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1  | INTRODUC TION

Most species worldwide are natural enemies of other species, as ex-
emplified by parasitoids and parasites. Those species tend to be nei-
ther specialized on a single host species nor completely generalist, 

colonizing a set of similar and often closely related hosts (Strong 
et al., 1984). Natural enemies have hence adapted to overcome the 
chemical, morphological, physiological, and immunological defense 
characteristics of their host species, which can be phylogenetically 
conserved (Gross,  1993; Strand & Pech,  1995). As a result, hosts 
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Abstract
Most parasites and parasitoids are adapted to overcome defense mechanisms of their 
specific hosts and hence colonize a narrow range of host species. Accordingly, an 
increase in host functional or phylogenetic dissimilarity is expected to increase the 
species diversity of parasitoids. However, the local diversity of parasitoids may be 
driven by the accessibility and detectability of hosts, both increasing with increas-
ing host abundance. Yet, the relative importance of these two mechanisms remains 
unclear. We parallelly reared communities of saproxylic beetle as potential hosts and 
associated parasitoid Hymenoptera from experimentally felled trees. The dissimilar-
ity of beetle communities was inferred from distances in seven functional traits and 
from their evolutionary ancestry. We tested the effect of host abundance, species 
richness, functional, and phylogenetic dissimilarities on the abundance, species rich-
ness, and Shannon diversity of parasitoids. Our results showed an increase of abun-
dance, species richness, and Shannon diversity of parasitoids with increasing beetle 
abundance. Additionally, abundance of parasitoids increased with increasing species 
richness of beetles. However, functional and phylogenetic dissimilarity showed no 
effect on the diversity of parasitoids. Our results suggest that the local diversity of 
parasitoids, of ephemeral and hidden resources like saproxylic beetles, is highest 
when resources are abundant and thereby detectable and accessible. Hence, in some 
cases, resources do not need to be diverse to promote parasitoid diversity.
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with different functional characteristics or evolutionary ancestry 
tend to be exploited by different enemies (Frank, 1993). Hence, in-
creasing phylogenetic or functional dissimilarity of host communi-
ties is thought to increase the species diversity of their enemies in 
a community (Schuler et al., 2015; Vialatte et al., 2010). This might 
be the case in systems in which functionally different hosts require 
fundamentally different adaptations from their enemies and the 
performance of an enemy to colonize one host species is traded off 
against its performance on colonizing another (Egas et  al.,  2005; 
Straub et al., 2011).

Enemy diversity may also depend on the detectability and 
accessibility of hosts: If hosts are hidden or sheltered, only the 
most specialized enemy species will be able to detect or use them 
(Price,  1973). Host detectability and accessibility, in turn, may in-
crease with increasing host abundance. Host abundance increases 
host detectability by increasing olfactory, acoustical, or optical sig-
nals available for enemies (Yguel et al., 2014). Host abundance may 
also increase among-host competition forcing to leave the enemy-
free space, that is, microsites or periods where or when hosts are 
inaccessible to enemies (Aukema & Raffa,  2000). Also, increased 
competition may require increased investment into competitive-
ness, binding energy that could otherwise be invested into defense 
against enemies (Bashey,  2015). In sum, low host abundance may 
reduce the diversity of natural enemies to a narrow subset of enemy 
species.

Parasitoids constitute several different taxonomic groups and 
are a key component of terrestrial ecosystems (Heraty,  2009). It 
is estimated that 10%–20% of all insect species belong to parasit-
oid Hymenoptera, representing the insect group with the highest 
species diversity worldwide (Forbes et  al.,  2018; Gaston,  1991). 
Comparable to parasites, the majority of parasitoid Hymenoptera is 
specialized on a certain set of hosts (Forbes et al., 2018), although 
many host species are so far unknown. As a result, a given parasitoid 
Hymenoptera species is typically most abundant only on one or a 
few focal host species.

Parasitoid Hymenoptera are one of the most important nat-
ural enemies of saproxylic beetle communities in forests, as 
mainly demonstrated for bark beetles (Curculionidae, Scolytinae) 
(Wegensteiner et al., 2015). Saproxylic beetles differ fundamen-
tally in functional properties, such as in their preference for certain 
host tree species, diameters of deadwood, or their dependence on 
specific microclimatic conditions (Seibold et al., 2015). Moreover, 
communities of saproxylic beetles change with succession 
during deadwood decomposition (Parisi et  al.,  2018). Parasitoid 
Hymenoptera mainly attack the eggs, larvae, and pupae of sap-
roxylic beetles and exhibit a clear preference for one develop-
mental stage over the others (Strand & Pech, 1995; Wegensteiner 
et  al.,  2015). Many of these and other functional properties are 
phylogenetically conserved (Seibold et  al.,  2015). The functional 
or phylogenetic dissimilarity of saproxylic species might hence 
increase species diversity of parasitoid enemies. However, given 
that most saproxylic species are extremely ephemeral and hidden, 

the diversity of their parasitoids might also increase with saprox-
ylic abundance.

We investigated communities of saproxylic beetle hosts and their 
associated parasitoid Hymenoptera. Both groups of insects were 
reared from experimentally felled trees during the early succession 
of deadwood. For each tree, the species diversity of saproxylic bee-
tles and parasitoid Hymenoptera emerging from those beetles were 
quantified. In addition, the saproxylic beetle communities of each 
tree erized according to their similarities across seven functional 
traits and their phylogenetic similarity, to measure functional and 
phylogenetic dissimilarities. Our aim was to test whether abundance 
or functional and phylogenetic dissimilarity of host communities de-
termines the abundance and species richness of associated parasit-
oid Hymenoptera.

2  | MATERIAL S AND METHODS

2.1 | Study area and experimental design

Our study was conducted in the Bavarian Forest National Park, lo-
cated in southeastern Germany. The park consists of approximately 
24,850 ha of mountainous forests at elevations between 600 and 
1,460 m a.s.l. Depending on the altitude, the annual average temper-
ature ranges from 3.8 to 5.8°C. Yearly precipitation varies between 
1,200 and 1,800 mm (Bässler et al., 2010). Forest stands in higher el-
evations of the park area are naturally dominated by Norway spruce 
(Picea abies). Within the last two decades, extensive waves of natural 
disturbances have generated highly diverse deadwood structures, 
contributing substantially to partially more than 300  m3 of dead-
wood per hectare (Thorn et al., 2017).

Observational studies do naturally depend on the occurrence 
and spatial distribution of natural disturbances, which typically 
do not match the requirements of a standardized scientific study 
design (Lindenmayer et  al.,  2010). Also, often only a single host 
species is dominant, and results might be idiosyncratic to that 
species. Hence, we created artificial windthrows and applied bark 
treatments to create variance in the community composition of 
saproxylic beetles, that is, to avoid the dominance of the European 
bark beetle (Ips typographus). Ips typographus is the most import-
ant pest species of mature spruce stands throughout Eurasia with 
a preference for weakened or freshly dead Norway spruce trees 
(Wermelinger, 2004).

Our field experiment was established in April 2013. The design 
consisted of 12 artificial windthrows (plots), each composed of three 
pulled down mature Norway spruce trees with similar physical attri-
butes (Figure 1). Two trees per plot were uprooted and debranched, 
and their root plates were cut off. One tree was bark-scratched (dis-
ruption of the phloem every 3 cm), and a second tree was debarked 
(removal of all phloem). The remaining tree served as control. The 
minimum distance between plots was 200 m (for more details of the 
experimental design, see Thorn, Bässler, et al. (2016), Thorn, Bußler, 
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et al. (2016). Within the conditions provided in our experiment, com-
munities of beetles and parasitoids assembled naturally.

2.2 | Arthropod sampling

Communities of saproxylic beetles and parasitoid Hymenoptera 
were sampled by using one stem emergence trap per tree, which 
were established from April to September 2014. Stem emergence 
traps are covering a given tree section and are only capturing indi-
viduals directly emerging from this section, representing the local 
community more complete the, for example, flight interception 
traps (Sverdrup-Thygeson & Birkemoe, 2009). To preserve species 
material for further steps, we used 90% ethanol and emptied traps 
monthly. All trapped beetles were identified to the species level ac-
cording to Freude et al. (1963–1984) and classified as saproxylic ac-
cording to Schmidl & Bußler (2004). To identify species of parasitoid 
Hymenoptera, one leg of each specimen was removed and submitted 
to the Canadian Centre for DNA Barcoding for DNA sequence analy-
sis. DNA was extracted according to Ivanova et al. (2006), and stand-
ardized primer sets were used to amplify and sequence the 658-bp 
barcode region (Folmer et  al.,  1994; Hebert et  al.,  2003). The se-
quences were aligned with those in the Barcode of Life data system 
(Ratnasingham & Hebert, 2007). If the identification to the species 
level was not possible, barcoding data were used as molecular opera-
tional taxonomic units (MOTUs), which are represented by barcode 
index numbers and closely approximate species-level identifications 
(Ratnasingham & Hebert, 2013). Hereafter, MOTUs are included in 

“species” for simplicity. Single MOTUs were defined by a 97% se-
quence similarity. Species or MOTUs with sequences that matched 
those of parasitoids certainly not using coleopteran hosts according 
to Yu et al. (2016) and Noyes (2019) were excluded. The beetle data 
used in our paper are available online in Chao et al. (2019).

2.3 | Host phylogeny and traits

We used the phylogenetic tree of European saproxylic beetles pro-
vided by Seibold et  al. (2015) according to the approach of Kuhn 
et al.  (2011). The latter allows the input of partially resolved trees 
with known topology and node ages as constraints and applies a 
Markov chain Monte Carlo algorithm to permute polytomies using 
a constant-rate birth–death model. The phylogenetic tree was cali-
brated using 25 calibration points obtained from fossil records.

Functional dissimilarity was analyzed using the resource-
related and morphological traits of saproxylic beetles described by 
Gossner et al. (2013), Thorn et al. (2014), and Seibold et al. (2015). 
These databases represent the most comprehensive informa-
tion about saproxylic beetle functional traits in Central Europe. 
Information on the mean diameter niche position (<15, 15–35, 
35–70, >70 cm), the decay niche position (alive, freshly dead, ini-
tiated, advanced decomposition, extremely decomposed), and 
the canopy cover niche (open, semi-open, closed) was included, 
together with information on the preference of saproxylic bee-
tle species for host trees (coniferous, broadleaved, both types of 
trees), the microhabitat guilds of larvae (wood and bark, cavities, 

F I G U R E  1   (a) Different mechanical bark treatments used to alter abundance and species composition of saproxylic beetle communities. 
On each plot, one tree was fully debarked, one tree was bark-scratched (disruption of the phloem every 3 cm), and the third tree served as 
the control. (b) Stem emergence trap used for sampling of saproxylic beetles and parasitoid Hymenoptera. (c) The European spruce bark 
beetle (Ips typographus) and a parasitoid Hymenoptera (Superfamily Chalcidoidea) as representatives for the trapped species and analyzed 
communities (pictures were used after the Creative Commons license (CC BY-SA-2.0 and CC BY-3.0); copyright by U. Schmidt and M.A. 
Broussard)
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fungi), the mean body size of single species, and the larval feeding 
type (detritivorous, mycetophagous, xylophagous, zoophagous). 
For the degree of phylogenetic correlation in functional traits, see 
Doerfler et al. (2020).

2.4 | Dissimilarity of host communities

All statistical analyses were carried out in R version 4.0.3 (www.r-
proje​ct.org). The phylogenetic tree of European saproxylic beetles 
was used to quantify phylogenetic dissimilarity based on the mean 
nearest taxon distance (MNTD), reflecting the mean distance sepa-
rating each species from its closest relative in the same community. 
MNTD was additionally used to quantify the similarities among co-
occurring species that may influence colonization by parasitoids. A 
value of MNTD less than zero thereby represents a clustered (i.e., 
similar) community of hosts, while a value greater than zero rep-
resents an overdispersed (i.e., dissimilar) community. To calculate 
MNTD, we first calculated the cophenetic distances between co-
occurring species using the function “cophenetic” from the R pack-
age “stats.” Because MNTD values can decrease as the number 
of species in a community increases, an abundance-weighted null 
model was applied to compare the observed MNTD values with 
those of 999 randomly generated communities containing the same 
number of species by using the function “ses.mntd” from the R pack-
age “picante” (Cavender-Bares et al., 2006; Kembel et al., 2010). This 
procedure resulted in a standardized effect size of MNTD that re-
flected the mean MNTD, that is, the phylogenetic dissimilarity of a 
beetle community standardized by species numbers. Standardized 
effect sizes of functional and phylogenetic diversities were only 
weakly correlated (Pearson's r: 0.29).

The functional dissimilarity of saproxylic beetle communities 
was calculated using the same procedure as described above, ex-
cept that the distance matrices of traits were calculated as Euclidean 
(numeric variables) and Gower (non-numeric or in combination with 
numeric variables) distances using the function “daisy” from the R 
package “cluster” (Gower, 1971).

2.5 | Statistical analyses

The effects of abundance, species richness, phylogenetic dissimi-
larity, and functional dissimilarity of saproxylic beetle communi-
ties were tested on the abundance, species richness, and Shannon 
diversity of parasitoids as response variables. We standardized the 
number of sampled saproxylic beetle species to 0.95 sample com-
pleteness using a rarefaction/extrapolation framework according 
to Hsieh et  al.  (2016), implemented in the R package “iNext.” We 
estimated the sample coverage of saproxylic beetles and parasitoid 
Hymenoptera by the same approach.

The effect of saproxylic beetle communities on the abundance 
of parasitoids was tested by applying a generalized linear mixed 
model with poisson error distribution by using the R package “lme4” 

(Bates et al., 2015). This model included the abundance of parasit-
oids as response variable and the log-transformed abundance, spe-
cies richness, functional dissimilarity, and phylogenetic dissimilarity 
of the respective host beetle communities as predictor variables. 
Furthermore, we included the plot as random effect to account for 
the nested study design (Bolker et al., 2009) and the sample id to 
account for possible Poisson overdispersion (Elston et  al.,  2001). 
We used the same model formula to model species numbers and 
additionally included the log-transformed abundance of parasitoid 
Hymenoptera to the model. Shannon diversity of parasitoids was 
modeled using the same model formula as for species numbers but a 
Gaussian error distribution.

3  | RESULTS

Our dataset included 15,516 individuals of saproxylic beetles from 
106 species and 146 individuals from 44 species of parasitoids 
(Table 1), corresponding to a 0.93% rate of successful parasitization. 
The mean species number per log was 23.61 ± 7.5 species for sap-
roxylic beetles and 2.64 ± 2.6 for parasitoids. Species accumulation 
curves revealed a high sample coverage of both, saproxylic beetles 
and parasitoid Hymenoptera (Figure 2).

Saproxylic beetles were dominated by bark beetles 
(Curculionidae, Scolytinae), encompassing 10,869 individuals from 
18 species. The most abundant beetle species, Trypodendron linea-
tum, was represented by 7,496 trapped individuals. Ips typographus 
was trapped by 824 (control trees), 180 (bark-scratched trees), and 19 
(debarked trees) individuals, respectively. Parasitoids were recorded 
from 11 families, dominated by Pteromalidae (40 individuals, 10 spe-
cies), Platygastridae (36 individuals, 10 species), and Braconidae (33 
individuals, 6 species). Many of the parasitoids recorded in our study 
were rare: 36 species of parasitoids with ≤3 individuals contributed 
66 of the 146 sampled individuals (Table 1).

Abundance of parasitoids increased with increasing abundance 
and species richness of saproxylic beetles (Figure 3a). Species num-
bers and Shannon diversity of parasitoid Hymenoptera strongly 
increased with increasing abundance of parasitoid Hymenoptera 
(Figure  3b,c). Shannon diversity of parasitoid Hymenoptera in-
creased with increasing host abundance (Figure 3c). We did not find 
any significant effect of functional or phylogenetic dissimilarity on 
any of our response variables (Figure 3).

4  | DISCUSSION

Our results indicate that abundance and species richness in com-
munities of parasitoid Hymenoptera increase with increasing abun-
dance of hosts, whereas functional and phylogenetic dissimilarities 
of host communities were of minor importance. Furthermore, spe-
cies numbers of parasitoids were strongly promoted by their abun-
dance, which in turn increases with species richness of hosts. 
Thereby, our results do not support that functional or phylogenetic 

http://www.r-project.org
http://www.r-project.org
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dissimilarity of hosts begets the diversity of parasitoids within dead-
wood objects, but rather point toward an abundance-driven system.

The increasing abundance and species richness of parasitoids 
with increasing abundance of their saproxylic beetle hosts are in line 
with the »more individuals hypothesis«, an extension of the »species-
energy theory« (Clarke & Gaston, 2006; Schuler et  al.,  2015). The 
»more individuals hypothesis« predicts an increase in the abundance 
and consequently in species richness of a given species group (i.e., 
parasitoids) in response to an increase in the availability of resources 
(i.e., hosts). The »more individuals hypothesis« is valid as long as 
species use different niches and do not rely on the same resources 
(MacArthur & MacArthur,  1961; Tews et  al.,  2004). In our study 
system, an increasing abundance could increase the detectability 
(Vinson,  1998) and accessibility (Price,  1973) of saproxylic beetle 
hosts.

In our study system, host accessibility may be limited, given the 
short spatiotemporal window during which a specific developmental 
stage of a host exists. Furthermore, parasitoids may be limited to a 
specific set of host species and do not utilize patches with extremely 
low host abundance (Hassell, 2000; Murdoch, 1977).

High host abundances may force some hosts into enemy-
exposed microenvironments. In our study system, this could apply to 
bark beetles, which reached highest abundances of potential hosts 
and then might be forced to occupy parts of the tree trunk which are 
more easier to access to parasitoids (Aukema & Raffa, 2000).

Higher abundances of hosts might also increase the detect-
ability, that is the olfactory signal to parasitoids, since saproxylic 
beetles, especially bark beetles, emit sex pheromones (Vega & 
Hofstetter, 2015). Furthermore, at extremely high abundances, bark 
beetles can emit anti-aggregation pheromones (Sun et  al.,  2006). 
Such pheromones might additionally increase host detectability at 
high abundances. Overall, abundance of bark beetles might render 
them distinctly more detectable or accessible to a larger number of 
parasitoid species and thereby increase their species diversity.

We did not find any effect of functional or phylogenetic dis-
similarity of hosts on parasitoid communities (Figure 3). Functional 

TA B L E  1   Species of parasitoid Hymenoptera recorded in our 
study with their respective abundances

ID Scientific name Abundance

Braconidae (6 species/33 individuals)

BOLD:AAU9839 Chelonus sp. 1

BOLD:ACM7216 Ropalophorus clavicornis 1

BOLD:ACM7563 Dendrosoter middendorffii 5

BOLD:ACQ8673 Brachistinae 1

BOLD:ACQ9535 Cosmophorus regius 2

BOLD:ACQ9771 Blacus sp. 23

Ceraphronidae (3 species/5 individuals)

BOLD:ACF6025 Aphanogmus sp. 3

BOLD:ACG4508 Aphanogmus sp. 1

Ceraph_01 Aphanogmus sp. 1

Diapriidae (2 species/2 individuals)

BOLD:ACG4055 Pantoclis sp. 1

Diapri_01 Trichopria sp. 1

Eulophidae (4 species/7 individuals)

BOLD:ACQ8898 Necremnus croton 2

BOLD:ACQ9006 Necremnus leucarthros 3

Euloph_01 1

Euloph_02 1

Eupelmidae (1 species/2 individuals)

Eupelm_01 2

Eurytomidae (1 species/3 individuals)

BOLD:ACM7745 Eurotoma arctica/afra 3

Figitidae (1 
species/1 
individual)

BOLD:ACQ9714 Eucoilinae 1

Ichneumonidae (4 species/13 individuals)

BOLD:ABU6543 Enclisis vindex 2

BOLD:ACQ9146 Phrudus monilicornis 3

BOLD:ACR0681 Phradis sp. 1

BOLD:ACR0964 Rhimphoctona teredo 7

Platygastridae (10 species/36 individuals)

BOLD:AAN8098 Telenomus sp. 9

BOLD:ACC2809 Scelioninae 2

BOLD:ACF7380 1

BOLD:ACF9487 2

BOLD:ACI4334 Telenomus sp. 10

BOLD:ACI4527 Telenomus sp. 1

BOLD:ACI9091 Telenomus sp. 4

BOLD:ACI9128 Telenomus sp. 3

BOLD:ACR1479 2

BOLD:ACR1888 2

Proctotrupidae (2 species/4 individuals)

BOLD:ACR1488 2

(Continues)

ID Scientific name Abundance

BOLD:ACR1985 2

Pteromalidae (10 species/40 individuals)

BOLD:AAN8215 Pteromalus sp. 2

BOLD:AAZ7417 Mesopolobus gemellus 3

BOLD:ACA9177 1

BOLD:ACM7334 Roptrocerus mirus 15

BOLD:ACM7652 2

BOLD:ACQ8466 Dinotiscus eupterus 3

BOLD:ACQ8826 Holcaeus compressus 7

BOLD:ACQ9876 Perniphora robusta 3

Pterom_01 3

Pterom_03 1

TA B L E  1   (Continued)
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dissimilarity might to some degree reflect functional identity. If there 
is one dominant functional group, such as in our case bark beetles, 
then a greater functional similarity may reflect the dominance of that 
group. Specifically, our samples were composed of species colonizing 
mainly the phloem of recently killed Norway spruce. Specialization 
on particular host groups may reflect constraints on, for example, 
ovipositor length. For example, bark thickness limits parasitization by 
Caenopachys hartigii (Braconidae, Doryctinae) (Mancini et al., 2003). 
Thus, host species that do not feed directly under the bark or other 
superficial parts of deadwood might not be reachable by this enemy. 
A highly abundant bark beetle species in our study was T. lineatum, 
which create galleries into sapwood, where it might be difficult to 
access for parasitoids. Indeed, only few species of parasitoids enter 
bark beetle galleries for oviposition (Vega & Hofstetter, 2015).

It is possible that the effect of functional identity overlays and 
partly conceals the effect of functional dissimilarity, explaining why 
we did not find any effect of functional dissimilarity. Despite we 
used the most comprehensive database of saproxylic beetles, we are 
still lacking information about, for example, temporal occurrence of 
saproxylic beetles. An extension of our trait database by such in-
formation may hence change the relative importance of functional 
dissimilarity. Phylogenetic dissimilarity did not show a significant 
effect on parasitoid abundance (Figure  3). One of the reasons for 
the lacking effect of phylogenetic dissimilarity might be that closely 
related beetle hosts occur in high abundances, such as bark beetles 
in our study system. This is ultimately caused by the fact that host 
beetle communities cannot be established in a fully experimental 
design, that is, covering a range of phylogenetic dissimilarity, due to 
their host tree specializations. Moreover, for a set of locally coex-
isting species, phylogenetic dissimilarity may not necessarily reflect 
the dissimilarity of functional traits (Prinzing et al., 2008).

Overall, our study suggests that resource diversity does not 
mandatory begets the diversity of local enemy communities. This 
intuitive hypothesis implicitly assumes that any given type of re-
sources is detectable and accessible to the consumers. In that case, 
a diverse set of resources can be used by a diverse set of consumers. 

However, if resources are hosts that are ephemeral and hidden, they 
may easily remain undetected by or inaccessible to many potential 
parasitoids. Only at high host abundance, detection and access may 
become possible for many parasitoid species, leading to an increase 
of parasitoid diversity with host abundance.
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