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Abstract

Sensory stimuli endow animals with the ability to generate an internal representation. This

representation can be maintained for a certain duration in the absence of previously elicited

inputs. The reliance on an internal representation rather than purely on the basis of external

stimuli is a hallmark feature of higher-order functions such as working memory. Patterns of

neural activity produced in response to sensory inputs can continue long after the disappear-

ance of previous inputs. Experimental and theoretical studies have largely invested in

understanding how animals faithfully maintain sensory representations during ongoing

reverberations of neural activity. However, these studies have focused on preassigned pro-

tocols of stimulus presentation, leaving out by default the possibility of exploring how the

content of working memory interacts with ongoing input streams. Here, we study working

memory using a network of spiking neurons with dynamic synapses subject to short-term

and long-term synaptic plasticity. The formal model is embodied in a physical robot as a

companion approach under which neuronal activity is directly linked to motor output. The

artificial agent is used as a methodological tool for studying the formation of working memory

capacity. To this end, we devise a keyboard listening framework to delineate the context

under which working memory content is (1) refined, (2) overwritten or (3) resisted by ongo-

ing new input streams. Ultimately, this study takes a neurorobotic perspective to resurface

the long-standing implication of working memory in flexible cognition.

Introduction

Animals are capable of relying on internal sensory representations rather than purely on the

basis of external stimuli. These representations routinely support higher-order functions such

as working memory (WM)—holding the stimulus content in memory for a certain duration in

the absence of its concrete presence [1–6]. Experimental studies on WM in primate neuro-

physiology have shown that patterns of neural activity can reverberate following the offset of

sensory inputs [4, 7]. These ongoing reverberations can persist over a period of several seconds

[1, 5–8], a time segment during which neuronal responses remain preferentially elevated for a

target stimulus [9–11]. Despite having shown to be correlated with psychophysical perfor-

mance [7], mechanisms underlying intrinsic dynamics of self-sustained activity remain elusive.
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Consequently, the significance of reverberating activity for higher-order function remains

unknown.

A long-standing question shared across theoretical and experimental studies of WM is how

animals maintain a faithful representation of sensory stimuli during ongoing reverberations

of neural activity. Persistent activity during WM has been studied extensively via influential

observations of experimental data [8, 12, 13]. These experiments have motivated the develop-

ment of computational models, which in turn have triggered fundamental theoretical insights

into potential mechanisms underlying WM capacity [14–19]. These formal models, among

others, form recurrently connected networks, which typically maintain selective elevated per-

sistent activity through local excitatory recurrent connections with global feedback inhibition

[20]. In this formalism, sustained firing may be achieved by carefully fine-tuning the strength

and structure of recurrent circuitry [21]. As such, these functional networks can maintained,

in memory, the spatial location of target stimuli, forming what is commonly known as persis-

tent activity bumps (i.e. bump attractors) [20].

Persistent activity in recurrent networks has been supported by short-term synaptic plastic-

ity, where synaptic strength is rapidly regulated by recent historical activity within the network

[16, 22, 23]. In the presence of such rapid changes in synaptic dynamics, neuronal activity can

drift over time [16, 22], or remain centered at the initial bump location [23]. Despite their

overarching support from empirical studies [24, 25], WM models holding the persistent mem-

ory hypothesis have for long been using preassigned protocols of fixed stimulus presentation.

In this context, previous methods have primarily focused on one aspect of WM, namely the

maintenance of a specific target stimulus—which leaves out by default its interaction with

ongoing input streams. In a real-world setting, biological agents are continuously bombarded

with stimuli, some of which they maintain in WM while new input streams actively harness

their ongoing sensory experience. How does the brain manage to maintain specific target sti-

muli in WM, while withstanding streams of incoming stimuli? As the environment continu-

ously delivers a rich repertoire of sensory intricacies, the brain must somehow reconcile these

two seemingly contradictory tasks—maintaining previous inputs stable over a period of time

while new input streams are continuously coming in. To this end, WM must have a temporal

undercurrent, a basis under which it integrates past and present time points.

In contrast to displaying persistent activity by recurrent interactions, here we instead devise

a feedforward network of spiking neurons [26], subject to both short-term and long-term syn-

aptic plasticity [27–30]. By considering activity-dependent Hebbian plasticity as a complemen-

tary mechanism for generating persistent activity [31], we examine how the content of WM

interacts with the intricacies of ongoing input streams. Spiking networks are well-known for

carrying out continuous online operations in non-stationary environments [32]. In this con-

text, synaptic connections can be continuously modified [33], without fine-tuning their

strength and structure. This ongoing process of modification may result in momentary net-

work restructuring so as to accommodate an evolving environment [32]. Here, we present six

different experiments, namely (1) single learning and recall, (2) incremental learning and

recall, (3) task-switching, (4) resistance to interference, (5) submission to interference, and

(6) resistance to distraction. Each experiment provides an entry point for the next one (see

Robotic experiments), highlighting the scenario under which the WM content may be (1)

refined, (2) overwritten or (3) resisted by the arrival of ongoing input streams.

Online unsupervised learning of WM capacity has been studied in networks of spiking

neurons connected by plastic synapses (see [30] for review). These networks can undergo an

ongoing process of structural modification, with no a priori knowledge about the content of

subsequent input streams [30, 32, 34, 35]. In this context, previous target inputs may be grace-

fully overwritten by subsequent inputs, because synaptic plasticity can provide the malleability
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needed for the content of WM to ride the wave of new input streams. Networks that operate in

this fashion share the palimpsest property, meaning they forget the content of previous inputs

to make room for new ones [36–38]. Under some circumstances however, the content of WM

may still be retrieved despite the arrival of subsequent inputs, because plastic synapses behave

in a context-specific manner [36]. For example, previous studies have shown that the stimulus

statistics can have an impact on the state transition probability of the synapse—the probability

of transitioning to a new state different from the previous state [30, 34].

The WM of biological agents operating in the real-world is inevitably carried out while

subsequent input streams continuously arrive. In support of their biological counterparts,

artificial agents require adaptive capabilities in order to be deemed useful in the presence

of ongoing changes in the external world. Indeed, physical robots pose as ideal companions

for carrying out sequential tasks online, whereby the artificial agent must process incoming

information on-the-fly. Here, we embed the spiking network in the “Vector” robot pro-

duced by Anki developer. We perform our experiments using the agent as a tool for study-

ing WM capacity during ongoing input streams. Importantly, the robot is used to ensure

a one-to-one correspondence between network activity and behaviour—a companion tool

for moving closer to the real-world interaction that exists between WM and ongoing input

streams.

Materials and methods

Network architecture

The spiking neural network consisted of 500 units linked reciprocally. The initial network

connectivity followed a set of rules [39]. First, inhibitory neurons occupy approximately 20%

of the population of cortical neurons, whereas the great majority of remaining neurons are

excitatory [40]. As such, 80% of units in the embodied network were randomly chosen to be

excitatory, whereas the remaining 20% were inhibitory. Following Dale’s law, a given excit-

atory/inhibitory unit only exhibited excitatory/inhibitory efferent connections, respectively.

Second, the number of afferent synapses to a single neuron in cortex is limited, forming clus-

ters of sparsely connected networks with roughly 10-20% probability of synaptic contact

[41]. To this end, initial network connectivity was sparse, with only 20% of all possible con-

nections present (chosen randomly among all possible connections). At network initializa-

tion, self-connections were not permitted because although not uncommon, they are rare in
vivo, in comparison to their prominence in dissociated cell cultures [42]. Finally, efferent

synaptic connections from excitatory units (JEE, JIE) exhibited potentiated efficacy, whereas

those from inhibitory units (JII, JEI) were depressed. Network parameter values are indicated

in Table 1.

Table 1. Network parameters.

Symbol Description Value

c Initial probability of synaptic contact 0.2

NE Number of E units 400

NI Number of I units 100

JEE Initial E to E synaptic efficacy 0.65

JIE Initial E to I synaptic efficacy 0.65

JII Initial I to I synaptic efficacy −1

JEI Initial I to E synaptic efficacy −1

https://doi.org/10.1371/journal.pone.0244822.t001
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Robotic platform

The Vector Software Development Kit (SDK) was used as an open-source robotics platform.

In particular, we used a physical robot named “Vector” by Anki Developer Fig 1. This robot

is equipped with five basic hardware components, namely (1) an HD camera, (2) an infrared

laser sensor, (3) a beamforming 4-microphone array, (4) a capacitive touch sensor and (5)

two wheel motors. The computational resources of the robot were remote, performed on a

laptop computer. Incoming stimuli were controlled via user keypresses from the laptop com-

puter, and the communication was mediated via wireless network. This embedded control

design was intended so as to avoid using Vector’s onboard tactile sensors. To explain, the

robot continuously moved during the experiments. Therefore, reliance on tactile sensors

would demand the user to continuously follow the robot throughout the experiment. More-

over, sensor reading is noisy and therefore some tactile triggers would go unnoticed from

Vector failing to read them as valid touch. These would vastly limit the fluidity of informa-

tion exchange, because they would place high workload demands on the user (but see [43]).

Consequently, the time required for conveying user desirability would increase. For these

reasons, we have instead devised a keyboard listening framework. The protocol was designed

to ensure an efficient and instant medium of communication between the user and the

robot [44]. Finally, there were no human subjects recruited in this study. The degree of user

involvement in the teleoperation is similar to the degree of involvement in pressing a key to

compile a code on a computer.

In order to grant access to the robot’s hardware capabilities, API commands were commu-

nicated to the corresponding actuators of the robot. The only hardware components used in

this study were Vector’s two wheel motors. The execution of ongoing motor trajectories was

mediated by the spiking activity of the network. Spike count information was computed in

consecutive non-overlapping time bins of 40ms. The rotating speed of the two wheel motors

were decoded separately. Each motor rotated at a given speed (in millimetres per second) until

the total spike count of the next non-overlapping time bin commanded the robot to drive at a

new speed. Taken together, neuronal responses were mapped onto the wheel motors of the

robot, controlling the execution of its navigated trajectory.

Fig 1. Vector the robot. Vector behaves as a result of network spiking activity.

https://doi.org/10.1371/journal.pone.0244822.g001
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Sensory inputs

Sensory-evoked inputs were presented to the network in the form of spatially localized cur-

rents represented by a bimodal mixture of Gaussians:

I ext
i
ðtÞ ¼ Rb þ Rpe

�
ði� ipref Þ

2

2s2 þ Rne
�

iþ N
2ð Þ� iprefð Þ

2

2s2 ð1Þ

where Rb was the baseline amplitude of sensory inputs, Rp was the higher amplitude peak

whereas Rn was the lower amplitude peak, σ was the tuning width controlling the input speci-

ficity, i was the unit index (1, 2, 3, . . .N) with N corresponding to the number of units.

There are three main reasons why bimodal activations were used, including the specified

offset between the two Gaussians. First, previous models of spatial WM have used the Gaussian

for characterizing their target stimulus. Inputs range from a single target to multiple targets

[14–16, 19, 23, 25, 45–50]. Second, Vector is equipped with two wheel motors. The agent was

therefore an ideal candidate for supplying its differential steering system with bimodal activa-

tions. The specific offset between the Gaussians induced differences in wheel motor speed,

which in turn resulted in rotating movements with diameters small enough for the robot to

accommodate the confined spatial setting. Finally, the offset between the two Gaussians has

experimental grounding, inspired from a variant of the classic oculomotor delayed response

task [7]. In these experiments, animals are shown two simultaneously presented stimuli, with

differences in luminance (i.e. contrast ratio).

The network involved two subpopulations, consisting of spiking units spatially distributed

according to the sensory input to which they were most sensitive (Fig 2). The bimodal activa-

tions differentially drove the activity of units within each respective subpopulation, producing

localized activity bumps determined by the spatial structure of injected external input currents

Iexti . In particular, ipref corresponded to the unit most sensitive to Rp, and therefore exhibited

the highest response amongst its neighbouring units within the subpopulation.

In this study, a keyboard listening framework was devised in order to actively control ongo-

ing input streams to the embodied network (see Robotic platform). By delivering keypresses

from a laptop computer, the user could control both the configuration and the duration of sti-

muli. Sensory inputs were represented by two distinct configurations (Fig 2). Their average

intensity were identical. The only distinguishing characteristic between the two was their

Fig 2. Sensory afferents to the embodied network. (A) ON stimulus (blue). (B) Same as (A), but instead peaks are interchanged (C) OFF stimulus (black);

orange, subpopulation 1; brown, subpopulation 2. Parameters: Rb = 0.5 nA, Rp = 2.5 nA, Rn = 1.0 nA, ipref = 125 for clockwise rotations, ipref = 375 for

counter-clockwise rotations, N = 500, σ = 35. Figure adapted from [23].

https://doi.org/10.1371/journal.pone.0244822.g002
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interchangeable amplitude peaks (Fig 2A and 2B). In configuration 1, units in a given subpop-

ulation received inputs near Rp, whereas those in the remaining subpopulation received inputs

near Rn (Fig 2A). In configuration 2, spatially localized amplitude peaks were interchanged

(Fig 2B). Overall, inputs evoked localized activity profiles in the network (i.e. bump states). In

their absence, Iexti ¼ 0 (Fig 2C).

Learning and recall procedure

During WM tasks (e.g. oculomotor delayed response), the animal experiences a “cue period”

where external stimuli are presented. Stimulus presentation is immediately followed by a

“delay period” where external stimuli are removed. As an analogy to typical experiments, our

study treated the cue period as learning, and the delay period as recall. For simplicity, the

“response period” normally characterized by saccadic eye movements towards a target loca-

tion were not considered. Overall, the temporal evolution of the model was organized in

batches of learning and recall in order to maintain an operational definition used by tradi-

tional approaches in artificial neural networks (ANNs).

Learning and recall phases were carried out by distinct time segments of network activity

during which the robot exploited input-dependent and input-disengaged operations, respec-

tively (Fig 3). The offset of both learning and recall is controlled by pressing the <Enter> key

Fig 3. Keyboard listening setup. (A) The<Left> keypress recruits input configuration shown in Fig 2A, marking the onset of input-dependent counter-

clockwise motor executions. (B) Same as in (A), but instead the<Right> key is pressed, recruiting input configuration shown in Fig 2B, marking the onset

of input-dependent clockwise motor trajectories. (C) The<Enter> key is pressed (not shown), recruiting the homogeneous input configuration shown in

Fig 2C, marking the onset of input-disengaged operations.

https://doi.org/10.1371/journal.pone.0244822.g003
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(at any time instance). To mark the onset of learning, the<Left> or <Right> key is pressed,

such that the robot executes counter-clockwise or clockwise motor trajectories, respectively

(Fig 3A and 3B). To end the learning phase, the<Enter> key is pressed (not shown), allowing

the robot to move autonomously (Fig 3C). Overall, the learning phase was considered as a

time segment of evoked activity where units were driven by sensory afferents. In contrast, the

recall phase was considered as a time segment of spontaneous activity where units were solely

driven by the intrinsic dynamics of the network.

Learning and recall phases were alternated by turning the stimulus ON and OFF, repeatedly

(ON-OFF-ON-OFF. . .). This sequence-based approach allowed us to include but also move

beyond traditional approaches of single learning and recall. The spiking network was subject

to continuous modification. This ongoing process naturally removes the fine line that has tra-

ditionally been used to distinguish learning from recall in ANNs [33]. Activity-dependent

changes in synaptic efficacy were exclusively based on local information (see Plasticity model).

Evoked activity led to the formation of synaptic structure in a rate-dependent Hebbian manner

[30]. The synaptic structure provided sufficient structured feedback so as to endow units with

the ability to maintain stimulus-selective persistent activity [35, 51]. The structure of the

weight matrix representing the stimulus information was put in a state of reverberation that

outlasted the exposure of the stimulus. Hence, the role of the resulting synaptic structure was

to sustain a local activity bump produced by previous stimuli. In this way, items that were

loaded as discrete “slots” during learning were maintained by distinct localized activity during

recall. If the stimulus was absent for long durations, network activity progressively decayed

back to baseline levels [26]—an expression reflected in the network structure. Taken together,

the initial Network architecture was not designed to meet the requirements for a particular

task, but was rather subject to ongoing modification through the sensory experience of the

robot [43].

Robotic experiments

We report the procedure of six robotic experiments and lay out the criteria for their successful

completion. In the first experiment, a single learning and recall procedure is introduced. Since

network activity is unavailable to the user, the behaviour of the robot is monitored to gain

insight into network convergence. Here, the criteria for successful task completion is to

observe consistent movement trajectories from the robot. This approach differs from disem-

bodied networks imprinted with a minimum stopping rule for weight convergence, because

robotic behaviour is the marker of network stability, not preassigned internal triggers. Using

movement trajectories as top-down evidence of network convergence, the user can then

remove the stimulus and observe the recall performance of the robot. This observation is used

as a stepping stone for introducing an incremental paradigm.

In the second experiment, an incremental learning and recall procedure is presented. This

experiment encompasses the notion of behavioural shaping [52]. Here, shaping refers to an

incremental process where the user provides feedback to an agent so as to improve approxima-

tions of a target behaviour [53, 54]. The user observes the behaviour of the robot in response to

different feedback signals (e.g. stimulus duration), and makes the necessary adjustments on-

the-fly. In this way, robotic behaviour is progressively fine-tuned, moving the agent closer to

the desired behaviour [55]. This incremental process towards a single target behaviour begs

the question, however, whether the robot can move beyond single task demands, by transition-

ing between multiple tasks.

In the third experiment, a task-switching procedure is introduced. The robot is shown two

interchanging inputs. The criteria for success is the expression of flexible behaviour. Here,
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sustained learning is not a necessary requirement for successful task completion, because task-

switching washes away the memory of the previous task. The robot must adapt to change at

every step of the way, accommodating user desirability. Nevertheless, is the robot always

deemed to be accurately aligned with user judgements?

In the fourth experiment, a task interference procedure is introduced. Here, the robot is

presented with a long cue stimulus, and tested against a brief interfering stimulus. To success-

fully accomplish this experiment, the robot must keep performing movement trajectories in

the same direction as those observed during the cue period, even after the user interferes by

imposing movements in the opposite direction. In this scenario, if the robot resists interfering

inputs, is it because they are presented for a shorter duration or because the content of the cue

stimulus is still maintained in WM?

In the fifth experiment, a variant of the task interference procedure is presented. Here,

delay duration is extended long enough to wash-away the content of the cue stimulus. When

the robot forgets the cue stimulus, its movement trajectory provides the user with enough evi-

dence to present the interfering stimulus. To successfully perform this experiment, brief inter-

fering stimuli should be enough to overwrite the content of cue stimuli. Otherwise, the

previous experiment would suggest that the robot resisted interfering inputs simply because

they were presented for a shorter duration, and not because the content of cue stimuli were

maintained in WM. Nevertheless, is the robot capable of resisting distractions that last as long

as the cue stimulus?

In the sixth and final experiment, the robot is tested against distractor inputs. Here, the

duration of both cue and distractor inputs are similar. However, distractor intensity is three

times weaker than cue intensity. The magnitude of distractor intensity is based on two require-

ments, namely (1) to impose distracting movements in a direction opposite to those imposed

during the cue period and (2) to navigate within the confined spatial environment. To success-

fully accomplish this experiment, the robot must move in the same direction before and after

distraction, despite movements in the opposite direction during distraction. Taken together,

the behaviour of the robot, not just the network activity, is a requirement for the successful

completion of our experiments.

Spiking neural model

The spiking neural network was numerically simulated via current-based synapses. The net-

work was composed of adaptive exponential integrate-and-fire (aEIF) units, a well-known

model that captures the spike initiation behaviour and statistics of cortical neurons [56, 57].

Neuronal dynamics were described by a membrane potential Vi and by a spike-frequency

adaptation wi—a widespread neurobiological phenomenon [58]. Below a constant threshold

VT, units evolved according to:

C m

dVi

dt
¼ � gLðVi � ELÞ þ gLDTe

Vi � VT
DT � wi þ Isyni þ Iexti ð2Þ

where Cm was the membrane capacitance, gL was the leak conductance, EL was the resting

potential, and ΔT was a slope factor, which determined the sharpness of the threshold. Here,

Isyni described the postsynaptic current generated from the intrinsic dynamics of the network,

Iexti was the sensory input for which its presence Iexti > 0 or absence Iexti ¼ 0 was controlled

using keypresses (see Sensory inputs). The postsynaptic membrane voltage (Eq 2) was coupled

to an adaptation variable wi defined by:

tw
dwi

dt
¼ awðVi � ELÞ � wi ð3Þ
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where τw was the adaptation time constant and aw represented the level of subthreshold adap-

tation. When the membrane potential crossed the threshold (Vi> VT), a spike (Vpeak) was trig-

gered in the aEIF model, and the integration of Eq 2 was reset to Vreset (Vi! Vreset), with Vreset

= EL. In parallel, the adaptation variable in Eq 3 was increased by an amount bw (wi! wi +

bw), where bw was the parameter of spike-triggered adaptation. Single unit parameter values

of the aEIF model were taken from [56], and kept fixed throughout all robotic experiments

(Fig 4).

Plasticity model

Short-term plasticity (STP) was applied on excitatory and inhibitory synapses according to a

well-established model [59]. Efferent synaptic connections from presynaptic units were mod-

elled by the following system of ordinary differential equations:

duj

dt
¼
U � uj

tf
þ Uð1 � ujÞ

X

k

dðt � tkj Þ ð4Þ

Fig 4. Single unit profile of the aEIF model. Postsynaptic spikes from input current injection. Top: input current, Middle: membrane potential,

Bottom: adaptation variable. Parameters: Cm = 281 pF, gL = 30 nS, EL = −70.6 mV, VT = −50.4 mV, Vpeak = 20 mV, ΔT = 2 mV, τw = 144 ms, aw = 4 nS,

bw = 0.0805 nA, τsyn = 5 ms.

https://doi.org/10.1371/journal.pone.0244822.g004
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dxj

dt
¼

1 � xj
td
� ujxj

X

k

dðt � tkj Þ ð5Þ

where δ was the Dirac delta function, tkj was the occurrence time of the kth spike of presynaptic

unit j, U 2 [0, 1] represented the baseline release probability of uj, and xj was the neurotrans-

mitter availability. Presynaptic units in the network received intrinsic background input in the

form of a spike train sj, which was an independent homogeneous Poisson process for each pre-

synaptic unit j with rate r of 10Hz [27]. For simplicity, the spatiotemporal pattern of the back-

ground noise remained constant during both evoked and spontaneous activity. In the absence

of presynaptic spikes, unit j was at a resting state, where uj and xj remained at baseline resting

values U and 1, respectively. When a presynaptic spike occurred, uj instantaneously increased

uj! uj + U(1 − uj), while xj instantaneously decreased xj! (1 − uj)xj. Between subsequent

spikes, uj and xj recovered back to their baseline resting values U and 1, respectively. Depend-

ing on the initial setup of parameters, τf, τd and U, the phenomenological model of STP can

mimic the effect of a depressing or a facilitating synapse [60]. Therefore, the mechanism of

short-term depression and facilitation can be distinguished using a different parameter setup

in the same governing equations. In our embodied network, excitatory and inhibitory synapses

were subject to short-term depression, which is well-suited in shaping the temporal response

properties of cortical neurons [59, 61, 62].

Spike-timing-dependent plasticity (STDP) was implemented using a pair-based, nearest-

neighbour spike timing interaction [63]. At each time instance, the induction protocol evalu-

ated the connection between presynaptic unit j and postsynaptic unit i, and computed a time

difference Δt = ti − tj between the last spike emitted from each respective unit. In this way, the

nearest time difference between spikes was continuously evaluated by the weight updating

STDP rule described as:

DJ ij ¼

lþfþðJijÞe
� Dttþ if Dt > 0

� l� f� ðJijÞe
Dt
t� if Dt � 0

8
><

>:
ð6Þ

f þðJ ijÞ ¼ ð1 � JijÞ
m and f � ðJ ijÞ ¼ aðJijÞ

m
ð7Þ

where λ±, 0< λ±<<1 were the learning rates λ+ and λ− that scaled the magnitude of individ-

ual weight changes during long-term potentiation (LTP) and depression (LTD), respectively.

The element Jij represented the strength and sign of the synapse from presynaptic unit j to

postsynaptic unit i. The updating functions f+(Jij) and f−(Jij) scaled weight changes and imple-

mented LTP for a positive temporal difference Δt> 0, and LTD otherwise for a negative or

null temporal difference Δt� 0 [64]. The parameter μ of the updating functions set boundary

conditions on the changes in synaptic weights. Here, a non-zero μ was used in order to prevent

runaway dynamics of synaptic weights. The parameter α denoted a possible asymmetry

between the scales of LTD and LTP, where α< 1 assigned a higher magnitude for LTP whereas

α> 1 favored LTD [64]. At several cortical synapses, the width of the plasticity window for

LTD is considerably wider than the width of the plasticity window for LTP [63, 65]. Since LTD

is widely expressed in the central nervous system [66], α was set greater than 1 and the tempo-

rally asymmetric STDP learning rule was evaluated with τ−> τ+. Parameter values of both STP

and STDP were kept fixed throughout all robotic experiments (Fig 5).
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To combine the effects of STP and STDP, we first defined an instantaneous synaptic effi-

cacy uj xj with a time dependency due to STP (Eqs 4–5). From this, we further extended the

instantaneous efficacy by adding Jij as an additional scaling factor [67–70], thus generating

synaptic connections with efficacies that evolved according to:

GiðtÞ ¼
XN

j¼1

Jij � ujxj ð8Þ

where Gi represented the time-dependent total synaptic efficacy of postsynaptic unit i medi-

ated by the combined effects of STP and STDP. As a result, unit i received at each time

instance, a postsynaptic current Isyni described by:

dIsyni

dt
¼ �

Isyni

tsyn
þ
X

k

Gidðt � tkj Þ ð9Þ

where tkj represented the kth spike emitted by presynaptic unit j and Gi was the peak amplitude

of the elementary postsynaptic current triggered by the activation of presynaptic unit j. The

Dirac delta function δ represented the occurrence of the presynaptic spike and τsyn was the

recovery time constant of the postsynaptic current. In particular, when the presynaptic unit j
emitted a spike, Isyni was instantaneously raised according to Isyni ! Isyni þ Gi, and then decayed

exponentially back to 0 with a time constant τsyn between subsequent spikes. For an overview

of the computational model proposed, a flow chart is illustrated in Fig 6.

Initially, units in the network were connected according to a sparse matrix structure C (see

Network architecture). If unit j projected to unit i, then Cij = 1. Otherwise, in the absence of a

connection, Cij = 0. As a result of the interaction between STP and STDP, the weight matrix J

was engaged in structural plasticity such that novel synaptic contacts were formed over the

course of the robotic experiment. Based on their difference in spike timing, uncoupled pairs of

units Cij = 0 formed a new connection Cij = 1 for which their strength was scaled according to

Eqs 6–7. In this way, the initial sparse network connectivity evolved towards a fully connected

network (S1 Fig).

Fig 5. Synaptic plasticity profile. (A) STP dynamics from presynaptic spikes. Parameters: τf = 100 ms, τd = 900 ms, U = 0.80, x = 1. (B) Asymmetric STDP

learning rule. Parameters: τ− = 50 ms, τ+ = 20 ms, λ− = 25e-5, λ+ = 5e-5, μ = 1, α = 2.

https://doi.org/10.1371/journal.pone.0244822.g005
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Results

We report the results of six Robotic experiments. Each experiment is run via the Robotic plat-

form, initiated using the initial Network architecture, and manipulated using the keyboard lis-

tening framework. Batches of evoked and spontaneous activity are alternated according to the

Learning and recall procedure. Postsynaptic responses increase during evoked activity, and

decrease during spontaneous activity (Fig 7). The rate of postsynaptic depolarization deter-

mines whether synaptic connections are potentiated or depressed. Overall, the robot exhibits

(1) single learning and recall, (2) incremental learning and recall, (3) task-switching, (4) resis-

tance to interference, (5) submission to interference, and (6) resistance to distraction. A video

of each robotic experiment can be found in the (S1–S6 Videos).

Experiment 1: Single learning and recall

In the first experiment, a single learning and recall procedure is performed (Fig 8). Here, exter-

nal inputs are presented up to a point where the network reaches global stability. During

evoked activity, neuronal responses follow the spatial profile of external inputs, exhibiting

patterns of localized activity near the stimulus peaks (Fig 8A). Following stimulus offset, the

Fig 6. Model flow chart. Combination of short-term and long-term synaptic plasticity giving rise to a time-dependent total synaptic efficacy, which in turn

generates a postsynaptic current that drives intrinsic network dynamics. Sensory afferents are characterized by an extrinsic input, directly affecting

postsynaptic emission rates.

https://doi.org/10.1371/journal.pone.0244822.g006
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network maintains local activity bumps (Fig 8A). These self-sustained reverberations are

determined by the strength of synaptic efficacies established during evoked activity (Fig 8B).

Noteworthily, synaptic efficacies can depend on the emission rate and spike timing of units

they connect, both of which may jointly determine activity-dependent changes in synaptic

plasticity [63]. Synapses connecting pairs of units most responsive near the stimulus peaks are

strengthened. The preferential bias in local reverberating activity is reflected in the robot’s

wheel motor rotation speed (Fig 8C). As a result, movement trajectories during spontaneous

activity are in the same direction as those observed during evoked activity (Fig 8D). Taken

together, the network exhibits localized patterns of self-sustained activity with preferential

Fig 7. Input-dependent and input-disengaged synaptic plasticity differentially modulate neuronal responses. (A) When the

stimulus is ON during learning, synaptic connections are strengthened by high postsynaptic emission rates. (B) When the

stimulus is OFF during recall, synaptic connections are weakened by low postsynaptic emission rates. Presynaptic activity

remains relatively constant.

https://doi.org/10.1371/journal.pone.0244822.g007
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responses that settle towards the position of the higher bump location, an observation directly

manifested in the robot’s motor trajectory (S1 Video).

Experiment 2: Incremental learning and recall

In spite of persistent activity, networks with dynamic synapses are expected to display sensitiv-

ity to the temporal features of elicited stimuli, such as stimulus duration [34, 71–73]. Here, an

incremental learning and recall procedure is introduced (Fig 9). Stimulus duration is progres-

sively increased during successive presentations (Fig 9A). As a result, persistent activity pro-

gressively increases (Fig 9B). This gradual gain is associated with the strengthening of

incoming synaptic connections (Fig 9C). As a result, differences in left and right wheel motor

speed become progressively pronounced (Fig 9D). Consequently, the robot gradually refines

its internal representation of sensory stimuli (Fig 9E). Noteworthily, autonomous motor tra-

jectories gradually resemble more closely to the recall performance observed in Experiment 1.

Taken together, the content of WM may be refined with longer stimulus presentations (S2

Video).

Experiment 3: Task switching

In the third experiment, the robot is engaged in a task-switching procedure (Fig 10). Here, we

examined whether the network is flexible enough to ride the wave of new input streams. To

test this, stimulus intensity and duration are kept relatively constant (Fig 10A), whereas stimu-

lus configuration is switched during successive evoked batches. As a result, the preferential

Fig 8. Single learning and recall. (A) Raster plot of network activity. Local persistent activity is preferentially biased towards a single subpopulation; brown

curve, average synaptic efficacy. (B) Snapshot of synaptic weights at the end of evoked and spontaneous batches. (C) Rotating speed of left and right wheel

motors as a function of time. (D) Motor trajectory of the robot in 3-D space during evoked and spontaneous batches.

https://doi.org/10.1371/journal.pone.0244822.g008
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Fig 9. Incremental learning and recall. (A) Duration of evoked and spontaneous batches. (B) Raster plot of network activity. Persistent activity gain

depends on stimulus duration; brown curve, average synaptic efficacy. (C) Evolution of average incoming synaptic weights at the end of spontaneous

batches. (D) Rotating speed of left and right wheel motors as a function of time. (E) Motor trajectory of the robot in 3-D space during subsequent pairs of

evoked and spontaneous batches.

https://doi.org/10.1371/journal.pone.0244822.g009

Fig 10. Task switching. (A) Duration of evoked and spontaneous batches. (B) Raster plot of network activity. Stimulus configuration shapes local

persistent activity; brown curve, average synaptic efficacy. (C) Rotating speed of left and right wheel motors as a function of time. (D) Motor trajectory of

the robot during subsequent pairs of evoked and spontaneous activity. (E) Spatial location of the highest average incoming synaptic weights; blue and black

dot, evoked and spontaneous activity, respectively.

https://doi.org/10.1371/journal.pone.0244822.g010
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bias in local persistent activity is switched according to the latest input configuration

(Fig 10B). Changes in local emission rates are directly reflected in the speed of wheel motors

(Fig 10C). As a result, the robot actively maintains an internal representation of the latest stim-

ulus presented (Fig 10D). Finally, the strength of synaptic weights near the higher stimulus

peak changes accordingly (Fig 10E). Taken together, the content of WM may be overwritten

by ongoing new input streams (S3 Video).

Experiment 4: Resisting interfering inputs

In addition to switching tasks, animals can remain resistant to unforeseen interference from

external stimuli [14, 46]. In the fourth experiment, the robot is tested against interference (Fig

11). Here, stimulus configurations are the same as those in Experiment 3. However, cue stimuli

are presented for a longer duration than interfering inputs (Fig 11A). If the robot can resist

interference, it should move in the same direction before and after interference. Fig 11B shows

that cue-guided persistent activity is maintained following interference, suggesting that the

network remains resistant to brief interfering stimuli. The same wheel motor remains higher

before and after interference (Fig 11C). Consequently, the robot moves in the same direction

before and after interference (Fig 11D) (S4 Video). Interestingly, this type of interference is

not enough to alter the acquired structure of the synaptic weight matrix (Fig 11E). Taken

together, our fourth experiment suggests that stimuli presented for a longer duration are more

likely to be remembered than other stimuli. However, if different stimuli are successively pre-

sented for similar durations, the latest stimulus may overwrite the content of the previous

stimulus, as observed in Experiment 3.

Fig 11. Resisting interfering inputs. (A) Duration of alternating batches of evoked and spontaneous activity. (B) Raster plot of network activity.

Interfering inputs fail to disrupt cue-guided patterns of local persistent activity; brown curve, average synaptic efficacy. (C) Rotating speed of left and right

wheel motors as a function of time. (D) Motor trajectory of the robot before, during and after the presentation of interfering inputs. (E) Spatial location of

the highest average incoming synaptic weights; blue and black dot, evoked and spontaneous activity, respectively.

https://doi.org/10.1371/journal.pone.0244822.g011
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Experiment 5: Submitting to interfering inputs

Despite the ability to resist interfering inputs in Experiment 4, cue stimuli were presented for a

longer duration than interfering inputs. Arguably, the robot’s movement trajectory being

biased towards that of the stimulus presented longer seems fully expected. However, this inter-

pretation remains agnostic about the contribution of delay duration, which introduces context

under which the WM content either resists or submits to ongoing new input streams. To

explain, if delay duration is extended, the WM content would be erased. After erasure, the

robot is expected to remember the content of the latest stimulus presented, irrespective of

stimulus duration. To test this hypothesis, the fifth experiment introduces a variant of Experi-

ment 4 (Fig 12). Here, the duration of both stimuli is maintained, but delay activity is extended

long enough to wash away the content of the cue (Fig 12A and 12B). Arguably, one would

automate the paradigm using the exact same stimulus triggers as Experiment 4, and introduce

an n-fold increase in delay duration. However, the latter approach is more suitable for disem-

bodied networks, because multiple delay durations must be tested to find the minimum delay

duration required to wash-away the content of the cue. To this end, multiple offline simula-

tions runs would need to be performed, an approach our online proposal attempts to over-

come. Hence, to move beyond offline experimental refinements, we turned to our online

robotic implementation instead. Here, the robot accommodates interfering inputs by switch-

ing tasks, reminiscent of Experiment 3 (Fig 12C and 12D) (S5 Video). The strength of synaptic

weights near the higher stimulus peak changes according to the ongoing wave of new input

streams (Fig 12E). Taken together, our fifth experiment suggests that delay duration intro-

duces context, under which the WM content either resists or submits to similar interferences.

Fig 12. Submitting to interfering inputs. (A) Duration of alternating batches of evoked and spontaneous activity. (B) Raster plot of network activity.

Interfering inputs disrupt cue-guided patterns of local persistent activity; brown curve, average synaptic efficacy. (C) Rotating speed of left and right wheel

motors as a function of time. (D) Motor trajectory of the robot before, during and after the presentation of interfering inputs. (E) Spatial location of the

highest average incoming synaptic weights; blue and black dot, evoked and spontaneous activity, respectively.

https://doi.org/10.1371/journal.pone.0244822.g012
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Experiment 6: Resisting distraction inputs

In the sixth and final experiment, the robot is introduced to distraction inputs (Fig 13). Here,

both cue and distractor durations are approximately the same (Fig 13A). However, distractor

intensity is weaker than cue intensity. Cue-guided persistent activity is maintained following

distraction inputs, suggesting that the WM content remains resistant to weaker stimuli (Fig

13B). The rotating speed of the same wheel motor remains higher before and after distraction

(Fig 13C). Consequently, the robot executes movement trajectories in the same direction

before and after distraction (Fig 13D) (S6 Video). Synaptic weights near stimulus peaks are

continuously restructured during ongoing input streams (Fig 13E). Following distraction

inputs, units controlling the left motors are connected by the strongest synaptic efficacies. In

contrast, persistent activity is globally higher among units controlling the right motors. There-

fore, local information may misrepresent population level activity under certain conditions.

Taken together, our sixth and final experiment suggests that the content of WM may be resis-

tant to distraction inputs, so long as the intensity of the latter is weaker than that of the cue

stimulus.

Discussion

Relation to previous work

Working memory has been studied in networks of spiking neurons connected by synapses

subject to both short-term and long-term plasticity [28]. Through mean field analysis, the

authors showed that increased LTP should be adequately balanced by increased LTD to pre-

vent uncontrollable excitation from destabilizing network activity. Moreover, they found that

Fig 13. Resisting distraction inputs. (A) Duration of alternating batches of evoked and spontaneous activity. (B) Raster plot of network activity.

Distraction inputs fail to disrupt cue-guided patterns of local persistent activity; brown curve, average synaptic efficacy. (C) Rotating speed of left and right

wheel motors as a function of time. (D) Motor trajectory of the robot before, during and after the presentation of distraction inputs. (E) Spatial location of

the highest average incoming synaptic weights; blue and black dot, evoked and spontaneous activity, respectively.

https://doi.org/10.1371/journal.pone.0244822.g013
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the inclusion of short-term depression can widen the range of stable ongoing neural and syn-

aptic dynamics, ensuring online learning is kept under control. This mean field approach was

then supplemented by the work of [29], where the author studied how plastic synapses operate

based on patterns of mean spike rates. The quantitative analysis showed that external stimuli

can be embedded in the synaptic structure, controlled by the rate of postsynaptic depolariza-

tion above and below emission threshold. Furthermore, low LTP and LTD transition probabil-

ities were shown to be instrumental for slow learning and forgetting to take place—a desirable

feature in palimpsestic networks, where old memories are forgotten to make room for new

ones [36–38]. In [30], the authors outlined general requirements for stimulus driven, unsuper-

vised formation of WM states. Their mean field analysis suggested that Hebbian rate-depen-

dent synaptic plasticity may serve in developing synaptic structure in initially unstructured

networks. The role of short-term depression was highlighted, serving as a regulatory mecha-

nism for preventing excessive potentiation from destabilizing stimulus-selective activity.

The theoretical studies of [27–30] made a handful of predictions for which our robotic

implementation supports. First, our study shows how neural activity during ongoing input

streams can lead to the formation of synaptic structures, which in turn support persistent

activity. Second, the asymmetric STDP learning rule suggests that LTD is strong enough to

compensate for excessive potentiation. Third, the regulatory role of short-term depression is

supported by our online robotic implementation. Fourth, LTP and LTD learning rates are

small enough to generate stable synaptic weight changes. Finally, transitions between LTP and

LTD can be controlled by postsynaptic emission rates.

Short-term synaptic plasticity has been supported as a candidate mechanism for storing

information in WM [24, 25]. Moreover, fast-expressing Hebbian synaptic plasticity may mod-

ify network connectivity momentarily enough to support information storage in WM [74–76].

Arguably, Hebbian forms of synaptic plasticity are incompatible with the flexible functionality

of WM, because they induce long-lasting changes in synaptic connections that generally out-

last the duration of persistent activity. However, persistent activity could be mediated by syn-

apses that actively operate under multiple timescales [77], carefully orchestrating information

maintenance in WM. Recently, in vivo recordings from dentate gyrus tracked the dynamics of

synaptic changes after low interference WM training in freely behaving rats [78]. While ani-

mals were still performing the task, the authors hypothesized that prior WM contents could be

forgotten so as to accurately recall the storage of new contents during forthcoming trials. Inter-

estingly, WM erasure prior to good behavioural performance was associated with the physio-

logical induction of LTD, suggesting its implication in the loss of prior irrelevant information

for the adaptive benefit of storing new ones. Importantly, lack of WM erasure corresponded to

more LTP-like phenomena, which impaired behavioural performance on subsequent trials

[78]. Our robotic experiments are in qualitative agreement with these findings, suggesting that

LTD may erase prior WM content during extended delay durations so that forthcoming input

streams can be stored without proactive interference [79, 80]. Nevertheless, further experi-

ments will be required to disentangle the role of fast-expressing Hebbian synaptic plasticity,

and its potential involvement in WM storage [81–83].

In this study, sensory information was progressively lost during spontaneous activity [7]. In

ANNs, this phenomenon is commonly known as catastrophic forgetting, where synaptic

weights important for consolidating task A are changed to meet the requirements for task B

[84–86]. A previous model of elastic weight consolidation (EWC) has attempted to overcome

catastrophic forgetting by rendering a proportion of previous task-allocated synapses less plas-

tic [84]. In this way, network activity reached stability over long timescales, without forgetting

older tasks during sequential learning of multiple tasks. This approach may be instrumental

for continual lifelong learning systems [87]. However, EWC weights are tailored for capturing
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memory retention, and therefore the model does not consider a forgetting component, an

active arbitrator of WM capacity.

In contrast to EWC weights, synapses in our network do not hold a specific mechanism

designed to protect previous knowledge from being overwritten by learning of novel informa-

tion [33, 84], nor are they imposed an active forgetting component. Rather, retention and for-

getting are part of the ongoing dynamics, and there are no specialized resources administered

to previous task-allocated synapses. The robotic experiments follow a continual learning

scheme such that artificial stop-learning conditions are instead replaced by real-time user

intervention. In light of this approach, our findings are aligned with previous theoretical stud-

ies, suggesting that the formation of WM may be subject to activity-dependent synaptic plas-

ticity [88]. We show how this process can unfold in a robot embedded in an ecological context.

In this work, sensory information was treated as a distributed representation, where any

individual neuron functions as part of a larger population whose combined activity underlies

the agent’s information processing capabilities [51]. Indeed, persistent activity is thought, in

many cases, to carry distributed information—sensory representation is not a single neuron

property, rather many neurons participate in the representation of an item loaded in memory

[13]. Here, individual units responded in an idiosyncratic manner, but collectively they gener-

ated neuronal responses that provided a centralized control over each respective wheel motor

of the robot. As such, wheel motors were controlled via the collective participation of distinct

neuronal subpopulations. Motor trajectories were driven by distinct localized activity bumps.

Indeed, these bump states are reminiscent to those observed in discrete slot models of multi-

item WM capacity [17–19, 25, 50], where each item is stored in a bell-shaped activity bump

[14–16, 19, 23, 25, 45–50].

Although the cognitive significance of persistent activity remains elusive, our work suggests

that local subpopulations collectively extend their role in maintaining an active memory of

structured, learned information about external stimuli [51]. Previous studies have shown that

stable persistent activity could depend on a number of factors, namely the duration and inten-

sity of the external input current applied, the synaptic weights, the level of intrinsic noise, as

well as the size of the network [47]. Indeed, controlling the parameters that define the proper-

ties of the network provides a more powerful approach rather than simply changing the input

to the network [45]. Although a complete assessment of these intricacies is beyond the scope

of our robotic experiments, a future study could segregate the network from the physical

robot, and investigate the sensitivity of the model to a wider range of parameters.

From a phenomenological standpoint, the fade-out bumps observed during the delay

period imply the gradual disappearance of sensory representation [7]. In agreement with this

finding, behavioural studies in human subjects have shown that WM precision can degrade

with the duration of the delay period [89]. Analogously, the robot progressively fails to remem-

ber the direction of previously executed motor commands, which is reflected in the gradual

disappearance of stimulus-selective activity towards baseline [26]. Noteworthily, persistent

activity during the delay period is not only stimulus-dependent, but also likely to be mediated

by time-varying fluctuations in neuronal activity which render the internal representation

dynamic [90]. Indeed, WM experiments have shown a set of diverse neuronal response pat-

terns during delay period activity [5, 6]. These individual response profiles range from sus-

tained tonic activity to gradual increase/decrease in firing rate fluctuations. The presence of

heterogeneity in the response of individual neurons likely provides a meaningful computa-

tional role for higher order function [39, 48, 91, 92]. Despite the presence of such diversity, our

findings solely accounted for the progressive decrease in the neural response profiles [5, 6].

Nevertheless, persistent activity was maintained over a time scale of seconds [93, 94]. This

observation has been a hallmark feature of the prefrontal cortex involved in WM, where the
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regulation of internally-guided decisions can be executed in the absence of external stimuli

[95]. From a neurorobotic standpoint, persistent activity is advantageous for artificial agents

exposed to momentary hardware failure or sensor perturbation. Instead of relying purely on

external stimuli, the agent internalizes recent events and carries them over towards a foresee-

able future. In the absence of persistent activity, perceptual uncertainty would prevail, prevent-

ing an accurate execution of internally-guided behaviour.

Limitations

In this study, executed motor trajectories aimed to capture the internal representation of sen-

sory afferents stored in WM. However, using motor executions to characterize sensory repre-

sentations is an abstraction that moves away from the kinds of representations memorized by

animals during WM experiments. Therefore, the characterization of sensory representations

via wheel motor executions creates a partial correspondence to the hypothesized contribution

of WM maintenance proposed in experimental studies. Consequently, our robotic experi-

ments create an imbalance in abstraction which may arguably lead to a loss of biological rele-

vance [96]. It is important to note however that our work does not propose input-disengaged

motor executions to be mediated by persistent activity. Rather, our study shows how the physi-

cal robot can be used as a companion approach for concretizing the representation of sensory

stimuli in an embodied network. In particular, autonomous motor executions during sponta-

neous activity is used purely for the purpose of studying how the content of WM interacts with

ongoing sensory afferents. Importantly, the inclusion of motor primitives turns out to be criti-

cal for providing behaviourally meaningful content to sensory primitives, because the mainte-

nance of an ongoing movement holds a property in the action that accurately reflects the

property of the sensory stimulus [97]. Beyond the sheer presence of neural activity and synap-

tic transmission, the motor primitives of the robot were used as a method for displaying persis-

tent neural activity “in action”. The robotic implementation was therefore used in order to

ensure a one-to-one correspondence between network activity and executed motor trajectory.

The extensive matching and complementarity between their properties constrains the scope

of multifaceted interpretations in the face of non-stationary environments. Moreover, it pro-

vides an opportunity for their coordinated changes to ultimately result in the emergence of

adaptive behaviour [98]. Overall, our robotic experiments aimed to exemplify the importance

of embodiment as a tool for studying the formation of WM.

During the experiments, structural plasticity rendered an unrestricted establishment of

novel synaptic connections within and between excitatory and inhibitory populations. In this

context, excitatory units maintained their initial strict excitatory influences over the course of

each experiment, because the multiplicative STDP rule linearly attenuates excitatory efficacies

as they reach the boundaries [0, 1] [64]. As such, excitatory outgoing connections evolved

within boundaries (S2 Fig—left column). In contrast, outgoing connections from inhibitory

units switched their initial strict inhibitory influences by suddenly forming excitatory contacts

with their novel postsynaptic targets, a biologically implausible scenario which led to the viola-

tion of Dale’s law (S2 Fig—left column). To circumvent this issue, some networks have held

fixed inhibitory efficacies [64, 99–101]. Others have attempted to obey Dale’s principle by sud-

denly freezing synaptic connections if the synaptic update reversed the sign of excitatory or

inhibitory influences [102]. In subsequent trainings, synapses attempting to change their signs

were excluded and therefore prevented from exhibiting activity-dependent changes. Although

the latter constraint is adequately tailored for the conservation of Dale’s principle, an artificial

stop-learning condition is imposed, which hinders the ability to learn new memories [85].

Nevertheless, model networks with positive and negative synaptic weights can be functionally
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equivalent to those carrying positive weights only [103]. Finally, structural plasticity also led to

the establishment of self-connections in our network, which were absent during network ini-

tialization (S2 Fig—right column).

In this work, inputs were represented as bimodal Gaussian mixtures (Sensory inputs). The

motivation for using simplified sensory afferents partly stems from classic studies of visual

WM, where subjects are introduced the oculomotor delayed response task [2, 6]. During the

cue period of the task, stimuli are presented at various possible locations around a fixation

point [104]. These stimuli may possess simple geometric shapes differing in luminance or

color [7, 105]. Noteworthily, a substantial proportion of neurons in the dorsal region of the

prefrontal cortex exhibit spatially tuned elevated persistent firing across the delay period [106].

However, the reverberating activity of prefrontal neurons can extend beyond the spatial

domain, towards physical characteristics of objects (e.g. shape, color and intensity) and their

respective identity [4, 107–113]. Although the bimodal mixture of Gaussians used in this study

carries selectivity for spatial location and intensity, it remains agnostic to shape information,

thus leaving out the multimodal characteristics of real world stimuli and the complex statistical

structure they carry [114]. Nevertheless, it is possible to train the network on an arbitrary set

of stimuli, such that delay activity is selective to object shape, as observed in prefrontal neurons

[112]. An example is illustrated in the supplementary figure (S3 Fig).

Practical implications

In this study, there are practical reasons for considering user keypresses instead of setting up

timers to generate consistent experimental triggers. First, it is noteworthy to mention that the

robot was tested in a confined spatial setting. Perhaps less obvious, devising a fully automated

task in a restricted area runs the risk of having the robot run into collisions. Indeed, collisions

may be avoided by running experiments in an unrestricted area or overcome by incorporating

system feedback. However, our robot is designed to have low neglect tolerance, meaning it

requires continuous supervisory control [44]. Agents with low neglect tolerance are not given

the luxury of behaving in the context of automated task designs. Our goal is not to design auto-

mated paradigms, because the network is performed online and the robot is placed in an eco-

logical context [115]. The study therefore focused on the interactive component between the

user and the robot, such that the user received continuous behavioural feedback from the

robot, and pressed a key at any moment, including when the agent ran the risk of collision.

Real-time interventions as such created inconsistent experimental triggers.

The keyboard listening framework developed here is suitable for online learning of rapidly

varying input streams, a phenomenon known as concept drift [32]. In particular, the frame-

work is designed for choosing a specific input configuration from a repertoire of configura-

tions, such that it can introduce novel motor trajectories via rapid and flexible task-switching.

Future studies could use our keyboard listening framework and expand the repertoire of input

configurations. This approach has been proposed as an important design principle in develop-

mental robotics [43, 116]. Since the programmer who develops the keyboard listening frame-

work does not know what tasks the future users will teach the robot, the framework gives the

freedom to choose a sequence of tasks that are unknown at the time of programming [116].

Hence, in an attempt to further explore how the model behaves with disparate problems in the

same network, programmers may design a wider range of stimulus duration, intensity, speci-

ficity and bump location. To this end, we expect that the computations resulting from a wider

range of input configurations and durations may not only reproduce the behavioural results

presented here, but also further extend the range of possible behavioural trajectories. For

example, introducing a bimodal Gaussian mixture with localized amplitude peaks of the same
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intensity should remove the preferential bias from the persistent activity bumps observed

here, making local reverberating activity between the two subpopulations indistinguishable.

Consequently, the robot would autonomously navigate forward following the removal of the

“unbiased” stimuli. This new behavioural trajectory would directly result from the coupled

interaction between neural activity and motor output, both of which are under the influence of

ongoing new input streams presented to the same underlying network [98].

Robotic behaviour can be used a method for making an inference about the underlying net-

work computation. Adaptive behaviour is directly observable, because the online operation is

tailored for piece-by-piece accommodation of ongoing input streams. In this way, new items

can be actively loaded in WM and therefore the agent can be trained to maintain novel sensory

representations on-the-fly [116]. Moreover, the keypresses used here minimize the efforts

required to make arbitrary changes in the elicited stimuli [117]. Interactions as such provide

external observers some time to interpret the behaviour of the robot, and form a real-time

hypothesis of its forthcoming behaviour. Under the umbrella of this interaction, the robot can

actively augment, and be shaped by the user. Taken together, our study proposes that tradi-

tional WM protocols may be complemented by placing biological agents in an ecological con-

text, under which the content of WM interacts with ongoing input streams.

Conclusion

In this work, we have devised a network of spiking neurons with dynamic synapses. As a com-

panion approach to the computational model, the network was embedded in a physical robot.

The artificial agent was used as a source of exploration under which neuronal computation

was directly linked to motor output—serving as an illustration of WM capacity under non-

stationary input streams. This methodological approach was accompanied by a keyboard lis-

tening framework, which helped us delineate how the content of WM is (1) refined, (2) over-

written or (3) resisted by changes in the duration and configuration of incoming stimuli. The

model we propose is capable of continuous online learning, and the embodied network adapts

to changing environmental contexts, all of which are done so under the basis of local informa-

tion reliance. We show how these local changes can be accounted for by short-term and long-

term changes in synaptic plasticity. Although we believe that carefully designed experiments

will continue to lay the foundation for our understanding of higher-order function, we hope

that embodied networks will add a supporting layer to the valuable theoretical insights gained

from computational models of pure simulation.

Supporting information

S1 Fig. Temporal evolution of structural plasticity.

(TIF)

S2 Fig. Temporal evolution of synaptic weights.

(TIF)

S3 Fig. Persistent activity based on object shape and location.

(TIF)

S1 Video. Robotic experiment 1. Single learning and recall.

(MP4)

S2 Video. Robotic experiment 2. Incremental learning and recall.

(MP4)
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S3 Video. Robotic experiment 3. Task-switching.

(MP4)

S4 Video. Robotic experiment 4. Resistance to interference.

(MP4)

S5 Video. Robotic experiment 5. Submission to interference.

(MP4)

S6 Video. Robotic experiment 6. Resistance to distraction.

(MP4)
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