIDIA GPUs (models spanning from GTX 780 to Titan Xp). The
combination AMBER 14SB/general Amber force field (GAFF) was
adopted for all MD simulations21,22. Trajectories analysis was also

performed by HT-SuMD in a 64 core CPU cluster (AMD OpteronTM

CPU 6376 2.30 GHz).

2.2. Systems preparation

2.2.1. Three-dimensional structure of Bcl-XL
At present, the RCSB Protein Data Bank database (PDB) stores 75
three-dimensional structures of the human protein Bcl-XL, identifi-
able by the UniProtKB accession code Q0781723 . Among the
many entries available, solved with different experimental techni-
ques and in the presence of different ligands, we chose for this
study the NMR structure PDB-ID 1G5J24 as this structure ensures
the maximum closeness in terms of sequence identity between
the engineered protein expressed and exploited in NMR experi-
ments and the one computationally used, thus ensuring that the
simulated dynamics correspond to that of the experimentally used
protein construct.

Coordinates of the complex were downloaded and processed
with the protein preparation tool as implemented in MOE20. The
appropriate ionisation states (at pH 7.4) of titratable residues were
established using the Protonate-3D tool. Only the protein chain
corresponding to Bcl-XL was included in the preparation protocol.
The C-terminus was capped to mimic the missing residues25.

2.2.2. Fragments library
A multipurpose in-house library composed of 400 fragments was
used for both screenings. It was set up by cherry-picking frag-
ments from high quality commercially available libraries of differ-
ent vendors (LifeChemicals, Sigma-Aldrich, OTAVAchemicals; the
fragments purity was over 95%). Moreover, all the fragments were
proved to be soluble at 100mM in deuterated DMSO and at least
1mM in phosphate buffer. The three-dimensional structures of the
fragments were built taking advantage of the MOE-Builder tool
and the ionisation states at physiological conditions were pre-
dicted using the MOE.20 Fragment structures were subjected to
MMFF94� energy minimisation until the root mean square (RMS)
gradient fell below 0.05 kcal mol�1 Å �1.

2.3. Ht-SuMD protocol

HT-SuMD is a platform written in Python, Bash, SVL, and Tcl that
enclose s SuMD code with a set of tools devoted to MD system
preparation and the analysis of recognition trajectories analysis.

HT-SuMD allows us to prepare, run, and analyse thousands of
SuMD simulations in a fully automated fashion11. The only inputs
required by the HT-SuMD protocol are the 3D structures of the
protein target (PDB file format) and a molecular database contain-
ing the fragments that have to be investigated (sd file format).
Below, the peculiar steps underlying HT-SuMD functionality are
described. SuMD allows exploration of the entire ligand–receptor
recognition pathway, from the unbound to the bound state by
collecting short unbiased MD simulations and monitoring how the
protein–ligand distance varies over time. Briefly, a tabu-like algo-
rithm at the of each short MD simulation (named SuMD step)
accepts and prosecutes all the productive SuMD steps in which an
approach of the ligand is sampled, otherwise, it rejects and simu-
lates again from the previous coordinates set those steps describ-
ing instead a diffusion of the ligand far from the target. The
combination of the accepted SuMD steps results in the
SuMD trajectory.
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2.3.1. Sumd systems setup
HT-SuMD generates as many molecular dynamics systems as the
number of ligands contained in the fragments database. Each sys-
tem is composed of a macromolecular target protein (in our case,
Bcl-XL), and a single fragment molecule. To avoid protein–ligand
long-range interactions in the starting geometry, all ligands were
positioned at the origin of the cartesian system, far from the pro-
tein binding site, at a distance bigger than the electrostatic cut-off
term used in the simulation (9 Å). T-Leap, part of the amber-
tools2014 suite26, was exploited for the generation of protein–li-
gand complexes, using AMBER14SB as a force field for the
protein21. The parameters necessary to describe and simulate frag-
ments were instead retrieved in the GAFF22,27, by using the ante-
chamber and parmchk tools21,22. After geometry minimisation,
ligand partial charges were calculated following the procedure
suggested by antechamber, with semiempirical method AM1-
BCC28,29. Each system was explicitly solvated using TIP3P as water
model in a cubic box with borders placed at least 13 Å away from
any protein or ligand atom. The total charge of each box was neu-
tralised adding a specific number of Naþ/Cl� counterions, to
ensure a final salt concentration of 0.1M. All the systems were
energy minimised performing 600 steps with the conjugate-gradi-
ent method, then 50000 steps of NVT (0.1 ns) followed by 400000
steps of NPT simulations (0.8 ns). Both equilibration simulations
were carried out using a time step of 2 fs and applying harmonic
positional constraints on protein and fragment heavy atoms with
a force constant of 1 kcal mol�1Å �2, gradually reduced with a
scaling factor of 0.1. The temperature was maintained at 310 K by
a Langevin thermostat and in the NPT simulation, the pressure
was maintained at 1 atm by a Berendsen barostat30.

2.3.2. Sumd simulations collection
Once all the systems have been prepared and equilibrated, HT-
SuMD controls the collection of SuMD trajectories in an auto-
mated manner, partitioning the simulations depending on GPUs’
cluster dimension. Similar to the original implementation, also in
this protocol the supervision algorithm of SuMD monitors in time
the distance between the fragments mass centres and the target
binding site (dcm(F-T)), accelerating the sampling of binding
events11–13. A tabu like algorithm evaluates Since small fragments
are characterised by a more pronounced diffusive motion, if com-
pared to mature compounds or peptides, it has been possible to
shrink the length of each suMD steps from the original value of
600 ps to 300 ps, further increasing protocol performance. For
each simulation box and, thus, for each fragment, three different
replicas were produced, to improve the accuracy of the
simulations.

2.3.3. Sumd trajectories analysis
Each SuMD trajectories produced was geometrically analysed to
identify significant populations of ligand conformations, among
the multitude of sampled data. Prody, a python framework for MD
manipulation and analysis, was exploited to compute the pairwise
RMSDs of fragment atomic coordinates, during the different simu-
lations31. From each replica, a square matrix of RMSDs was
obtained (nf x nf), in which nf is the number of frames, and thus
of ligand conformations, characterising that specific SuMD binding
trajectory. Subsequently, DBSCAN, a density-based clustering algo-
rithm part of the scikit-learn python packages, was applied to
cluster the different fragments conformations32,33. The only
parameters necessary for clustering are min_samples, i.e. the min-
imum number of frames required to initialise a cluster and eps, or

the geometric discriminant that determines whether or not two
conformations belong to the same cluster. All SuMD trajectories
were then clustered using a value of e equal to 1.5 and a min-
imum dimension of 10 conformations, resulting in 4268 clusters of
fragments conformations, starting from 1200 trajectories, which
represented the starting point for all subsequent analysis. The
best conformer was extracted based on the best inter-
action energy.

2.3.3.1 Clusters population analysis. The value of the population
density was calculated and expressed both as the absolute num-
ber of frames and as a percentage value, calculated with respect
to the total number of SuMD frames belonging to the trajectory
from which the cluster was generated.

2.3.3.2 Hydrogen bond s analysis. Each cluster of conformations
was then analysed to map the presence of HBonds between the
different fragments and the Bcl-XL binding site. The analysis was
performed through a Tcl script exploiting the HBonds Plugin (v.
1.2), as implemented in the VMD software34. The geometrical cri-
teria chosen to identify HBonds were a distance between the
donor and acceptor heavy atom lower than 3.0 Å and the angle
between donor heavy atom, hydrogen and the acceptor heavy
atom higher than 120�. When the criteria were met, the HBonds
was recorded, also indicating the nature of the binding site resi-
due involved and the percentage of frames with respect to the
total size of the cluster in which the interaction was present.

2.3.3.3 Hydrophobic contribution analysis. To compute a score
considering the hydrophobic contribution to binding (HYD) a
script based on Scientific Vector Language (SVL) implemented in
the MOE suite was used20. HYD is an adimensional score (the
higher the better). It was calculated for each fragment conform-
ation belonging to a cluster. Finally, the average value HYDave and
the best score HYDbest was obtained for each cluster.

2.3.3.4. Energetic analysis. To monitor the strength of the frag-
ment–protein interaction, the ligand-binding affinity (DGbind) for
each clustered conformation was roughly predicted using the
MM/GBSA scheme as implemented in AmberTools2014. The com-
plex conformation having the best value (DGbest) was selected as
representative of the cluster. Finally, the average DGbind (DGave)
for each cluster was calculated to compare clusters.

2.3.4. Cluster ranking
A consensus scoring approach was then developed to sort the
remaining group of fragment conformations. For each of the three
observables considered, i.e. mean MMGBSA value (MMGBSAclust),
mean hydrophobic contribution (HYDclust), and clusters size
(SIZEclust), three independent ranks were first built and then fil-
tered, keeping only those clusters that fit in the top 10% positions
of the respective charts. Components of each rank were then
compared using a python script, to identify the clusters showing
convergence between the different scores and the Venn diagram
was produced35. Finally, only the highest-score cluster for each lig-
and was retained.

2.4. Protein expression and purification

The human Bcl-XL lacking the C-terminus domain (D209-233) was
expressed as a 6His-tagged protein in Escherichia coli strain
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BL21(DE3). Transformed bacteria were grown at 37 �C, 220 rpm up
to an Optical Density (OD600 nm) of 0.6–0.8, and protein expression
induced overnight at 20 �C, 220 rpm with 1mM IPTG. The
unlabelled protein was expressed in LB medium while 15N-
labelled protein was produced in M9 minimal medium supple-
mented with 1 g/L 15NH4Cl and, 4 g/L unlabelled glucose.
Ampicillin (100 mg/mL) was added as a selection agent. Cells were
harvested by centrifugation (5000 g, 20min, 4 �C) and resuspended
in 20mM PO4 (pH 8.0), 500mM NaCl, 15mM imidazole, and
10mM b-mercaptoethanol, supplemented by Roche cOmplete
protease inhibitors cocktail. The 6xHis-tagged Bcl-XL was purified
by Ni2þ-affinity chromatography on a HisTrap FF crude column
(GE Healthcare). To ensure the high final purity of Bcl-XL, a further
step of purification was carried out by size exclusion chromatog-
raphy (SEC) on a Superdex G-75 column (GE Healthcare), equili-
brated within 20mM TRIS (pH 7.4), 150mM NaCl and 1mM DTT.

2.5. NMR-based screening

All the NMR screening experiments were acquired with a Bruker
DMX 600MHz spectrometer, equipped with a 5mm room tem-
perature TXI probe, at 298 K. The initial screening of 100 frag-
ments was conducted with a protein-based approach, by
acquiring 15N SOFAST-HMQC36 spectra on 80mM 15N-labelled Bcl-
XL dissolved in 20mM TRIS, 150mM NaCl, 1mM DTT, pH 7.4, in
the presence or in the absence of added compounds. The
SOFAST-HMQC experiments were acquired with 48 scans, a recov-
ery delay of 200ms before each scan, and 120 increments in the
indirect dimension for a total acquisition time of around 27min.
The number of points in the indirect dimension was doubled by
linear prediction in the processing scheme. The screening was per-
formed adding to the protein 5 compounds, at a concentration at
640 lM each, for a total of 20 mixtures, These mixtures were cre-
ated with the program NMRmix37 to minimise overlap in the 1D
1H NMR spectra and to facilitate therefore the mixture deconvolu-
tion performed, in the second step of our protocol, with a ligand-
based approach. The percentage of DMSO_d6 in every tube was
3%, an amount that did not induce significant chemical shift per-
turbation on Bcl-XL. The pH of all NMR samples was carefully
adjusted at 7.4 ± 0.05 before each measurement. The 2D spectra
of the mixtures were analysed using a selection of 19 peaks
chosen according to the following criteria. First, peaks had to be a
probe for the specific binding with the protein, so the selected
peaks had to refer to residues in the protein binding cavity or in
its proximity. Second, only isolated or partially overlapped peaks
were chosen, so that they could be unambiguously followed dur-
ing the titration.

Resonance assignment was achieved by comparison with data
available in the BMRB database38 (BMRB accession numbers
30150, 6578, 25466, and 36133). The 19 selected peaks are E92,
A93, G94, D95, E98, L99, R102, A104, L108, S110, Q111, L112,
E129, D133, G134, G138, A142, F146, G196. For these 19 peaks,
the chemical shift perturbations DdNH were quantified relatively to
five reference spectra using the following equation:

Dd NH ¼
d1Hmix � d1Hapo

� �2 þ d15Nmix � d15Napo

5

� �2

2

0
@

1
A

1
2

where d1Hapo and d15Napo represent the chemical shifts of the
apo-protein and d1Hmix and d15Nmix the chemical shift of the pro-
tein in the presence of the fragments mixture39. For every mixture,
the averaged DdNHs was calculated and the mixtures were then
classified using this parameter. The mixtures that could include

binders were analysed with the ligand-based experiments. Each
1D analysis consisted of STD40 and WaterLOGSY41 experiments in
the presence and in the absence of the protein. STD experiments
were acquired with 320 scans. Selective saturation of the protein
at 0.3 ppm frequency was carried out by a 3 s pulse train (60
Gaussian pulses of 50ms separated by 1ms intervals) included in
the relaxation delay and a 30ms spin-lock was used to reduce the
broad background, protein signal. Water-LOGSY experiments were
performed with a 180� inversion pulse applied to the water signal
at �4.7 ppm using a Gaussian-shaped selective pulse of 5ms. Each
Water-LOGSY spectrum was acquired with 400 scans and a recov-
ery delay of 2 s between scans. In both experiments, water sup-
pression was achieved by the excitation sculpting pulse scheme42.
For the ligand-based experiments, the buffer was exchanged
against 20mM PO4 (pH 7.4), 150mM NaCl and 500 lM DTT. The
samples contained from 15 to 25 lM of Bcl-XL and 24-fold the
protein concentration of each fragment. The same mixtures of 5
fragments analysed in the previous step were used also in the lig-
and-based screening. For the STD experiments, the amplification
factor fSTD, was calculated with the following equation:

fSTD ¼ IProtSTD � I0STD
� �

I0

L½ �TOT
P½ �TOT

� 100

where IProtSTD and I0STD are peak integrals in the STD experiments with
and without protein respectively, I0 is the corresponding peak
integral in the OFF-resonance STD experiments and L½ �TOT and
P½ �TOT are the total concentrations of the ligand and protein
respectively. A ligand was considered as a positive in the STD
experiment if the amplification factor, calculated with the equa-
tion above, had a value of at least 50.

To confirm the binding of the molecules selected from the
combined protein- and ligand-based NMR screenings on the mix-
tures and then also of those deriving from the HT-SuMD based
selection on the further 300 fragment screening, 15N SOFAST-
HMQC spectra were acquired on 90lM 15N-labelled Bcl-XL in the
presence of an eightfold excess (720 lM) of each individual frag-
ment. For the most soluble fragments, a titration was performed
with ligand concentrations from 0 to 5.1mM. Dissociation con-
stants were estimated by monitoring the chemical shift changes
as a function of ligand concentration. A grid search was per-
formed using the program OriginPro 2018 b, by varying the values
of Kd and the chemical shifts of the fully saturated protein and
assuming a single-site model. Average values and standard devia-
tions were derived for each Kd by monitoring three different peaks
in the SOFAST-HMQC spectrum. All NMR spectra were processed
and analysed with Bruker TOPSPIN 3.5pl7 (Bruker BioSpin GmbH,
Rheinstetten, Germany) and Sparky 43.

3. Results and discussion

To measure the performance of HT-SuMD in a real drug discovery
scenario instead of retrospective validation, we set up a parallel
screening comparing NMR and HT-SuMD results. Confident that
usually the hit rate in fragment screening for protein–protein
interaction usually spans around 2–3%44, we selected 100 repre-
sentative fragments from our in-house library (Library details are
available in SI, Dataset-1) including a sizable number of bicyclic
aromatic fragments, a scaffold that previously showed an affinity
for Bcl-XL target in NMR-screenings14,45.
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3.1. HT-SuMD screening of 100 fragments library

The implementation of the platform for the HT-SuMD protocol, as
reported in Figure 1, entails three main phases: (I) systems prepar-
ation and equilibration, (II) SuMD trajectories collection, and (III)
analysis of the sampled MD data.HT-SuMD managed the prepar-
ation of 100 simulation boxes, each containing a single fragment
separated from the protein binding cleft by about 50 Å (step I). To
start the in silico simulations from the closest condition to the
experimental screening, an NMR solved structure was selected
among the Bcl-XL PDB entries available (PDB code: 1G5J)24. The
small molecules parametrisation was automatically achieved by
using the General Amber Force Field. Each simulation box con-
tained roughly 75000 atoms about 96% of which were explicit
solvent atoms. To balance the execution time and the sampling of
different recognition pathways, we decided to carry out three dis-
tinct replicas for each fragment, for a total of 300 putative recog-
nition trajectories (step II). This large amount of simulations leads
to a total of 340 ns of SuMD trajectories obtained from a total of
7.82 ls of classical MD (25431 SuMD steps, 300 ps long each). The
HT-SuMD production phase required about one week of calcula-
tion in a small cluster composed of 20 GPUs. A superposition of
all the 300 recognition trajectories is reported in Video S1
(Supplementary Information Video S1). Most of the ligands
reached the canonical Bcl-XL binding cleft in a few nanoseconds
of productive simulation. It is interesting to note that although
the binding site for the supervisor algorithm was set on the centre
of the cleft, the fragments have the possibility to explore a vast
portion of the protein surface and hence to sample different pock-
ets. This aspect makes SuMD peculiar in comparison to several
structure-based techniques focussed on defined binding sites.

To analyse this large number of different trajectories, we
develop an automated analysis tool specifically designed for frag-
ments (step III). This phase was crucial because the binding of a
fragment is often characterised by weak and transient interactions,
making it difficult to uniquely identify a single binding mode. We
developed a procedure based on the comparison of well-popu-
lated families of molecule conformations characterised by the
same geometric binding mode. First, a pairwise RMSD matrix was
computed starting from the ligand coordinates along each trajec-
tory, which were then clustered to isolate the densely populated
family of conformations from the background noise of the trajec-
tories. Among the various clustering algorithms tested, DBSCAN46

proved to be the most performing in discriminating only densely
populated clusters. This algorithm has the advantage of not
requiring an a priori definition of the number of clusters that will
be obtained, which are instead created, without any external bias,
on the basis of the number of fragment metastable binding sites
sampled during the MD simulations.

The 1143 clusters identified were evaluated by considering
four computational observables: (i) the presence of a stable hydro-
gen bond; (ii) the size of the cluster; (iii) a hydrophobic score of
the complex conformations, and (iv) the stability of the complex
conformation according to the MMGBSA method. A ranking
threshold method was used to select the clusters and conse-
quently the related fragments to be considered as potential hits.
We decided to monitor the presence of stable hydrogen bonds
within each cluster since this interaction plays a pivotal role in
anchoring the fragment to the protein binding site (i).

From a comprehensive analysis of three-dimensional structures
containing protein–fragment complexes available in the PDB data-
base, it has been recently highlighted that almost all of them
were characterised by at least one hydrogen bond mediating the
interaction47. Similarly, it has been described that hydrogen bonds

Figure 1. Schematic representation of the computational protocol developed to
perform the fragments screening (HT-SuMD). First (I), hundred MD simulation boxes
were prepared and equilibrated, placing a single fragment molecule 50Å away
from the Bcl-XL protein binding site (PDB ID: 1G5J). Second (II), 300 SuMD simula-
tions describing putative binding pathways were collected (3 replicas per fragment).
Then, the trajectory was geometrically analysed exploiting a density-based cluster-
ing algorithm (DBSCAN), to identify highly populated fragment conformations
within the protein binding site (III). Each cluster was characterised depending on
four geometric/energetic computational descriptors: the presence of a protein–frag-
ment hydrogen bond (i), the cluster size SIZEclust (ii), the average hydrophobic con-
tribution to binding HYDclust (iii), and an energic estimation of binding affinity
through MMGBSAclust (iv). A consensus scoring approach was exploited to obtain a
ranking of the clusters, and consequently of related fragments.
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play a pivotal role in stabilising the complexes since fragment
binding is generally enthalpy-drive48.

The cluster size, or SIZEclust, defined as the number of ligand
conformations characterised by a small RMSD value, can be seen
as an indirect indicator of the stability of the fragment binding
mode associated with the cluster (ii). Each cluster was also scored
by the magnitude of the hydrophobic interactions, or HYDclust,
considering the analysis of the crystallographic complexes
retrieved in the RCSB PDB performed by Shaw et al (iii). They
highlighted that most fragments bury more than 80% of their
total solvent-accessible surface area (SA), with a substantial prefer-
ence in hiding non-polar, rather than polar, SA.47 In our protocol,
the hydrophobic effect was indirectly modelled considering the
molecular contacts between the fragment and the binding pocket
residues, based on the chemical nature of the atom involved (as
described in Experimental Section). The computation was per-
formed for each frame belonging to a single cluster and then the
mean score was calculated and taken as representative of the
entire cluster. Finally, to obtain a rough estimation of the inter-
action strength from an energetic point of view, all the clustered
conformations were subjected to MMGBSA calculation (iv). In this
way, the mean energetic value of each cluster, or MMGBSAclust

was obtained and the frame with the best energy was picked as
the representative complex conformation of the cluster. In sum-
mary, the HT-SuMD analysis tool made it possible to characterise
all the 1143 clusters based on their size, the presence or absence
of H-Bonds, the hydrophobic contribution to binding and their
average energetics value.

To compose a ranking of the clusters, and therefore indirectly
also of the fragments, it was necessary to establish a criterion to
evaluate and weigh these diverse computational observables. As a
first step, in light of the decisive role played by hydrogen bonds,
we decided to consider only the clusters characterised by the
presence of H-bonds. This entailed an important reduction in the
number of clusters to be considered, which dropped from the ini-
tial value of 1143 to 681. Then, a consensus approach was devel-
oped to sort the remaining clusters. For each of the three
descriptors considered, i.e. clusters size (SIZEclust), hydrophobic
contribution (HYDclust), and MMGBSA (MMGBSAclust), three inde-
pendent ranks were built and only the top 10% clusters in each
category were kept. Only the clusters, and thus the relative

fragments showing consensus among the different scores were
taken into consideration. The results are graphically summarised
in a Venn diagram (Figure 2) in which the respective intersection
areas are proportional to the number of clusters they represent. In
the case of multiple clusters associated with the same ligand, only
the one with the highest score was retained. As indicated, four
different intersections can be distinguished. A first region, delim-
ited by a dashed bold line, corresponds to a maximum conver-
gence among the three observables considered and is populated
by 3 fragments (2, 222, and 307). This group contains the most
promising fragments according to our analysis protocol and may
represent the first choice hit list. In addition, three further inter-
sections are evident, highlighted in Figure 2 by thin dashed lines,
which contain fragments for which only two observables con-
verge: HYDclust and SIZEclust (4 fragments); HYDclust and
MMGBSAclust (7 fragments); and MMGBSAclust and SIZEclust (12
fragments). In this group, we found fragments with interesting
binding modes and with high scores; they could be considered
second choice fragments. Finally, we have all the fragments that
showed a high score in only one ranking and therefore are less
reliable than the previous ones. The scores of such descriptors are
reported in SI (SI_HT-SUMD_table.xlsx) for each identified cluster.

3.2. NMR-based screening of 100 fragment library

With the aim to validate and optimise the scoring criteria of the
in silico approach, the same library of 100 fragments was sub-
jected to an independent NMR based screening. Our protocol
relied on both protein- and ligand-based methods, to minimise
possible false-positive or false-negative results.

Briefly, our strategy can be divided into the following steps as
reported in Figure 3: (I) fragment mixtures preparation (II)
SOFAST-HMQC experiments on 20 mixtures of five molecules each
(see methods section) to classify and identify the most promising
ones; (III) deconvolution of the most promising mixtures with lig-
and-based experiments and identification of the potential binding
fragments; (IV) final validation of the potential binding fragments
with protein-based experiments on the single fragments (when
possible, titrations were performed to estimate the affinity con-
stant of the fragment).

Figure 2. The outcome of the HT-SuMD based fragments screening after consensus scoring of clusters is schematically represented through a Venn diagram, in which
the number of non-redundant fragments identified is reported. A bold dashed line contains the molecules showing the greatest convergence of the three computa-
tional descriptors, while the thin dashed line delimits the regions of partial computational observables convergence. The areas are proportional to the number of clus-
ters belonging to the region while the number of ligands is not necessarily proportional to the area (i.e. a fragment may be represented by multiple clusters). The ID
of the different fragments prioritised by the in silico screening is reported on the right.
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The NMR initial screening was based on the more robust pro-
tein-based protocol: SOFAST-HMQC experiments were recorded in
the absence and in the presence of the fragment mixtures. The
choice to start from a protein-based experiment to monitor bind-
ing on fragment mixtures relies on the fact that, if the protein is
intact and no perturbation of its signals are observed, it is safe to
quickly de-validate all ligands of the mixture. With the protein-
based approach, we can directly observe if one of the ligands in
the mixture harmed the protein. In addition, 1H 1D-spectra were
recorded on each sample after the SOFAST-HMQC experiment to
verify the integrity and the solubility of the added fragments. It is
worth noticing that fast pulsing techniques such as the SOFAST-
HMQC, allowed a dramatic decrease in the time required for the
acquisition of the 2D 1H-15N correlation experiment. As a matter
of fact, in our case, the time needed for the SOFAST-HMQC was
even shorter than that required to acquire with adequate sensitiv-
ity the two ligand-based experiments used in step III. It has also
to be considered that our protein of interest, Bcl-XL, not only is
relatively small and therefore suitable for the protein-based
approach but it can be also expressed with good yield, keeping
the costs and the time required for the production of the 15N-
labelled relatively limited. Since a high number of mixtures with
measurable chemical shift perturbations (CSPs) were identified in
the initial screening phase, a careful classification was necessary
to select only the mixtures that would potentially include the best
binders (step II). To this end, we chose to calculate the parameter
DdNH only on a selection of 19 non-overlapped residues peaks,
located in the protein binding cavity or in its proximity. All other
peaks in the spectra were also examined qualitatively to exclude
the presence of non-specific binding.

The mixtures were then classified into three classes based on
the DdNH of the 19 selected peaks (Supplementary Table S1). Four
mixtures stood out from the others for exhibiting an average
DdNHs larger than 0.35 (first class), which suggests a high probabil-
ity to contain binding fragments. Eight mixtures showed inter-
mediate average DdNHs between 0.35 and 0.25 (second class) and,
together with the previous ones, were carried to the next step
(mixture deconvolution). The remaining mixtures, showing average
DdNHs below 0.25, were discarded (third class). To identify the
interacting molecules in each mixture, the 12 selected mixtures
were subjected to Saturation Transfer Difference (STD)40 and
WaterLOGSY49 experiments in the presence and in the absence
(control experiment) of the protein (step III). To make this step
straightforward, all mixtures had been rationally designed to min-
imise peak overlap in ligand-based experiments. An overview of
all the ligand-based experiments is reported in the Supplementary
Material. For 17 fragments (2, 61, 164, 167, 171, 172, 181, 198,
200, 222, 223, 225, 226, 227, 261, 307, 309) the results were unam-
biguous, and the presence of binding was indicated by both lig-
and-based experiments. Ten fragments (63, 193, 199, 203, 204,
205, 238, 240, 254, 265) were controversial: water-LOGSY and STD
experiments gave opposite results. Supplementary Table S2 sum-
marises the results of the ligand-based experiments. Only those
fragments that showed positive results in both experiments were
classified as potential binders. In the last step (step IV), the poten-
tial binders from the ligand-based experiments were analysed sin-
gularly with two-dimensional experiments for the final validation
of the interaction. The fragments were tested at the same protein/
ligand ratio as in the mixtures to have a direct comparison with
the mixture spectra. Among the eight potential binding fragments
found in the first class mixtures, six gave significant CSPs in the
SOFAST-HMQC spectra and were identified as hits (2, 164, 200,
222, 223, 307). Two fragments (61 and 198) gave very small CSPs

Figure 3. Schematic representation of the cross-validated NMR protocol followed for
the initial screening of our small library containing 100 fragments. First (I), the frag-
ments were divided into 20 mixtures each containing 5 molecules, exploiting
NMRmix software37. Then (II), the protein-based experiment SOFAST-HMQC39 was
recorded both in the presence and in the absence of the different mixtures, which
were classified into three groups depending on their DdNH values. Then (III), ligand-
based experiments were recorded on the twelve best mixtures to identify the poten-
tial binders in every mixture. Finally (IV), the binding of selected molecules was vali-
dated exploiting SOFAST-HMQC experiments, collected individually for each fragment.
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and they were classified as false-positives of the ligand-based
experiments. All selected fragments in the second class showed
significant CSP, except for 181, which was classified as a false posi-
tive of the ligand-based experiments.

In our screening, the fragments analysed bind weakly and the
protein/ligand ratio is far from saturation. In these conditions, dif-
ferent ligands present in the mixture can bind to the target in a
non-competitive way. As a consequence, the chemical shift per-
turbation induced by different binding fragments present in the
mixture should be, at least to a first approximation, additive. We,
therefore, verified whether the total CSPs of the mixtures meas-
ured in the first step of our protocol was completely explained by
the sum of the shifts observed for the single fragments identified
as ligands. For 10 out of the 12 selected mixtures, the total meas-
ured shift was compatible, within the experimental errors, with
the sum of the CSPs induced by the single binding fragments. On
the contrary, for the remaining 2 mixtures, the sum of the CSPs of
the selected fragments accounted only for about half of what was
measured in the mixture. This strongly suggested the presence of
false negatives in the ligand-binding experiments. In one of these
mixtures two fragments (2 and 198) were classified as hits and
one (254) gave conflicting results (binding was indicated only in
the STD spectra). Fragment 254 was therefore analysed individu-
ally by the SOFAST-HMQC experiment. As a matter of fact, it
showed binding to Bcl-XL and it could be identified as a false
negative result of the WaterLOGSY experiment. Notably, the sum
of the CSPs caused by the single fragments 2, 198, and 254
explained fully the CSPs of the mixture. Finally, in the ligand-
based experiments carried on the remaining mixture, only frag-
ment 181 gave positive results in both ligand-based experiments.
Nevertheless, in the validation 2D spectra it did not induce signifi-
cant CSPs and it was therefore classified as a false positive. In the
same mixture, fragments 63 and 240 gave positive results only in
one of the ligand-based experiments. Fragment 240 was tested by
itself with a 2D experiment and it induced significant CSPs, which
fully explained those measured for the mixture. So, also 240 was a
false negative result of the ligand-based experiments. The work-
flow described above for the NMR screening is very robust as it
fulfils all the requirements of the validation cross proposed by
Gossert and Jahnke50. Binding effects are indeed detected both
on the ligands and the protein and the integrity of the fragments
and of the target are monitored for each mixture during
the screening.

In summary, starting from 100 fragments in 20 mixtures, 12
mixtures were selected for the ligand-based deconvolution. This
led to the selection of 17 fragments that gave positive results in
both STD and Water-LOGSY experiments and were individually
tested by SOFAST-HMQC. The protein-based experiments led to
the exclusion of 3 fragments. Finally, comparing the CSPs caused
by a mixture and the CSPs caused by the single binding frag-
ments present in the same mixture, 2 false negatives of the lig-
and-based experiments were identified and classified as binders.
In total, 16 out of the initial 100 fragments were selected from
this initial screening. A reason for such a wide hit list is the library
composition, rich in fragments containing two non-fused rings. As
already pointed out by previous studies, this class of molecules
could show a higher binding propensity towards Bcl-XL

14,45.

3.3. Comparison between the HT-SuMD and NMR-
based screenings

To assess the agreement between the experimental and the in sil-
ico screening, a comparison of the respective hits was performed.

First, none of the 27 fragments initially excluded because they did
not fulfil any of the criteria chosen for the HT-SuMD analysis,
proved to be binders in the NMR experiments. For the remaining
73 molecules, the results of the comparison are summarised in
Figure 4 through a Venn diagram indicating the overlapping area
between the two orthogonal methodologies, along with the
chemical structure of the identified fragments and the experimen-
tal and computational data supporting the selection. The most
remarkable result is the full agreement when focussing on the
first-choice hits. All the three top fragments according to HT-
SuMD, showing the maximum convergences of computational
observables, were also classified as binders in the NMR screening.
For two of them, 2 and 222, the Kd was estimated by titrations in
protein-based experiments as 1500± 500 lM and 1000± 400 lM,
respectively. From a pragmatical point of view, this result is par-
ticularly relevant when considering a drug discovery process in
which the maturation of fragments to a lead compound is often
focussed only on few but promising fragment hits. A deeper com-
parison of the two hit lists reveals further interesting points. The
second-choice fragments identified using HT-SuMD, i.e. those with
only two computational observables in the top 10% score (in the
Venn diagram in Figure 2, the three overlapping areas delineated
by a thin dashed line) also include fragments for which binding
was observed and validated by NMR. Interestingly, the rate of con-
vergence with the NMR data varied considerably among these
three subgroups; two subgroups, HYDclust ꓵ SIZEclust and
HYDclust ꓵ MMGBSAclust showed an agreement of 50% and
100%, respectively.

The third subgroup, MMGBSAclust ꓵ SIZEclust showed only
around 8% agreement. Such peculiar distribution may suggest
that some computational descriptors could be more effective in
distinguishing true positives. In this case study, HYDclust repre-
sents a useful observable, even if this is probably influenced by
the topological nature of the pocket hosting the fragment. Bcl-XL
has four main hydrophobic pockets in its cleft that are fundamen-
tal for the binding of both peptide and small molecule inhibitors.
In support of the goodness of the consensus strategy, among the
remaining 47 fragments not presenting convergences between
computational observables, only 3 were considered true binders
in the NMR screening. The vastness of the overlapping area high-
lights the notable agreement of the computational approach and
the NMR-based approach. Retrospectively, if the analysis is
focussed on those intersections that showed the greatest conver-
gence between the computational screening and the experimental
counterpart, highlighted by a yellow line in Figure 4, 12 fragments
out of the 14 predicted by HT-SuMD were correctly identified as
binders by NMR (2 false positives). The remaining four fragments,
the binding of which was revealed experimentally, were not found
in the top of HT-SuMD ranking (4 false negatives, Suppplementary
Figure S1). As a result, HT-SuMD showed an accuracy of 94% (as
calculated from a confusion matrix) in distinguishing true positive
within a large subset of fragment compounds.

3.4. Recognition pathway obtained by HT-SUMD for fragment 2

Fragment 2 was selected as a representative hit to describe the
plethora of information that can be collected through HT-SuMD
simulations and that, combined with the experimental data, can
guide the fragment optimisation phases. Specifically, in Figure
5(A), all the representative conformations (those with the lowest
energy) obtained through cluster analysis of the three different
SuMD replicas of fragment 2 are reported. Although the cluster
centroids apparently seem very different, a simple comparative
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analysis reveals a partial overlap among the conformation
sampled by the three independent trajectories, suggesting how
even different molecular recognition events can converge towards
the same metastable sites. It is worth noting that the Bcl-XL resi-
dues that have shown the greatest CSP during the 2D-NMR
experiment consistently circumscribe the ensemble of fragment
conformations sampled by molecular dynamics, thus confirming
the identified binding site. Figure 5(B) reports the SuMD
Interaction Energy profile describing the binding event between

Bcl-XL and fragment 2, along with the lower energy molecule con-
formation, which characterises the cluster identified through the
consensus ranking procedure. The fragment occupies a hydropho-
bic pocket at the interface of the protein recognition sites P1 and
P2, establishing a stable hydrogen bond interaction with the car-
bonyl backbone of residue V126 through its hydroxyl moiety. The
complete recognition pathway of fragment 2 sampled by means
of the SuMD simulation, along with its related geometric and
energetic analysis, is summarised in Supplementary Video S2.

Figure 4. The convergence between the two orthogonal methodologies exploited to perform the fragments screening is depicted through a Venn diagram. On the
left panel, the distribution of the 16 active fragments identified using the NMR experimental approach (number in bold font) with respect to the HT-SuMD based clus-
tering (number in normal font) is shown. A yellow line highlights the region where the greatest convergences between the methodologies are found, populated in
detail by the molecules belonging to the intersection HYDclust ꓵ SIZEclust ꓵ MMGBSAclust, HYDclust ꓵ MMGBSAclust and HYDclust ꓵ SIZEclust. On the right panel, a
zoom depicting the ID code of the twelve fragments correctly predicted by HT-SuMD protocol is reported; the bottom table summarises, for each of these molecules,
the chemical structure, the computational descriptors which drove their choice and the related results of the NMR experiments.
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Fragment 2 binding to Bcl-XL was also experimentally validated,
exploiting both a ligand-based (1D-NMR) and a protein-based
(2D-NMR) approach. As reported in Figure 5(C), the STD spectrum
of fragment 2 undergoes a significative increase in peak intensity
(mainly in the aromatic region) when acquired in the presence of
Bcl-XL, with respect to the spectrum of the fragment alone.
Similarly, in the waterLOGSY experiment, the presence of negative
peaks in the spectrum of the fragment in the presence of Bcl-XL
confirms a putative binding to the protein. Finally, the binding
epitope of fragment 2 was identified through a protein-based
approach (SOFAST-HMQC), and a titration, up to the condition of
ligand quasi-saturation, allowed an estimation of its binding affin-
ity in the low millimolar range (Kd¼1500± 500 lM).

3.5. HT-SuMD screening of 300 fragments library and its
validation by NMR

Encouraged by the performance of the in silico protocol and by
the agreement with the NMR experimental results, we decided to
perform a further screening on 300 different fragments, all
retrieved from our in-house library. In this second part of the
work, however, the screening was only conducted through a

computational approach, using the same HT-SuMD protocol previ-
ously described in this manuscript. Only top-ranking fragments
were then experimentally NMR-validated, to assess and confirm
the ability of the methodology in identifying true binders.

Nine hundred recognition trajectories (300 fragments, 3 repli-
cas each) were thus collected, leading to a total of 960 ns of
SuMD productive trajectories sampled, in spite of 22.13 ls of clas-
sical MD simulations. The completion of the screening took less
than a month of calculation in our small GPUs cluster. This repre-
sents, to date, the largest computational screening, entirely based
on MD simulations, so far reported in the scientific literature. It is
worth noting that exploiting a single GPU driver of the last gener-
ation (i.e. NVIDIA Titan V), the HT-SuMD protocol can investigate
about 2 molecules/day, in a triplicate way (6 SuMD simulation/
day). Considering the high scalability characterising the in silico
methodology, with modern GPU clusters exceeding hundreds of
devices installed, HT-SuMD makes it possible, in a completely
automated way, to screen up to thousands of fragments in a time
window that is, after all, quite competitive.

The outcomes of the 900 SuMD trajectories are summarised by
Supplementary Video S3, highlighting how the fragment sampling
is not strictly confined within the canonical BH3 binding cleft, but
it covers a wider portion of the protein surface. Nevertheless,

Figure 5. An overview of the computational and experimental information collected relative to fragment 2, one of the best binders identified through the screening
campaign, is here summarised. In panel (A), the centroids of each cluster computed starting by the three SuMD simulations sampled are reported within the Bcl-XL
binding site. Furthermore, the protein residues that have shown the greatest CSP in the NMR experiments (histogram at the bottom of the panel) are depicted using
stick representation, thus confirming the binding site location. Panel (B) reports the Interaction Energy Landscape of one SuMD trajectory describing a putative recogni-
tion mechanism, along with the most stable fragment conformation. In panel (C), starting from the top, are reported the Water-LOGSY and STD experiments performed
on the entire mixture containing fragment 2, with (in red) and without (in blue) Bcl-XL. The reference 1 D NMR experiment of fragment 2 alone is represented in black
at the bottom on the same panel. The positive signals observed in the control STD experiment derived from subtraction artefacts, common in STD experiments and
caused by instabilities during single FID acquisition, despite on-resonance and off-resonance data have been collected in an interleaved fashion. In the example dis-
cussed here, fragment 2 is suggested as a potential binder because it presents negative peaks Water-LOGSY experiment and a significant increase of the STD signals
when Bcl-XL is present. Protein-based experiments performed on fragment 2 to validate the binding, are reported on Panel (D), along with a focus on the well-resolved
residues peaks, showing a large perturbation during the ligand titration and exploited to estimate the dissociation constant.
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most clusters identified by the geometric analysis performed are
preferentially located in a well-known Bcl-XL pocket, named P2,
surrounded by the charged residue R139 and other hydrophobic
residues. Less explored by fragments during the simulation is the
pocket P4, in which only low scored clusters are identified. This is
consistent with experimental data reported in the literature, dem-
onstrating that fragments can bind this low-affinity pocket only
once the P2 site has been completely saturated by another lig-
and51. This can probably be attributed to the presence of a sta-
tionary cluster of water molecules within the P4 site52, which are
hardly displaced by weak binders, such as fragments.

Since the number of fragments investigated in this second
screening was significantly higher than the first one, we

pragmatically decided to focus our attention on the first-choice
hits fragments, selected applying the same analysis scheme previ-
ously described: the mandatory presence of at least one H-bond
and concurrent presence of the cluster in the top 10% of the
three rankings taken in consideration, respectively MMGBSAclust,
HYDclust, and SIZEclust. As highlighted by the Venn diagram
depicted in Figure 6, only four fragments, the structures of which
are depicted on the right have shown the maximum convergence
of computational observables. The selected compounds were
hence experimentally investigated through protein-based SOFAST-
HMQC protocols and remarkably they all showed the ability to
bind Bcl-XL, as shown by the DdNH chemical shift perturbations.
The putative binding mode for all the fragments taken into

Figure 6. The outcome of the second HT-SuMD campaign of fragments screening, performed on a library composed of 300 molecules, is schematically reported
through a Venn diagram after the cluster-based consensus scoring procedure was applied. A bold black and yellow line contain the molecules showing the greatest
convergences of the three computational descriptors. The chemical structures of these molecules, which were subsequently experimentally investigated, along with the
in silico predicted descriptors for the first-choice class of fragments are reported on the right side of the figure. Panels (A–D) report for each of the four molecules (ID
33, 224, 230, and 401 respectively) the lowest energy conformation sampled; the protein residues involved in fragments binding are rendered as pink liquorice.
Protein BCL-XL sub-pocket (P1 to P3) are labelled. Furthermore, for each molecule, the NMR peaks that experimentally showed a large CSP during the ligand titration
and that were thus selected to estimate the reported dissociation constant are reported (using the same colorimetric scale previously described in Figure 5).
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consideration is reported in Figure 6(A–D) along with the respect-
ive Kd, measured following fragments titration. All the fragments
suggested by the in silico protocol experimentally recognise the
protein with an estimated Kd in the millimolar range, which is
quite modest even for a fragment binder; however, the ability of
the protocol to identify and prioritise the active compounds
within the library is extremely encouraging. Fragments 33, 224,
and 230 are all characterised by a bicyclic aromatic scaffold deco-
rated by a negative charged carboxylic acid, which mediates an
ionic interaction with one of the arginine residues surrounding
the P2 site, as can be seen in Figure 6. Interestingly, fragment 33
has already been identified as a weak Bcl-XL binder in a previous
work 51, thus confirming the robustness of HT-SuMD. Compound
401, with its 1,5-benzodiazepine scaffold, despite its mild potency,
represents an innovative chemotype in view of the design of new
potential inhibitors.

4. Conclusion

FBLD is an effective strategy to develop new chemical entities
able to efficiently bind protein targets. However, fragment screen-
ing depends on a reduced number of techniques able to reliably
detect weak binding and only NMR and X-ray crystallography pro-
vide structural information of binding. Such limitations make it dif-
ficult to tackle certain targets53. In this respect, computational
methods have enormous potential. The calculation of hotspots
and the comparison of binding modes are already able to give
significant information for the selection and the development of
fragment hits.

Here, we have proposed a new application of SuMD that can
be used in all those fragment-based screening cases where the
structure of the target protein is available. We initially performed
in parallel, on the same small library of 100 fragments, an in silico
screening using HT-SuMD and an experimental one based on a
solid, cross-validated NMR approach. In the case of Bcl-XL, the pro-
tein target object of this study, HT-SuMD has shown an impressive
agreement with NMR results, especially in light of the fact that
also among different biophysical techniques the convergence
could be limited54. To our knowledge, this is the first fragment vir-
tual screening based on MD, extensively validated by experimen-
tal NMR data. Furthermore, one of the most impressive results is
the possibility to explore fragment–target recognition pathways in
a reduced time window, three orders of magnitude less than the
traditional MD-based approach. The HT-SuMD approach described
here was extended to a total of 400 fragments, so far the largest
library reported in the literature ever screened with a computa-
tional approach entirely based on MD simulations. We hence dem-
onstrated that with this method, it is possible to screen hundreds
of fragments in a few weeks, even using a small GPU-cluster. It is
worth noting, however, that moving from a small GPUs cluster,
like the one used in this study, to a larger infrastructure, would
allow shortening the in silico screening, making HT-SuMD
extremely convenient also in comparison with experimental
approaches. In this respect, we propose that HT-SuMD can be
used to efficiently complement experimental methods. First, HT-
SuMD represents a valuable tool to prioritise the best fragments
binders for experimental screenings. We have indeed shown here
that, at least for our target, all four top hits of the in silico screen-
ing were weak binders. A wider methodological validation is how-
ever necessary, to broaden the applicability domain of HT-SuMD
also to biological targets with orthogonal characteristics to those
of Bcl-XL (i.e. rigid and hydrophilic binding site).

Also, HT-SuMD can quickly provide precious structural insight
into the protein–fragment complex. This information is particularly
valuable for targets that are difficult to crystallise and could,
therefore, be useful in driving the phase subsequent to the candi-
date identification, or its maturation towards a lead compound.

The investigation of the association process in HT-SuMD has
also several advantages in comparison to methodologies focussed
only on the bound state. First, in SuMD simulations, the binding
site is fully solvated and the role of the different water molecules
in the positioning of every single fragment can be analysed dur-
ing the recognition process. Secondly, it is possible to explore the
adaptability of the protein surface in accommodating different
fragments with different biophysical profiles. However, there is still
a huge space to improve a robust metric for the selection of
novel, diverse and easy-to-grow fragments. Finally, the future of
the hybridisation of HT-SuMD with all FBDD approaches will allow
one to determine more efficiently which fragment could be most
suitable to be transformed into a drug candidate using the most
convenient synthetic strategies.
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