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Abstract 

Background:  Geographical accessibility to health facilities remains one of the main barriers to access care in rural 
areas of the developing world. Although methods and tools exist to model geographic accessibility, the lack of basic 
geographic information prevents their widespread use at the local level for targeted program implementation. The 
aim of this study was to develop very precise, context-specific estimates of geographic accessibility to care in a rural 
district of Madagascar to help with the design and implementation of interventions that improve access for remote 
populations.

Methods:  We used a participatory approach to map all the paths, residential areas, buildings and rice fields on Open-
StreetMap (OSM). We estimated shortest routes from every household in the District to the nearest primary health 
care center (PHC) and community health site (CHS) with the Open Source Routing Machine (OSMR) tool. Then, we 
used remote sensing methods to obtain a high resolution land cover map, a digital elevation model and rainfall data 
to model travel speed. Travel speed models were calibrated with field data obtained by GPS tracking in a sample of 
168 walking routes. Model results were used to predict travel time to seek care at PHCs and CHSs for all the shortest 
routes estimated earlier. Finally, we integrated geographical accessibility results into an e-health platform developed 
with R Shiny.

Results:  We mapped over 100,000 buildings, 23,000 km of footpaths, and 4925 residential areas throughout Ifana-
diana district; these data are freely available on OSM. We found that over three quarters of the population lived more 
than one hour away from a PHC, and 10–15% lived more than 1 h away from a CHS. Moreover, we identified areas in 
the North and East of the district where the nearest PHC was further than 5 h away, and vulnerable populations across 
the district with poor geographical access (> 1 h) to both PHCs and CHSs.

Conclusion:  Our study demonstrates how to improve geographical accessibility modeling so that results can be 
context-specific and operationally actionable by local health actors. The importance of such approaches is paramount 
for achieving universal health coverage (UHC) in rural areas throughout the world.
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Background
In 2018, world leaders celebrated the 40 years since the 
adoption of the Alma Ata Declaration, which recognized 
the need to invest in primary care as the key to attaining 
the goal of “Health for All”. While we have witnessed 
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since then an unprecedented global improvement 
in health indicators, half of the world’s population 
continues to lack access to essential health services [1]. 
Low health care access in rural settings of the developing 
world is due to a combination of financial, geographical 
and health system barriers [2–6]. To reduce the impact 
that weak health systems and user-fees have on health 
care access, there is a growing consensus around the 
central importance of sector-wide approaches such as 
health system strengthening (HSS) and universal health 
coverage (UHC) [7–9]. An increasingly recognized pillar 
of many HSS and UHC efforts is the role of community 
health workers (CHWs) to reduce geographical inequities 
in access and ensure the delivery of primary care at the 
community level [10].

Community health strategies are underway in 
most rural areas of Sub-Saharan Africa, where health 
infrastructure is sparse and the majority of travel is on 
foot [10]. Distance and travel time to primary health 
centers (PHC) in these areas are known drivers of care 
utilization, showing consistent negative impacts on the 
use of prenatal, perinatal and obstetric care for women 
[4, 11–15]; child vaccination coverage and pediatric 
health utilization [16–19]; voluntary enrolment in health 
insurances [2]; and rates of diagnosis or treatment for 
tuberculosis, malaria, and HIV [20–24]. In fact, the use 
of primary care tends to fall exponentially as distance 
from health facilities rises, a phenomenon known as 
“distance decay” [16, 23, 25–27]. Geographical barriers to 
care can persist even when facility-based HSS activities 
are in place, making these approaches insufficient to 
reach full population coverage of primary care services 
[28–33]. Therefore, to optimize both facility-based and 
community-based strategies towards the realization of 
UHC, a much deeper understanding of geographical 
accessibility to PHC and community health sites (CHS) is 
necessary in contexts undergoing HSS efforts.

Geographical access to health care has been previously 
characterized in other contexts using a variety of methods 
[13, 34–36], aimed at estimating distance or travel time to 
reach health facilities for populations [17, 37]. A common 
approach consists of estimating travel time through 
population surveys, but this method is resource-intensive 
and prone to biases related to how people subjectively 
measure time [23, 26, 34]. An alternative approach is the 
use of geomatics with available geographic information 
[38–40], either estimating Euclidean distance (“as 
the crow flies”) or using more precise algorithms that 
account for terrain characteristics and road networks 
through friction surfaces [35, 38, 41, 42]. To increase 
the adoption of geographic accessibility analyses into 
health planning, the WHO integrated those algorithms 
into an easy to use, freely available tool (“AccessMod”) 

that includes multiple functionalities [43, 44]. However, 
methods that rely on friction surfaces represent only 
a “best guess” of the routes people use in areas with 
poor road infrastructure and of the speed at which 
people travel. For geographical accessibility analyses to 
be precise enough for local use by program managers 
and health workers, reliable information on footpath 
networks needs to be combined with context-specific 
estimates of travel speed, and integrated via e-health 
tools. This can inform the design and implementation 
of geographically targeted interventions that balance 
facility-based, community health, and outreach strategies 
in order to maximize population access to primary care.

Such approaches are particularly needed in 
Madagascar, a country with one of the least funded 
health systems in the world [45]. In 2014, Madagascar 
had less than 3 clinicians (doctors, nurses and midwives) 
per 10,000 people [46], with a lower concentration in 
rural areas, where over three quarters of the population 
live [47]. Access to health care is particularly low for 
populations living more than 5  km away from a PHC, 
putting them at higher risk for early childhood mortality 
[48, 49]. In 2014, the Madagascar’s Ministry of Health 
(MoH) and the nongovernmental organization PIVOT 
partnered to strengthen the public health system in the 
rural district of Ifanadiana, with the aim of attaining 
UHC and set a model for the country. Despite rapid 
improvements observed in accessibility and health 
conditions [50, 51], initial analyses suggested that health 
gains were concentrated in close proximity to health 
centers [51]. Here, we aimed to develop very precise, 
context-specific estimates of geographic accessibility to 
care in Ifanadiana district to help with the design and 
implementation of interventions that improve access 
for remote populations. We mapped all buildings and 
footpaths in the district to accurately estimate the 
shortest routes to health facilities, and we parametrized 
travel time estimations with hundreds of hours of 
fieldwork and remote sensing analyses. We integrated all 
this information into accessible e-health tools for use by 
PIVOT, MoH and other local partners.

Materials and methods
Study area
The study area is Ifanadiana, a rural health district 
located 444  km southeast of Antananarivo. The district 
has an area of 3975 sq. km and is characterized by a 
mountainous landscape. The district’s health system is 
comprised of one hospital (CHRD II), 21 PHC facilities 
and 195 CHS where CHWs provide consultations for 
children under 5  years and reproductive women; these 
may be their homes or a designated structure. There is 
only one paved road crossing the district from West to 



Page 3 of 15Ihantamalala et al. Int J Health Geogr           (2020) 19:27 	

East (national road RN25) and through Ranomafana 
National Park. Additionally, there are two non-paved axes 
connecting the main towns in the North and South of the 
District, which are partly accessible by 4WD vehicles or 
all-terrain motorcycles. Most villages in the District are 
connected to each other by small paths only accessible 
by foot. High rates of extreme poverty, geographical 
barriers, and unreliable health services were associated 
with very limited access to health care in the district 
in 2014, which was substantially lower than average 
estimates for Madagascar [49, 52]. Since then, the NGO 
PIVOT has worked in Ifanadiana in partnership with the 
Ministry of Health to create a “model district”, so that 
the experience in this district can help improve national 
strategies and health policies throughout the country. 
The intervention included the removal of most point-of-
service payments as well as improved facility readiness 
and clinical programs at all levels of care (i.e. hospital, 
health centers, and community health). In particular, 
Ifanadiana is one of the first districts to officially pilot 
the national policy on UHC, which aims to ensure access 
to quality healthcare for all through strengthened health 
systems and a reduction of point-of-care fees. Moreover, 
PIVOT is piloting alternative, professionalized, models 
of community health through enhanced supervision 
by certified nurses, building infrastructure for CHSs in 
partnership with local communities, and implementing 
proactive community case management. The work 
described in this study was in support of these two major 
initiatives.

Data collection
Participatory mapping with OpenStreetMap
Detailed, freely available data on footpath networks 
and villages in rural areas of the developing world are 
necessary to obtain precise routes for accessing care, 
but this information is largely absent. To fill this gap, we 
carried out photo-interpretation using very high spatial 
resolution satellite images in OpenStreetMap (OSM), 
a collaborative mapping project with tools for drawing 
roads, houses, and land use contours among others 
[53]. For this, we collaborated with the Humanitarian 
OpenStreetMap Team (HOTOSM) [54], an organization 
that promotes collaborative mapping projects on the 
OpenStreetMap platform for humanitarian purposes 
through a dedicated interface and network to a large 
online community. The district was divided into 3508 
tasks of 1 sq. km each. Mapping of each task was done 
in a two-stage process. First, one or several individuals 
mapped all paths, roads, buildings, and residential 
areas (defined as groups of 4 or more buildings) within 
a particular task. This was done on OSM using Digital 
Globe Standard imagery for background (30–60  cm 

spatial resolution), and Bing maps imagery (up to 30 cm 
spatial resolution) as backup when cloud cover in Digital 
Globe images prevented their use for mapping. After 
the task was marked as mapped, it was available for 
validation by a separate person. The validation stage, 
which uses the same tools as the mapping stage, allowed 
making all necessary corrections of each task in order 
to ensure the consistency and quality of the mapping. 
After the completion of this mapping in HOTOSM, we 
carried out an additional mapping of the hydrographic 
network (streams and rivers) and rice fields, following 
the same protocol. OSM mapping of Ifanadiana district 
was achieved in 8 months with the collaboration of 103 
participants. To increase participation in the mapping 
project, we organized 5 “mapping parties” with local 
universities and OSM groups in both Madagascar and 
La Reunion. Despite it being a collaborative project 
and published in the HOTOSM Task Manager, we had 
few spontaneous contributions and 5 people from our 
research team mapped 73.6% of the overall project. The 
geographic data mapped in OSM is now freely accessible 
to any user and can be queried on QGIS [55] via the 
QuickOSM plugin, which we used here for retrieving the 
data for our analyses.

Recording travel time on the field
Most travel in Ifanadiana district is done by foot due 
the minimal transportation infrastructure and steep 
terrain. To obtain context-specific estimates of travel 
speed by foot according to terrain characteristics, we 
recorded GPS data from 168 walking routes across 10 
out of the 15 communes of Ifanadiana district between 
September 2018 and April 2019 (Additional file  1). 
We collected two types of routes: 1) routes from field 
expeditions of PIVOT’s community team staff during 
CHW supervisions, and 2) routes specifically recorded 
for this project to obtain a larger sample size and wider 
representation of terrain characteristics, collected 
by representatives of the PIVOT research team and 
by the local population. We recorded these tracks 
using Samsung Tab A10 tablets and the Android app 
“OsmAnd” version 3.0.2 [56]. OsmAnd is a free map and 
navigation app based on the OSM database. For each 
trip, we recorded via OsmAnd the GPS location, time 
and altitude every 10 s.

Satellite imagery and remote sensing
We complemented the mapping work in OSM, which 
provides some elements of land use, with remote 
sensing analyses of satellite images to identify forests, 
water bodies and savanna land uses. For this, we used 
free Sentinel-2 images (level-2A) from August 18, 2018, 
which were orthorectified, provided Top Of Canopy 
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(TOC) reflectance, and had a 10  m spatial resolution. 
We used the Dzetsaka plugin for semi-automatic 
classification in QGIS [57]. First, we manually outlined 
over fifty polygons representing regions of interest (ROI) 
for each of the three classes (forests, water bodies and 
savanna). We then ran random forest algorithms, which 
have good performance in the classification of remotely 
sensed data, with good accuracy [58]. The random forest 
model calculates a response variable by creating many 
different decision trees and then allocating each multi-
layered pixel down each decision tree. The response is 
then determined by evaluating the responses from all 
trees. The class that is predicted the most is the class that 
is assigned to the object. Forty percent of the image’s 
pixels were used for validation. Second, we used the 
model to predict values for the whole satellite image in 
order to obtain a classified image. The last step of the 
process consisted of a post-classification, where smaller 
clusters of areas under 10,000 sq. m were removed 
and replaced by the pixel value of the largest neighbor 
polygon. This process was done to improve the quality 
of the classification product. Finally, we merged these 
supervised classifications with the two thematic classes 
obtained earlier through OSM (residential areas and rice 
fields). We validated the land use map by recording 62 
control points on the field during four expeditions across 
the district and we completed these observations by 
identifying 254 points through Google Earth. We finally 
computed a confusion matrix to compare observed and 
classified values by class.

In addition to land cover, we obtained elevation 
and precipitation data from remotely sensed data. We 
downloaded the Shuttle Radar Topography Mission 

(SRTM) Digital Elevation Model (DEM) from the 
United States Geological Survey (USGS, [59]), which 
gives elevation with a 30  m ground resolution. We 
also acquired precipitation estimates from the NASA 
Prediction of Worldwide Energy Resources (POWER) 
Project [60], with a spatial resolution of 0.5 * 0.5 degrees.

Estimation of shortest path distance
Once the mapping of all buildings and footpaths was 
finalized, we used the OSRM software [61] to calculate 
the distance of the shortest path between each building 
and the closest health facility, via the R software package 
“osrm” (Fig.  1). OSRM uses the Dijkstra’s routing Algo-
rithm, which searches iteratively the shortest path from 
a single node to the destination node in a network. For 
each building, the shortest path distance to two health 
facilities were calculated: to the closest PHC and to the 
closest CHS. While we had the location of all PHCs and 
the 37 CHSs built with PIVOT support, for CHSs with-
out precise GPS locations (158 out of 195), we assumed 
that they were located in the main village of the Fokon-
tany (“chef lieu”), as indicated in national policies for 
community health. In addition to the distance values, the 
actual shortest path was saved as a vector file (shapefile 
format) for use in travel time estimations (next section). 
Finally, we interpolated the distance values in the whole 
district using kriging methods available in ArcGIS to 
improve visualization of results.

Estimation of travel speed and time to seek treatment
To obtain precise and context-specific estimates of time 
to seek treatment, we studied the geographic and climatic 
factors associated with travel speed in the sample of 

Fig. 1  Estimation of the shortest paths from a building to join the PHC. a Shows an illustrative example of shortest paths obtained thought OSRM, 
with building values for travel distance and time to reach one of the district’s PHC b Shows how the travel distance calculated by OSRM improves 
on typical Euclidian distance estimations, providing more realistic and accurate values by using the footpath network



Page 5 of 15Ihantamalala et al. Int J Health Geogr           (2020) 19:27 	

168 walking routes collected on the field. For this, travel 
speed between each pair of points within a GPS track was 
estimated using the time and GPS location at which each 
point was taken. Then, we divided the 168 walking routes 
into 100 m segments and we intersected these segments 
with the raster datasets to obtain corresponding values 
for DEM, land cover and rainfall. For this, we used the 
“st_intersects” function available in PostGIS software. 
As a result, between each pair of points (N = 57,719) we 
obtained values for the following explanatory variables: 
degree of slope, cumulative distance since the beginning 
of the track, precipitation and land use.

We modelled the impact of each geographic and 
climatic factor on travel speed using additive models 
that included a random intercept for each individual 
track. First, exploratory and univariate analyses were 
carried out to understand the relationship between 
each variable and travel speed, including linear and 
non-linear relationships for slope as well as categorical 
and numerical variables for land use and cumulative 
distance (Additional file  2). Cumulative distance since 
the beginning of the track was categorized following 
exploratory analysis into 2 groups (0 to 13 km and 13 to 
25 km) to reflect the reduction in speed after substantial 
walking. The land use was converted into a categorical 
variable that represented the predominant thematic 
class between each pair points, and a category “mixed” 
was added when the predominant class represented 
less than 50%. Slope was included as a non-linear 
smooth in the additive model. All these explanatory 
variables had a p value under 0.1 and were included in 
the multivariate analysis. Model fit was estimated via 
AIC (Akaike information criterion), whereby the model 
with the lowest AIC was selected. Model validation was 
carried out to check for normality, homogeneity and 
independence of residuals.

Using travel speed estimates from the fixed effects of 
the final multivariate model, travel time was predicted 
for each of the 41,426 routes obtained through OSRM 
(two per isolated building or residential area, one to 
the closest PHC and one to the closest CHS). For this, 
similarly to the 168 fieldwork routes process, we divided 
these routes into 100  m segments and intersected each 
segment with DEM and land use to obtain the same set 
of explanatory variables. Since rainfall affects travel speed 
and varies from day to day, for each route we provided 
a prediction for a scenario without rainfall (minimum 
time) and with the maximum amount of rainfall recorded 
during fieldwork (maximum time). Although predictions 
of travel time for these routes were not validated a 
posteriori on the ground, the 168 fieldwork routes used 
to parameterize the model were representative of the 
larger PHC and CHS route datasets (Additional file  1). 

As with travel distance, we used kriging methods to 
interpolate the values of travel for the entire district to 
improve visualization.

Comparison of results with existing methods
To assess whether the methods used in our study 
improved the precision of existing methods used 
in geographic accessibility modeling, we compared 
estimates of travel time obtained here with results 
obtained from Euclidean and friction surface methods. 
For this, we compared absolute and relative differences 
for the 168 routes for which we had field information as 
well as for the 41,426 routes predicted in our analyses. For 
Euclidean distance we used the R package “stats” and we 
assumed a constant travel speed of 5 km/h. For friction 
surfaces, we used the software “AccesMod” together with 
the district’s digital elevation model, OSM road network 
and land cover datasets, and we assigned speed values 
for each class of land cover and road network following 
recommendations for AccessMod 3.0 available in Ray 
et al. [43].

Development of an e‑health tool with R Shiny
We developed an online app to facilitate the use by 
local health staff of the data and results from the study. 
It consists of a website interface that builds on the 
estimation methods for distance and travel time in 
Ifanadiana district presented here, to make the results 
flexible and easily accessible by program managers and 
health workers (in French and English). We used the 
package Shiny [62] for R statistical software. This app is 
hosted at the PIVOT dashboard website (http://resea​rch.
pivot​-dashb​oard.org:3838/) for both private and public 
use.

Results
Mapping
A total of 106,171 buildings were mapped. Of these, 
65.6% were located in one of the 4925 residential 
areas, whereas 34.4% were isolated houses. The size of 
residential areas ranged from 4 to 870 buildings, with 
an average size of 14. Moreover, 23,726 km of footpaths 
were mapped, which represent 99.1% of the road network 
in Ifanadiana district. Only 0.3% of the road network 
(62 km) are paved secondary roads. To expand available 
data, we also mapped on OSM the name and location of 
707 villages, 21 PHCs (2 of which were recently built), 
and 37 CHSs built with PIVOT support. This district 
GIS dataset was substantially more exhaustive than 
what is available through OSM for the rest of districts 
in the Vatovavy Fitovinany region, comprising an area of 
approximately 16,788 sq km (Table 1).

http://research.pivot-dashboard.org:3838/
http://research.pivot-dashboard.org:3838/
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The remote sensing analysis allowed to map 850 sq km 
of forest, 12 sq km of water bodies and 2967 sq km of 
savanna (21.4%, 0.30% and 74.6% of the district surface, 
respectively) at a 10 m resolution (Additional file 3). The 
kappa index for the land use classification was 0.95 [58].

Shortest path distance to health facilities
Travel distance to reach the nearest PHC varies from 0 
to 27 km with a district average of 8 km (Additional files 
4 and 5). The most remote areas in terms of PHC acces-
sibility are located in the North (Fasintsara), South-West 
(Ranomafana), and East of the district (Tsaratanana), 
where populations live further than 20 km from the near-
est PHC (Fig.  2). More than two-thirds of the district 
population live further than 5 km from the closest PHC, 
with 44.43% living between 5 and 10  km, and 24.67% 
living between 10 and 20 km (Table 2). Only 8.54% live 
under 2  km from a PHC. Travel distance to reach the 
nearest CHS varies from 0 to 13 km, with a district aver-
age of 2.69 km (Additional files 4 and 5). In several areas 
across the district, populations live between 4 and 6 km 
to the closest CHS (Fig.  3). Overall, less than 5% of the 
population resides more than 5 km away from a CHS, but 
half (52.2%) live between 2 and 5  km. Only 43.75% live 
under 2 km from a CHS (Table 3).

Time to seek care under different climatic conditions
Statistical analyses from a sample of 168 walking routes 
in Ifanadiana District (871 km, Additional file 2) allowed 

us to identify the most relevant determinants of travel 
speed for local populations and health workers. Over-
all, there was wide variation in speed between individual 
tracks, with 39.45% of the variation explained by the ran-
dom effects. Travel speed was reduced by 0.38 km/h after 
the first 13 km. In terms of terrain characteristics, slope 
was the most important determinant of travel speed, 
which decreased exponentially with absolute values of 
slope (whether positive or negative, see Additional file 6). 
Walking through a water body, a rice field, or a residential 
area were associated with slower travel speeds, whereas 
walking through savanna, forest or a mixed land use 
were associated with faster speed. Finally, rainfall had a 
small negative effect on travel speed, where an increase 
in 10 mm of rainfall was associated with a reduction of 
0.06 km/h in speed.

Using predictions of travel speed for the 41,426 routes 
obtained through OSRM we found that time to seek care 
at a PHC varies between 0.49  min and 7  h (one way) 
under dry conditions (average of 111 min) and between 
0.51  min and 7.5  h during rainy conditions (average 
121  min; Additional files 3 and 4). The time difference 
between rainy and dry conditions was most relevant 
(over 20  min) for areas located further than 15  km to 
the PHC. Overall, only 21.6% of the population can 
join a PHC within an hour under rainy conditions and 
58.1% within 2  h. This percentage increases under dry 
conditions to 24.3% of the population being able to reach 
the PHC within an hour, and 63.2% within 2 h.

Table 1  Comparison of  geographic information available on  OSM in  Ifanadiana district following  mapping 
and the average geographic information available in the other districts of Vatovavy-Fitovinany Region

a  The average here represents the sum of the number of residential areas, buildings, rice fields and the length of road networks in the other 5 districts of the region 
(Manakara, Mananjary, Ikongo, Vohipeno, Nosy-Varika) divided by 5

Ifanadiana Distric averagea for the rest of Vatovavy-Fitovinany 
region

n (%) Length (km) Area (ha) n (%) Length (km) Area (ha)

Residential area 4925 223

[0, 20] 4241 86.11 206 92.38

(20, 40] 371 7.53 9 4.03

(40, 50] 58 1.18 1 0.45

(50, 100] 177 3.59 4 1.19

> 100 78 1.58 3 1.35

Buildings 106,171 6723

Isolated house 36,539 34.42 5086 75.65

On residential area 69,632 65.58 1637 24.35

Rice field 17,446 13,436 201 297

Road networks

Path 23,726 400

Secondary road 62 68

Tertiary road 130 45
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Travel time to reach a CHS varies between 0 and 
150  min under dry conditions, and up to 165  min 
under rainy conditions (Additional files 3 and 4). For 

areas located further than 5  km from a CHS, the dif-
ference between dry and rainy conditions can be of 
15  min. Overall, 40% of the population lives within 
30  min from a CHS, and 85.12% lives within 1  h 
under rainy conditions (Table  4). This percentage 
increases under dry conditions to 44% and 89.83% for 
populations living within 30 min and 1  h to a CHS, 
respectively. Small areas all across Ifanadiana had pop-
ulations that lived further than 1 h from a CHS (Fig. 3), 
and most of these populations lived further than 1  h 
from any type of primary health facility, whether a 
PHC or a CHS (Fig. 4).

Comparison of travel distance and time with commonly 
used geographic access modeling methods
Comparisons of estimates with other commonly used 
methods in geographical access modeling showed that 
methods presented here improved the precision of 
travel time in Ifanadiana district (Table 5 and Additional 
file  7). Using Euclidean distance and an average speed 
of 5  km/h resulted in a relative difference with values 
obtained during fieldwork of 40.5% (31.22  min). Using 
friction surfaces through AccessMod the difference with 

Fig. 2  Interpolated distance and travel time between each household and PHCs. a Spatial variation in the distance to join the nearest PHC, with 
shades of blue representing 6 distance classes: 0–5, 5–10, 10–15, 15–20, 20–25 and > 25 km. b, c Travel time without and with rainfall to join the 
nearest PHC, with shades of brown representing 6 time classes: 0–1, 1–2, 2–3, 3–4, 4–5 and > 5 h

Table 2  Distribution of  the  population in  Ifanadiana 
according to their distance to the nearest health facility

Health facility type Travel distance (km) Population (%)

Primary health care 
center (PHC)

[0, 1] 5.85

(1, 2] 2.69

(2, 5] 21.02

(5, 10] 44.43

(10, 20] 24.67

(20, 30] 1.34

Community health site 
(CHS)

[0, 1] 22.07

(1, 2] 21.68

(2, 5] 52.2

(5, 10] 3.98

(10, 20] 0.08
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fieldwork values was 22.57  min (29.81%) on average. 
While Euclidean methods consistently underestimated 
travel distance and time in this sample of routes, the 
friction surface method resulted in more variable results 
(Additional file 7). In contrast, predictions using OSRM 
and our statistical model resulted in smaller relative 
differences of 4.27% (3.6 min).

When we extended this comparison to all 41,426 
routes between households and health facilities, using 
our estimates as a reference, Euclidean methods resulted 
in a relative difference of over 30% (48 and 13  min for 
PHC and CHS, respectively). Differences in travel time 
with friction surface methods were lower, at 20% for 
PHC (26.31  min) and 25% for CHS (7.88  min). As with 
the fieldwork sample, Euclidian methods consistently 
underestimated travel time in PHC and CHS routes. In 
contrast, friction surfaces overestimated travel time in 
most of these routes when compared with our methods 
(Additional file 7).

e‑Health tools for geographical accessibility to care
The web interface created for health workers and pro-
gram managers (Fig.  5) allows visualization of key 

information for the planning and implementation of 
health programs such as (1) areas with the lowest acces-
sibility to health care based on shortest path distance and 
travel time, (2) the percentage of the population in each 
commune and fokontany that are at a particular distance 
and travel time to the nearest health facility, (3) a tool to 
estimate shortest path routes for field expeditions and 
community health work with either a satellite or OSM 
background, and 4) the geographic distribution of resi-
dential areas and isolated households that are within a 
certain distance or time from a selected health facility. In 
addition to the web interface, which can be accessed by 
phone or computer but requires an internet connection, 
field workers can get accurate directions without inter-
net access. For this, they can use the free Android app 
“OsmAnd” on a smartphone or tablet, as the full footpath 
network and all residential areas have been mapped on 
OSM in this project, and this app only needs the phone’s 
GPS and OSM maps stored locally.

Fig. 3  Interpolated distance and travel time between each household and CHSs. a Spatial variation in the distance to join the nearest CHS, with 
shades of blue representing 4 distance classes: 0–2, 2–4, 4–6 and > 6 km. b, c Travel time without and with rainfall to join the nearest CHS, with 
shades of brown representing 5 time classes: 0–30, 30–60, 60–90, 90–120 and > 120 min
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Discussion
Despite a renewed global commitment in recent years to 
UHC and community health as ways to increase finan-
cial and geographical access to primary care, half of the 
world’s population continues to lack access to essential 
health services [1]. Distance to health facilities remains 
one of the main barriers to accessing care in rural areas 

of the developing world, where transport infrastructure 
is deficient, population density is low and health facili-
ties are sparse. Although methods and tools exist to 
model geographic accessibility, there is a critical lack of 
basic geographic information in low-resource rural set-
tings that prevents their widespread use to optimize the 
implementation of local health programs. Using a health 
district of Madagascar as case study, we show how the 
combination of participatory mapping, fieldwork and 
remote sensing can provide very precise estimates of dis-
tance and time to seek treatment at health facilities that 
can be used to inform health system design and policy, 
improve management, and support health workers. We 
found that over three quarters of the district population 
lived more than 1 h from a PHC. Moreover, we identified 
several areas where the nearest PHC was further than 5 h 
away, and vulnerable communities in most parts of the 
district with poor geographical access (over 1 h travel) to 
both PHCs and CHSs.

Table 3  Multivariate analysis of  local factors affecting 
travel speed by foot in Ifanadiana, (linear additive model, 
with individual track as random intercept)

a  There was an exponential decrease of speed at higher absolute values of 
slope (in percent). Non-linear smooth and confidence intervals are shown in 
Additional file 6

Coeff Std. Error p

Intercept (km/h) 3.27 0.10 < 0.001

Slope (%) Non-lineara -a < 0.001

Rainfall (every 10 mm) − 0.06 0.01 <0.001

Travel distance (km)

[0, 13] (Ref )

(13, 22.9] − 0.38 0.02 <  0.001

Land cover

Mixed (Ref )

Water bodies − 1.32 0.18 < 0.001

Forest 0.01 0.16 0.93

Rice field − 0.46 0.16 < 0.01

Savanna − 0.05 0.16 0.75

Residential area − 0.52 0.16 < 0.01

Individual

Community team staff (Ref )

PIVOT research team 1.20 0.03 < 0.001

Local population 1.29 0.03 < 0.001

Table 4  Distribution of  the  population in  Ifanadiana 
according to their travel time to the nearest health facility

Health 
facility 
type

Travel time (minutes) Population (%)

If time estimation 
without rainfall

If time 
estimation 
with rainfall

Primary 
health 
care 
center 
(PHC)

[0, 30] 9.76 8.85

(30, 60] 14.49 12.77

(60, 120] 38.90 36.5

(120, 180] 25.20 26.19

(180, 240] 7.97 10.54

> 240 3.66 5.14

Community 
health site 
(CHS)

[0, 30] 44.24 39.98

(30, 60] 45.59 45.14

(60, 120] 9.95 14.59

(120, 180] 1.21 0.27

(180, 240] 0.03

Fig. 4  Distribution of vulnerable populations with poor geographic 
access to both PHC and CHS. It shows the spatial variation in the 
travel time to reach any type of primary care facility (both PHC and 
CHS). Areas less than 1 h away are shown in light brown and those 
more than 1 h away in red
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A travel time of 1 or 2 h to health services is a gen-
erally accepted threshold of poor accessibility to health 
services, delaying or preventing health seeking behav-
iors that can result in severe health consequences 
[22, 26, 38, 63, 64]. While there are no estimates of 
geographical access to primary care for sub-Saharan 
Africa, only 11–27% of the population were estimated 
to live further than 1  h from a hospital with surgical 
capabilities [64]. National and sub-national level stud-
ies focusing on Emergency Obstetric and Neonatal 
Care (EmONC) found slightly higher results, with 30% 
of the women in two regions of Ethiopia [38] and 34% 
in Ghana living further than 2  h from EmONC facili-
ties [26]. In contrast, we found that three quarters of 
the population in Ifanadiana district (76%) lived more 

than 1  h from a PHC (without surgical capabilities) 
and forty percent lived further than 2  h, with a larger 
percentage in the rainy season. Thus, our study sug-
gests that geographic access to primary care in rural 
Madagascar is significantly lower than estimated else-
where. If these geographic challenges are representa-
tive of other low-resource rural settings, our results 
could have important implications for UHC policies. 
Indeed, UHC policies tend to increase financial access 
to primary care by reducing point-of-service payments 
(e.g. health insurance), but geographic barriers to care 
can persist even when fees are removed [28–33], mak-
ing them insufficient unless complementary policies 
targeting geographic accessibility are in place. Experi-
ences from other countries suggest that health reforms 

Table 5  Comparison of travel time with Euclidean and friction surfaces methods

a  Absolute values are used to allow for consistent average estimations. The distribution of differences (with signs to reflect underestimation or overestimation) is 
shown in Additional file 7

Time estimation methoda Sample of fieldwork routes 
(N = 168)

All routes (N = 41,426)

Absolute 
difference 
(minutes)

Relative 
difference 
(%)

PHC CHS

Absolute 
difference 
(minutes)

Relative 
difference 
(%)

Absolute 
difference 
(minutes)

Relative 
difference 
(%)

Fieldwork Reference Reference – – – –

OSRM + statistical model 3.6 4.27 Reference Reference Reference Reference

Euclidian distance + 5 km/h speed 31.22 40.5 47.54 36.89 13.27 34.47

Friction surfaces + custom speed values 22.57 29.81 26.31 19.88 7.86 25.35

Fig. 5  Shiny app for operational use by local health actors. Illustrative example of the interface, showing in a map all the residential areas and 
isolated houses (red polygons) located between 0 and 1 h from a selected PHC (green circle)
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focused on improving geographical accessibility to pri-
mary care can achieve significant results for the most 
disadvantaged populations [65].

In particular, community health is considered a key 
solution for reducing geographical inequities in access 
to care in developing countries. While the WHO 
has released comprehensive guidelines to optimize 
community health programs [10], there is a critical lack 
of evidence around the geographical accessibility to 
community health workers. In Madagascar, the national 
policy for community health establishes that two 
CHWs should be appointed in every Fokontany, with 
no regard to the size or spread of the population in the 
Fokontany. Here we show that over half of the district’s 
population had to walk over 30 min to reach a CHS, and 
10 to 15% had to walk over 1 h depending on the season. 
This suggests that gaps exist even in the geographical 
coverage of community health programs and opens new 
questions around how to measure and optimize access 
to community health for rural populations, based on 
a deep understanding of their geographical context. 
A shift towards proactive community care programs 
could help ensure the provision of essential services to 
populations despite their distance to a CHS, improving 
health conditions [66]. Alternatively, in settings that 
rely on standard community programs, adapting the 
CHW workforce to the demographic and geographic 
characteristics of the population catchment could help 
improve their geographical reach.

In this study, we estimated distance to PHC using 
a mapping of about 23,000  km of footpaths and over 
100,000 buildings, and we parametrized travel time 
with hundreds of hours of fieldwork, obtaining precise 
and context-specific accessibility estimates for every 
community in our district. This approach overcomes 
many of the challenges that studies of geographical 
accessibility commonly face. Despite the increasing use 
of geographical information systems and spatial analyses 
to better understand health care access in developing 
countries, there are still important gaps in its application. 
Studies in high income countries provide accurate 
estimates of geographical access to services due to the 
wider availability of electronic health information systems 
and GIS data, as well as good transport infrastructure 
[63, 67–70]. In contrast, studies in developing countries 
typically use either Euclidean distances to obtain a basic 
measure of distance, or road networks in combination 
with friction surfaces to obtain estimates of travel time 
to PHC because the real network of footpaths is rarely 
available [21, 27, 41]. Given that most travel in rural areas 
is done by foot, inaccuracies from such models can be 
quite important [22, 71]. In addition, while travel time 
can strongly depend on contextual factors, researchers 

use either constant values for travel speed [20, 26] or 
values for different geographic features inputted from 
other contexts [22]. In our context, comparisons of our 
estimates with these methods showed average differences 
in travel time of 30–35% for Euclidian distances and 
20–25% for friction surfaces.

Our approach could be replicated in future studies 
of geographical accessibility to care in rural areas of 
the developing world, where very precise estimates 
of distance and time to seek treatment are required 
for local use by decision-makers, program managers 
and health workers. Mapping on OSM is simple, the 
information entered is accessible to anyone for download 
or for use into mobile apps, and the geographic database 
can be regularly updated or further expanded by the 
online community. Although in our case most of the 
work through HOTOSM was done by several mappers 
involved in the project and took several months, this 
type of participative and collaborative mapping approach 
can allow for rapid crowdsourced mapping of large 
geographical areas when the mapping community is 
heavily mobilized [72]. In addition, recent developments 
in artificial intelligence such as the Maxar-Digital Globe 
building footprints, or the RapiD tool developed by 
Facebook for road networks could greatly accelerate 
mapping in low-resource settings, making some of the 
methods presented here more easily scalable.

Besides the broader policy implications for community 
health and UHC outlined above, our study provided 
several programmatic insights to improve health care 
access in Ifanadiana. In the last 3 years, two PHCs have 
been built in the extreme North and South of Ifanadiana 
where geographical access was very low, reducing 
the percentage of population that have to walk 2–5  h 
(Additional file 8). Given results outlined in Fig. 2, adding 
three new facilities to the 21 existing PHCs in the areas 
of the district with the lowest geographical access (East, 
West and Southwest) would nearly eliminate the need 
for populations to walk 4 h or more each way to a PHC. 
In addition, several programs are being implemented to 
improve geographical access to primary care for remote 
populations, including the construction of maternal 
waiting homes near PHCs for expecting mothers and the 
provision of health services by teams of nurses during 
regular expeditions. For community health, geographic 
barriers to reach CHSs observed here motivated a pilot 
program on proactive community case management, 
which will be progressively scaled up if successful. 
The e-health tools developed as part of the study will 
allow program managers to prioritize and plan these 
community and outreach activities for the most remote 
populations, while CHWs and field teams will be able to 
obtain accurate directions anywhere in the district for 
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implementation of such activities. Future operational 
research should assess the uptake and impact of such 
tools on health care delivery.

Our study had several limitations. First, dates of the 
satellite images used for the OSM mapping were not 
available, which could pose an issue if images did not 
reflect current conditions, but subsequent fieldwork 
confirmed that OSM maps (buildings, paths, etc.) were 
quite accurate. Second, we only considered a model of 
travel time by foot, which could lead to biases if part of 
the population travels to PHCs by vehicle. Other studies 
have indeed estimated travel time by vehicle in settings 
with good road networks [34, 69], or by both foot and 
vehicle in low-resource settings [35]. In our context, less 
than 3% of the population of Ifanadiana has a vehicle, and 
there is only one paved road (< 1% of the road network) 
where public transportation is available [73]. Third, 
we infer the proportion of the population living at a 
particular distance or travel time based on a full mapping 
of the district’s buildings from high resolution satellite 
imagery instead of an actual census. Since some of these 
buildings do not represent inhabited households (e.g. 
administrative buildings, shops, etc.), this approach could 
have led to biases if the distribution of non-households 
was distributed heterogeneously across the district.

While we provide locally parametrized estimations 
of travel time for Ifanadiana, the geographic and 
climatic variables assessed had modest effects on travel 
speed. Overall, 40% of travel speed in our model was 
explained by the random effects, which suggest that 
innate differences in walking speed between individuals 
might be one of the most relevant determinants of travel 
time. Regarding climate, our estimates under scenarios 
with and without rainfall differed only by up to 20  min 
at distances of over 15  km. Although the district has a 
tropical climate with periods of heavy rains, track GPS 
recordings of field expeditions were collected during 
relatively low rainfall periods (up to 47.5  mm per day), 
which could explain the small impact of rainfall on travel 
speed. In addition, the coarse resolution of available 
rainfall data for our area (0.5 degrees) could have biased 
the estimates of rainfall and impacted its influence in our 
model. Rainfall could also lead to the isolation of areas 
during the rainy season due to flooding or a rise in river 
water levels [35], but we could not estimate these effects 
in our setting from remote sensing data. In terms of land 
cover, only water surfaces and rice fields were associated 
with lower speed values, and removing land cover 
effects resulted in minimal changes in our predictions 
of travel time (Additional file 9). Finally, recordings were 
done by health workers and community members, so 
our estimations represent local travel time for healthy 
individuals. Other groups such as ill individuals, pregnant 

women or the elderly will likely take longer to reach 
health facilities, and factors such as break time during a 
route were not considered, which could be particularly 
relevant for those who walk for 4 to 8  h. As a result, 
values for maximum time to seek treatment at health 
facilities presented here are probably an underestimation 
of the real time spent by certain groups or under certain 
weather conditions.

Conclusion
This study advances methods to improve geographical 
accessibility modeling to determine with high precision 
the shortest paths and travel time between every 
household and the nearest primary care facilities, so 
that the results can be context-specific and operationally 
actionable by local health actors. Integrating the 
complete mapping of the district with fieldwork and 
remote sensing analyses into accessible e-health tools 
may result in better strategic and operational refinement 
of programs by the MoH and local health partners. The 
role of such approaches could be transformative for 
reaching the goal of “health care access for all” in areas 
where, like in Ifanadiana, the majority of the population 
face significant challenges to reach primary care facilities 
and even CHSs.
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