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Abstract: The design and development of novel photocatalysts for treating toxic substances such
as industrial waste, dyes, pesticides, and pharmaceutical wastes remain a challenging task even
today. To this end, a biowaste pistachio-shell-derived activated carbon (AC) loaded TiO2 (AC-TiO2)
nanocomposite was fabricated and effectively utilized towards the photocatalytic degradation of toxic
azo dye Reactive Red 120 (RR 120) and ofloxacin (OFL) under UV-A light. The synthesized materials
were characterized for their structural and surface morphology features through various spectroscopic
and microscopic techniques, including high-resolution transmission electron microscope (HR-TEM),
field emission scanning electron microscope (FE-SEM) along with energy dispersive spectra (EDS),
diffuse reflectance spectra (DRS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy
(FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, photoluminescence spectra (PL)
and BET surface area measurements. AC-TiO2 shows enhanced photocatalytic activity compared to
bare TiO2 due to the change in the bandgap energy and effective charge separation. The degradation
rate of dyes was affected by the bandgap of the semiconductor, which was the result of the deposition
weight percentage of AC onto the TiO2. The presence of AC influences the photocatalytic activity of
AC-TiO2 composite towards RR 120 and OFL degradation. The presence of heteroatoms-enriched AC
enhances the charge mobility and suppresses the electron-hole recombination in AC-TiO2 composite,
which enhances the photocatalytic activity of the composite. The hybrid material AC-TiO2 composite
displayed a higher photocatalytic activity against Reactive Red 120 and ofloxacin. The stability of
the AC-TiO2 was tested against RR 120 dye degradation with multiple runs. GC-MS analyzed the
degradation intermediates, and a suitable degradation pathway was also proposed. These results
demonstrate that AC-TiO2 composite could be effectively used as an ecofriendly, cost-effective, stable,
and highly efficient photocatalyst.

Keywords: biomass; degradation; Reactive Red 120; ofloxacin; photocatalysis

1. Introduction

The massive levels of pollutants released into water sources worldwide due to in-
creased population expansion and industrial development have generated adverse envi-
ronmental effects in recent decades [1–4]. The effluents from textile industries, particularly
synthetic dyes, discharged without proper treatment and management adversely affect
our environment in one way or another [1]. Moreover, synthetic dyes, present in many
industrial wastewaters, are highly stable molecules and are difficult to degrade by con-
ventional physicochemical processes [2]. The dyes and antibiotics in the wastewater of
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pharmaceutical plants and industrial effluents are among the most serious and hazardous
pollutants that must be removed from the wastewater before discharging [3]. These toxic
and dangerous substances are harmful and cannot be removed through conventional meth-
ods such as physical adsorption and biochemical techniques [4]. Thus, a suitable alternative
approach such as advanced oxidation processes (AOPs) has been developed [5–9]. Semi-
conductors illuminated with UV or solar light (or any other strong light source), causes
a valence electron to move to the conduction band, leaving a hole in the valence band.
However, there is a drawback: the separated electron-hole pairs recombine immediately in
unmodified semiconductors and decrease the photoactivity of the materials. To overcome
these problems, a suitable modification was carried out through doping and surface modi-
fications with a metal, a nonmetal, a mixture with other semiconductors, and photostable
organic compounds [10–14]. It is imperative to select a suitable semiconductor material to
efficiently degrade dyes with good stability.

Presently, a rising trend in wastewater treatment research focuses on generating and
releasing reactive oxygen species (ROS). Ali and co-workers demonstrated that graphene-
SBA/TiO2 has anti-photoerosion potential and efficiently degrades an antibiotic drug
(tetracycline) and MB (methylene blue) under light [15]. They concluded that graphene-
SBA/TiO2 has better photocatalytic activity than SBA/TiO2. In the visible light region,
the compositions of WOx and the crystallinity of g–C3N4 affect the performance of the
heterostructures, with improved photocatalytic activity for degradation and H2 generation
obtained on W18O49/g–C3N4 layered heterostructures [16]. In semiconductor photo-
catalysis, suppressing photogenerated e−h+ recombination is essential for efficient charge
separation and photoactivity. The coupling of g-C3N4 nanosheets with WOx has been a
prevalent method that is very active towards dye degradation and hydrogen production.
The potential of technologies and improvements must be economically rational. Carbona-
ceous materials possess various advantages, including their surface area, favourable surface
functionality, high chemical and thermal stability, environmentally feasible preparation
methods, and cost-effective products [17–24]. The carbon derived from biomass mixed
with metal/metal oxides/sulfides and other semiconductors possesses good photocatalytic
activity [19]. Several carbon resources were used to prepare carbons in the past decades,
such as fossil-based hydrocarbons (e.g., lignite), biomass (e.g., wood), and polymers. Most
biomass-derived carbon-based materials were used for energy technologies such as super-
capacitor applications, sensors, and hydrogen evolution reactions [20,24–29]. However,
the photo and bioapplications of biomass-derived carbon-based materials are scarce [24].
However, graphene and activated carbon-based materials are exclusively utilized for
photocatalytic applications [30,31]. Due to its highly promising qualities such as high pho-
tocatalytic effectiveness, sufficient chemical and biological stability, cost-effective synthesis,
non-noxious nature, and long-term stability, titanium dioxide (TiO2) is an efficient and
renowned photocatalyst [32–34]. Photocatalytic elimination of dangerous environmental
contaminants mediated by TiO2 is a potential method for treating biorecalcitrant organic
waste materials [32–36]. Moreover, the applications related to the removal of pollutants,
bacterial disinfection, H2 production, CO2 reduction, sensors, supercapacitors, and other
fields are well documented [37,38]. In this work, the biomass-derived carbon has been
synthesized from biological waste such as pistachio shell (dry fruits shell) and effectively
utilized for toxic chemical degradation along with TiO2. The photocatalytic activity of
pistachio shell-derived activated carbon loaded TiO2 (AC-TiO2) has been investigated
toward degradations of toxic dye RR 120 and ofloxacin using UV-A light under various
experimental conditions.

2. Materials and Methods
2.1. Chemicals

The titania source from titanium isopropoxide (TiiP) and antibiotic ofloxacin (OFL)
was obtained from Sigma Aldrich. Reactive Red 120 (RR 120) (Balaji Colour Company,
Chennai, India) and gelatin (C102H151O39N31, Sino Pharm Chemical Reagent Co., Ltd.,
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Shanghai, China) were used as received. Pistachio shells were collected from the local
market. Double-distilled water (DI) was used for the preparation of dye and OFL solutions.

2.2. Synthesis of Pistachio Shell Derived Activated Carbon (AC)

Pistachio-shell-derived carbon (AC) was synthesized from pistachio shell (Pistacia
vera), a biomass/biological waste. The prepared AC was activated by treating with KOH,
and a schematic illustration is given as Scheme 1. In brief, the pistachio shells were dried
under sunlight and then dried in an oven at 100 ◦C for 10 h. Then 20 g of pistachio shells
were crushed well and pulverized. The pulverized shells were taken in a silica crucible, and
precarbonized at 450 ◦C for 3 h in a hot air oven, then allowed to cool at room temperature.
The black solids were collected and ground well with pestle and mortar. For activation, the
black powder was treated with 12% KOH solution for 5 h at 90 ◦C. The activated slurry was
filtered and placed in open air for a night and subsequently transferred into a silica crucible
put into a tubular furnace at 800 ◦C for 3 h. Next, the AC was washed with HCl (5%) and
double-distilled water until the pH became neutral and dried at 100 ◦C for 5 h to remove
the moisture and smoothly ground using pestle and mortar to obtain fine AC powder.
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2.3. Fabrication of AC-TiO2

Initially, TiO2 was synthesized by a sol-gel method. About 0.5 g of gelatin was
dissolved in 5 mL of hot water. To this, 90 mL of a 2-propanol solution containing 10 mL of
TiiP was added under stirring conditions and then put in an ultrasonication for an hour.
The formed gel was continuously stirred for 24 h. The precipitate was filtered, washed with
double distilled water (DI) and ethanol, air-dried for 24 h, and dried in a hot air oven at
100 ◦C for 4 h. The prepared white solid was thoroughly ground using pestle and mortar,
then calcinated at 450 ◦C for 6 h in a muffle furnace. About 900 mg of TiO2 was dispersed in
25 mL of 2-propanol. Exactly 100 mg of AC was dispersed in 25 mL of a 2-propanol solution
under sonication. The AC dispersion was added to TiO2 suspension under vigorous stirring,
and the stirring continued overnight. The formed AC-TiO2 (Scheme 1) was filtered and
dried in a hot air oven at 100 ◦C for 5 h. This catalyst contained ten wt % of AC on TiO2.
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The AC-TiO2 was also prepared by varying the deposition weight percentage (2.5, 5, 7.5,
10 wt %) of AC onto the fixed weight of as-prepared TiO2.

2.4. Characterization

X-ray diffraction (XRD) was used to examine the crystal structure of bare TiO2, AC,
and AC-TiO2 utilizing a PANalytical X’Pert PRO powder X-ray diffractometer with 15KVA
UPS support at two range of 10–80. Fourier-transform infrared spectroscopy (FT-IR)
was used to investigate the surface functional groups of the materials (Thermofisher
Scientific Nicolet iS5 spectrometer). A micro-Raman spectrometer, image spectrograph STR
500 mm focal length laser Raman spectrometer with flat field of 27 mm (W) 14 mm and
(H) resolution of 1/0.6 cm−1/pixel was used to measure Raman spectra. UV-vis diffuse
reflectance spectroscopy (UV-DRS) with Thermo Fisher Evaluation was used to examine
the optical characteristics of the samples in the 190 to 1100 nm range. A Varian Cary eclipse
photoluminescence spectrophotometer was used to record PL spectra with an extremely
low temperature LN2 77 K set up. The morphologies of the obtained products were
examined using a field emission scanning electron microscope (FE-SEM) equipped with
an energy-dispersive X-ray spectrum (EDS) and a high-resolution transmission electron
microscope (HR-TEM) (FEI –TECNAI G2-20 TWIN with LaB6 filaments) operating at 200 kV.
A Perkin-Elmer UV spectrometer lambda 35 was used to record the absorption spectra of
all the samples and a (Systronics) digital pH meter was used to modify the pH values using
H2SO4 or NaOH. The ESCA-3 Mark II spectrometer (VG Scientific Ltd., East Grinstead
UK) was used to obtain XPS spectra, with Alka (1486.6 eV) radiation as the source and C1s
(285 eV) as the reference. The specific surface area of AC was determined through BET
nitrogen adsorption-desorption at 77 K using Autosorb-iQ 2ST/MP, Quantachrome. The
GC-MS (Shimadzu QP2020-NX, Columbia, Maryland, United States) was utilized for GC-
MS analysis since it directly connects to the capillary column. Temperature-programmed
mode was used on the GC column, with temperatures ranging from 50 to 350 degrees
Celsius. The injection port was heated to a maximum of 450 ◦C, and the carrier gas column
flow rate was 15 mL/min.

2.5. Photocatalytic Degradation of Reactive Red 120 and Ofloxacin

To evaluate the photocatalytic activity of the materials, RR 120 and OFL were taken
as modal pollutants, and the degradation of these pollutants was carried out under UV-A
light. The photocatalytic degradation of Reactive Red 120 (50 ppm, 100 mL) and ofloxacin
(10 ppm, 100 mL) was performed using Heber multilamp photoreactor model: HML-
COMPACT-LP-MP88. The aqueous solution of both Reactive Red 120 and ofloxacin was
poured into a quartz tube with a diameter of 2.5 cm and a length of 37 cm. The photocatalytic
experiments were carried out using known amount photocatalysts (50 mg) dispersed in
100 mL of 50 ppm Reactive Red 120 and 100 mL of 10 ppm ofloxacin solution respectively
under four 8-W mercury UV lamps with a wavelength of 365 nm. A Perkin-Elmer UV-
vis spectrometer was used to evaluate the absorbance of the filtered solution. A gas
chromatography-mass spectrometer (GC-MS) system was used to make the intermediate
identification of the products. The sample for (GC-MS) analysis was made by extracting
a portion of a 50 mL irradiated solution (after removing AC-TiO2 particles) three times
with 50 mL dichloromethane each time. A beaker was used to capture the organic layer
(dichloromethane). To remove the H2O, anhydrous sodium sulfate was added, filtered, and
then evaporated in the air. After evaporation, an HPLC grade methanol was added (1 or
2 mL) to the beaker, and the contents were shaken well, then the solution was subjected to
GC-MS analysis. The photodegradability of AC-TiO2 with deposition of different weight
percentages of AC onto TiO2 was also investigated UV light toward RR 120 and OFL
degradation to achieve the optimum reaction condition for further photocatalytic analysis.
The optimum wt % of AC on TiO2 was found to be 10 wt % with lowest bang gap energy.
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3. Results and Discussion
3.1. Structural and Morphological Investigations

The functional groups of AC, bare TiO2, and AC-TiO2 materials were determined by FT-
IR spectroscopy (Figure 1a). The bands between 1400 and 450 cm−1 are associated with the
characteristic vibrational modes of TiO2. The bands at 610 cm−1 and 1390 cm−1 are assigned
to the Ti–O and Ti–O–Ti stretching, respectively, which are characteristic of TiO2. The strong
–OH stretching (between 3300 and 3500 cm−1) observed in bare TiO2 and AC-TiO2 could be
due to the moisture [39]. The FT-IR spectra of AC showed bands from 2850–2925 cm−1, that
could be due to C–H stretching and a band at 1603 cm−1, probably due to the stretching
vibrations of C=C. Bands between 1387 to 1016 cm−1 were observed, which could be due
to C–O stretching and C=C bending corresponding to cellulose, lignin, and biopolymers,
which are present in the pistachio shell biomass [40]. After modifying the AC with the TiO2,
such vibrational bands in those regions were altered or not perfectly observed. Raman
spectra of the prepared materials are shown in Figure 1b. As a nondestructive technique,
Raman spectroscopy is an excellent tool for analyzing the structure and vibrational modes
of crystalline material composites. Figure 1b shows the comparative Raman spectra of bare
TiO2 and AC-TiO2 with four typical Raman bands, respectively. The bare TiO2 shows three
predominant bands at 395.3(B1g(1)), 518.7 (A1g + B1g(2)), and 637.0 cm−1 (Eg) corresponding
to the anatase phase of TiO2 [41]. As for the AC-TiO2 is considered, it also shows three
characteristic Raman bands at 395.3, 511.3, and 632.4 cm−1 corresponding to the B1g(1), A1g
+ B1g(2), and Eg modes of anatase, respectively. Additionally, in AC-TiO2 composite, the two
characteristic Raman bands at 1331.05 cm−1 (D-band) ascribed to disordered SP3-defective
carbon and 1593.93 cm−1 (G-band) assigned to ordered sp2-bonded carbon atoms, confirms
the presence of carbon in AC-TiO2 composite [42]. It has been noted that there is no major
difference in the Raman scattering patterns between AC-TiO2 composite and bare TiO2
takes place on AC deposition on bare TiO2 [43]. Although, in our previous report, the
characteristic carbon G and D bands appeared at 1599.8 and1347.3 cm−1, respectively for
Pd/C in TiO2-P25@Pd/C [44,45].
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XRD was applied to investigate the crystal phase of the synthesized materials. The
XRD of AC, bare TiO2, and AC-TiO2 are presented in Figure 2. The pattern obtained for
AC undoubtedly demonstrates its appearance in an amorphous state. The diffraction
peaks appearing at 2θ values of 25.18◦, 37.89◦, 47.99◦, 53.97◦, 55.00◦, 62.61◦, 68.84◦, 70.22◦

and 75.02◦ were indexed as (101), (004), (200), (105), (211), (204), (116), (220) and (215)
and matched with the JCPDS card no. 21–1272 corresponds to anatase TiO2, signifying
that, on calcination at 450 ◦C, the titania phase nucleates and consequently changes into
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nanocrystals [46]. The diffraction peaks obtained are distinct and sharp, with no shift in
position, indicating that the prepared TiO2 has sufficient crystallinity and an organized
framework. We found no secondary peaks associated with any other phase in the pure
sample, showing that formed TiO2 only has an anatase phase. After the incorporation
of AC with TiO2, there were no new peaks observed for AC in AC-TiO2, although AC
shows two broad predominant peaks centered at 2θ values between 20 and 25, 40 and 45
belongs to (002) and (001) planes of carbon [47]. As can be seen, the peak strength remains
unchanged when AC is introduced into TiO2, especially the primary peak (101) at 2θ = 43.3
for AC-TiO2 composite, showing that the crystallinity of TiO2 anatase phase is unaffected
and that AC doping has no noticeable influence on TiO2 lattice organization. In addition,
the diffraction pattern in all AC-TiO2 frameworks exhibited no peak corresponding to
AC, showing that AC is either completely diffused in the bulk phase of AC-TiO2 or in an
amorphous state [48]. The Debye–Scherrer equation (Equation (1)) was used to calculate
the average crystallographic size of bare TiO2 and AC-TiO2 [49].

D =
Kλ

β cos θ
(1)
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In this equation, the crystal size of the catalyst (D) is calculated using diffraction
angle (θ) and full width half maximum (FWHM) values (β). As we know, λ is the X-ray
wavelength, and applying these values in the above equation, the average crystalline size
of bare TiO2 is 12.0 nm. After AC modification of TiO2, the average crystalline size slightly
decreased to 10.3 nm. The phase composition of AC–TiO2 is not changed and retained as
bare TiO2, and possibly loading of AC occurred in the surface of TiO2.

The surface morphology of the bare TiO2, AC-TiO2, and AC were further analyzed
by field emission scanning electron microscopy (FE-SEM) at different magnifications, as
shown in Figure 3. However, the FE-SEM images of bare TiO2 displayed spherical and
rough-surfaced particles with definite order distribution for the aggregated structures
of individual fine nanosized particles (Figure 3a,b). The same type of morphology was
observed when gelatine was used as a template for the gelatin assisted TiO2 [46]. To further
characterize the morphology of AC-TiO2, the spheres obtained individual fine nanosized
particles are clearly seen along with some of the AC particles (Figure 3c,d). In the case
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of pistachio-shell-derived activated carbon (AC), the particles are highly aggregated with
irregular morphology particles (Figure 3e,f). Apparently, with the introduction of AC into
TiO2, agglomeration of AC-TiO2 could be observed. This could lead to a dramatic change
in photocatalytic properties.
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Figure 3. FE-SEM images of bare TiO2 (a,b), AC-TiO2 (c,d) and AC (e,f) at different magnifications.

The high magnification FE-SEM analysis further proves the presence of AC randomly
on the surface of TiO2 microspheres and confirmed that the agglomeration occurred, but
definite spheres are formed by aggregation of individual fine nanosized particles. The
EDS and elemental mapping characterization were carried out to investigate the elemen-
tal composition of bare TiO2 and AC-TiO2 nanocomposites. The EDS spectra displayed
that the synthesized bare TiO2 consisted of oxygen (O), and titanium (Ti), and AC-TiO2
nanocomposites consisted of titanium (Ti), oxygen (O), and carbon (C), as shown in Fig-
ure 4a,b. The mass fractions of O and Ti were 61.81% and 39.19%, respectively. In the case
of AC-TiO2 nanocomposites, C, O, and Ti were 55.67%, 28.59%, and 15.74%, respectively.
Meanwhile, the elemental mapping images of bare TiO2 revealed the presence and uniform
distributions of Ti and O elements (Figure 5). The elemental mapping investigation of
AC-TiO2 revealed the presence of Ti, O and confirms the uniform distribution of carbon, as
shown in Figure 5.
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Figure 5. SEM and elemental mapping of bare TiO2 and AC-TiO2 nanomaterials.

To explore the morphology of AC-TiO2 nanostructured materials, the HR-TEM analysis
at different magnifications was carried out, as shown in Figure 6a,b. The TEM analysis
of AC-TiO2 illustrated that composite comprises almost regular shape nanoparticles grew
with high density and little agglomeration. The size of these organized nanoparticles ranges
from 10 to 30 nm. HR-TEM images also reveal that aggregating individual fine nanosized
particles form definite spheres. Figure 6a,b confirms the successful nanocomposite creation
between AC and TiO2. The HR-TEM image reveals that AC-TiO2 nanoparticles are firmly
coordinated or under a pistachio shell biomass derived activated carbon (AC) blanket.
High-resolution TEM analysis of AC-TiO2 shown in Figure 6c shows that the material
exhibits good crystallization with d spacing or lattice spacing (distance between two
adjacent planes) of about 0.370 nm, which is in good agreement with the (101) plane of
TiO2 anatase phase. Additionally, the SAED pattern of AC-TiO2 nanocomposite shown in
Figure 6d reveals that the materials are distinctly crystalline, which is also confirmed by
the presence of highly ordered hollow centric rings of the SAED pattern.
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(d) selected area electron diffraction (SAED) pattern of AC-TiO2.

XPS analysis was performed to acquire the surface oxidation states of AC-TiO2
nanocomposites, as shown in Figure 7. The survey spectrum of AC-TiO2 shown in Figure 7a
reveals the presence of Ti, O, and C in the composite. The high-resolution XPS spectrum of
Ti2p displayed in Figure 7b shows two prominent peaks at 457.2 eV and 462.9 eV, which
are assigned to Ti2p doublets Ti 2p3/2 and Ti 2p1/2 that corresponds to Ti4+. These results
confirmed that the Ti in AC-TiO2 has +4 primary valance state. The Ti 2p3/2 binding energy
peak of pure TiO2 was observed between 458.0 and 458.5 eV [50,51]. The Ti 2p3/2 peak in
AC-TiO2 observed binding energy is 457.2 eV, slightly lower (0.8 to 1.3 eV) than pure TiO2.
The slight shift may be due to the presence of AC in AC-TiO2. The binding peak of O1s
was observed at 528.4 eV, corresponding to lattice oxygen (OL) of TiO2 (Figure 7c). Four
peaks were observed in the C1s region (Figure 7d) at 283.7, 287.4, 291.6, and 294.4 eV. Upon
deconvolution, the peak at 283.7 eV was further divided into four peaks (Figure 7d(inset))
at 282.4, 283.5, 284.2 and 285.2 eV. In the C1 region, the peaks observed at 283.5, 284.2,
285.2, and 287.4 correspond to C−H, C−C/C=C, C−OH, and C=O, respectively [19,20].
The peak observed at 291.6 eV is ascribed to the Л−Л transition [52]. The origin of the
peak at 282.4 eV was not clearly evidenced, but this may be due to heteroatom-doped car-
bons, which displayed a somewhat downshift field [53]. The unexpected peak at 294.4 eV
(Figure 7d) may be originated from cations and/or oxides and/or metallic forms of residual
potassium (K), and the K comes from the KOH activation process [54].
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Diffuse reflectance UV–visible spectroscopy and PL studies were performed on the
newly generated nanocomposites to explore the various optical aspects of the synthesized
materials. For the semiconductor-based materials, the optical properties could be a quick
study for investigating their bandgap and to know the ability to absorb UV-visible light.
The solid-state UV-visible diffuse reflectance spectra (UV-Vis DRS) was taken for bare
TiO2, and AC-TiO2 with different weight percentage AC deposition (2.5 wt %), (5 wt %),
(7.5 wt %), and (10 wt %) and the results are shown in Figure 8a. The bandgap energy of
bare TiO2 and AC-TiO2 with different weight percentage AC deposition was calculated by
[F(R)hν]1/2 using the Kubelka–Munk method [10] (Figure 8b–f). From these results, it was
observed that AC-TiO2 (10 wt % AC) shows the lowest band gap compared to bare TiO2.

F(R)E1/2 =

[
(1 − R)2

2R
× hν

]1/2
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Figure 8. (a) UV-visible diffuse reflectance spectra of bare TiO2 and AC-TiO2, (b) Kubelka–Munk 
function versus light energy (hv) for band gap calculation of (b) bare TiO2, (c) AC-TiO2 (2.5 wt % 
AC), (d) AC-TiO2 (5 wt % AC), (e) AC-TiO2 (7.5 wt % AC), and (f) AC-TiO2 (10 wt % AC). 

The photocatalytic excitation mechanism can be better understood by doing a PL 
study. To conduct a PL investigation, bare TiO2 and AC-TiO2 photocatalysts were tested 
at a wavelength of 320 nm, which is the excitation wavelength employed for PL studies. 
The photoluminescence spectra of photogenerated electrons and holes in the bare TiO2 
and AC-TiO2 are shown in Figure 9. The intensity of the PL spectra determines the rate of 
electron-hole recombination; as the intensity is directionally proportional to the electron-hole 
recombination, the higher PL intensity reveals that the compound has a higher rate of electron-
hole recombination, which is not favourable for photocatalytic applications. In order to get the 
excellent performance of the catalyst, it should have a lower electron-hole recombination rate. 

Figure 8. (a) UV-visible diffuse reflectance spectra of bare TiO2 and AC-TiO2, (b) Kubelka–Munk
function versus light energy (hv) for band gap calculation of (b) bare TiO2, (c) AC-TiO2 (2.5 wt % AC),
(d) AC-TiO2 (5 wt % AC), (e) AC-TiO2 (7.5 wt % AC), and (f) AC-TiO2 (10 wt % AC).

The optical bandgap energies of the bare TiO2, AC-TiO2 (2.5 wt % AC), AC-TiO2
(5 wt % AC), AC-TiO2 (7.5 wt % AC) and AC-TiO2 (10 wt % AC) were found to be 3.44 eV,
3.34 eV, 3.33 eV, 3.32 eV and 3.31 eV, respectively (Figure 8b–f). The optical bandgap of the
AC-modified TiO2 was slightly lower than that of bare TiO2.

The photocatalytic excitation mechanism can be better understood by doing a PL
study. To conduct a PL investigation, bare TiO2 and AC-TiO2 photocatalysts were tested
at a wavelength of 320 nm, which is the excitation wavelength employed for PL studies.
The photoluminescence spectra of photogenerated electrons and holes in the bare TiO2
and AC-TiO2 are shown in Figure 9. The intensity of the PL spectra determines the rate of
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electron-hole recombination; as the intensity is directionally proportional to the electron-
hole recombination, the higher PL intensity reveals that the compound has a higher rate of
electron-hole recombination, which is not favourable for photocatalytic applications. In
order to get the excellent performance of the catalyst, it should have a lower electron-hole
recombination rate. From this point of view, the maximum PL intensity was observed
for bare TiO2 when compared with AC-TiO2. At 301, 343, 367, and 453 nm, bare TiO2
shows four prominent peaks. The peaks in the AC-TiO2 composite are virtually identical
to those in bare TiO2, albeit with less intensity. The lower peak intensity could be owing
to the presence of AC in the composites, which inhibits electron-hole recombination. The
photocatalytic activity of AC-TiO2 may be particularly remarkable because of this reason.
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Figure 9. Photoluminescence spectra of bare TiO2 and AC-TiO2.

The N2 adsorption-desorption isotherm of AC is a typical type-IV isotherm with a
hysteresis loop, indicating that the material synthesized is mesoporous (Figure 10a). AC
has BET specific surface area (SBET) of 375.14 m2 g−1 and a pore volume of 0.52 cm3 g−1.
According to the BJH pore size distribution study, the pore diameter of the synthesized
AC is 3.82 nm (Figure 10b). The observed high specific surface area and high pore volume
will facilitate electrolyte diffusion through the pores, allowing electrolytes to access the
maximum surface area while decreasing the electron transport path. In addition, its
high surface area improves catalyst dispersion and reduces sintering, resulting in higher
catalytic efficiencies. Because of its large surface area, good adsorption capacity, inert
and suitable pore structure, activated carbon has been investigated as a substrate for TiO2
photocatalysts [55].
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3.2. Photocatalytic Investigations

The photocatalytic efficiency of bare TiO2 and AC-TiO2(10 wt % AC) was investigated
using RR 120 and OFL as a model reaction under UV-light irradiation at an intensity of
225 mW.cm−2. The photocatalytic measurements were initially performed without the
addition of bare TiO2 and AC-TiO2 photocatalysts, and changes in the absorbance of RR
120 and OFL were observed after exposure to UV-light for 50 min. In the second set
of experiments, after adding bare TiO2 and AC-TiO2 photocatalysts to the RR 120 and
OFL solution, the absorbance intensity of both RR 120 and OFL gradually decreases as
the reaction proceeds (Figure 11). For RR 120 degradation, the dye was irradiated with
AC-TiO2 gave 95% of degradation at 50 min, and under dark conditions without light,
about 22% of dye adsorbed on the surface of the catalyst. At the same condition, bare TiO2
showed only 53% degradation under light. AC-TiO2 more effectively degraded the RR
120 dye than bare TiO2. The prepared materials activity was further evaluated by OFL
degradation. About 82% of degradation occurred with AC-TiO2 at 50 min irradiation, and
bare TiO2 gave a slightly lower value (77%) in the same irradiation time. These results
confirm the excellent photocatalytic activity of AC-TiO2 compared to bare TiO2. Kinetic
analysis of this photocatalytic reaction was performed based on the temporal decay of the
RR 120 and OFL peaks, as shown in Figure 12A. The ratio Ct/Co, where Ct and Co are the
RR 120 and OFL concentrations at time t and 0, was determined from the relative strength
of the corresponding absorbance At/Ao. The corresponding kinetic values for Red 120
and ofloxacin degradation were calculated as shown in Figure 12B. The pseudo-first-order
kinetic values of RR 120 degradation with AC-TiO2 and TiO2 were found to be 0.0424
and 0.0160 min−1, respectively. The corresponding OFL degradation kinetics values are
0.0247 and 0.0195 min−1. This reveals that the intermediates do not absorb at analytical
wavelengths of 285 (RR 120), 512 nm (RR 120), and 288 nm (OFL).
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For the photodegradation experiment, the role of the initial pH of the solution will
highly influence the catalytic efficiency towards the degradation process. On the other
hand, for the practical application, the effect of initial pH should be studied and discussed
in a detailed way since the dye effluent comes from the dying industries in different pH. To
consider this point, we examined the photodegradation RR 120 in different initial pH with
bare TiO2 and AC-TiO2 under UV-light (Figure 12C). As the pH increased from 3 to 5, the
percentage of degradation increased from 52 to 54 for bare TiO2 and 75 to 95 for AC-TiO2.
Further increase of pH shows a decrease in activity observed for both cases. The influence
of pH in the catalytic activity dominated more in AC-TiO2 composite than in bare TiO2. The
point of zero charges (PZC) of TiO2 was reported to be 6.2 [56], and TiO2 had a positively
charged surface below this value. At pH 7, RR 120 occurred as negative ions [10]. Because
of the electrostatic attraction between positively charged TiO2 and negatively charged
dye solution, an important contact between the dye and catalyst may occur, resulting in
increased degradation [10].

The stability and the repeatability of the bare TiO2 and AC-TiO2 photocatalysts are
the significant factors to investigate the feasibility of the prepared photocatalysts during
the long-time irradiation. Therefore, the photocatalytic degradation of RR 120 by AC-
TiO2 was recycled four times under the same experimental condition. The key role of
any heterogeneous catalysis, especially for heterogeneous semiconductor photocatalysis
towards water remediation, is the stability and reusability of the materials, which leads
to a significant cost reduction of the effluent treatment. The reusability of the AC-TiO2
composite was checked towards RR 120 under UV-A light, and the results are combined in
Figure 12D. The results showed a drop in efficiency from 95% (first turn) to 92% (fourth
run). These results reveal that the AC-TiO2 composite was found to be stable and reusable
for the degradation of RR 120 dye under UV-A light.
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(RR 120), (b) AC-TiO2 (RR 120), (c) bare TiO2 (OFL), (d) AC-TiO2 (OFL), pH=5; [RR 120] = 50 ppm;
[OFL] = 10 ppm; Catalyst suspended = 50 mg/100 mL. (C) Effect of pH on RR 120 decolouriza-
tion with UV-A light under bare TiO2 and AC-TiO2. [RR 120] = 50 ppm; catalyst suspended =
50 mg/100 mL. (D) Catalyst reusability on photocatalytic decolourization of RR 120 dye under UV A
light, AC-TiO2 suspended = 50 mg/100 mL; pH = 5; irradiation time = 50 min.

The photocatalytic degradation reactions were also investigated for different AC
dosage deposition on TiO2 having different band gap values (Figure 13a). Bare TiO2 shows
only 53% and 77% degradation for RR 120 dyes and OFL, respectively. However, the
degradation efficiency increased on increasing the AC deposition percentage on TiO2,
which means that the increase in the AC deposition percentage resulted in the reduction of
bandgap and inhibited the recombination rate
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To further understand the photocatalytic mechanism of the as-prepared photocatalysts,
the degradation mechanism of RR 120 and OFL by AC-TiO2 under UV-A light is shown
in Scheme 2. When the TiO2 is irradiated with UV-A light, a valance electron goes to the
conduction band (CB) and leaves a hole in the valence band (VB). The heteroatom-rich
biomass-derived AC-TiO2 acts as an adsorbent and an electron mediator and suppresses
the electron-hole recombination. The photo-excited electrons (CB) reacted with dissolved
oxygen, producing superoxide radical anions (O2

•−). In the meantime, hydroxyl radicals
(•OH) were formed because of the reaction between holes (VB) and water, and both
species were effective towards photocatalytic degrading of RR 120 and OFL. The scavenger
experiment was performed in RR 120 degradation with AC-TiO2 under UV-A light to
find the most active species involved in the photodegradation process of RR 120 and
OFL (Figure 13b). The addition of 0.1 mmol of tertiary butyl alcohol (TBA, scavenger of
•OH), potassium iodide (KI, scavenger of h+), benzoquinone (BQ, scavenger of O2

•−),
and silver nitrate (AgNO3, scavenger of e−) contributed a significant decrease in the
photodegradation efficiency of the catalyst. The degradation efficiency of the catalyst
was dramatically reduced by the addition of silver nitrate, leading to the conclusion that
electrons (e−) constitute the primary active species in the degradation.
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Scheme 2. Mechanism of degradation of RR120 and OFL with AC-TiO2.

The photocatalytic degradation pathway of RR 120 has been proposed based on GC-
MS analysis (Scheme 3). During the different irradiation times, the solution was subjected to
GC-MS analysis. The results were analyzed based on the molecular ion peak and fragmen-
tation pattern, and a suitable degradation pathway was proposed. There were two degra-
dation intermediates (DP 1 & DP 2) identified, and the details are given in Table 1. Since the
degradation experiment was conducted in a slightly acidic condition (pH =5), the sulfonic
acid group-containing intermediates (I and II) were expected to form via azo bond cleavage.
The intermediate compound I underwent further C-N cleavage, and partial naphthyl ring-
opening produced desulphonated product (6Z)-6-(1-(4-(4-aminophenylamino)-6-chloro-
1,3,5-triazine-2-ylamino)ethylidene)cyclohexa-1,3-dienol (DP I), and naphthalene derivative
(intermediate III). The intermediate compound III underwent desulfonation and produced
aniline (intermediate IV). The identified degradation product DP1 further underwent
dichlorination, deamination followed demethylation produced another identified degra-
dation product (6Z)-6-((4-(phenylamino)-1,3,5-triazine-2-ylamino)methylene)cyclohexa-
1,3-dienol (DP 2). The naphthalene intermediate III underwent deamination produced
naphthalene-1-ol (intermediate V), at the same time aniline (IV) underwent deamination
and produced benzene (intermediate VI). It was expected that upon continuous attack of
hydroxyl radicals, the compounds DP2, V, and VI would undergo further degradation
and be mineralized to CO2, water, and mineral acids via this advanced oxidation process
(AOPs).
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Table 1. Mass spectral data of identified intermediates during degradation of RR 120 by AC-TiO2.

S. No. Compounds Name of the Compound Retention
Time (min)

M+/M + 1/M + 2
Values

1 DP1 (C17H17ClN6O) (6Z)-6-(1-(4-(4-aminophenylamino)-6-chloro-1,3,5-
triazin-2-ylamino)ethylidene)cyclohexa-1,3-dienol 30.320 356.0 (M+),

2 DP2 (C16H15N5O) (6Z)-6-((4-(phenylamino)-1,3,5-triazin-2-
ylamino)methylene)cyclohexa-1,3-dienol 26.076 295.8 (M + 2)

The efficiency of the prepared composite (AC-TiO2) was compared with other reported
carbon-modified TiO2 based photocatalysts [57–65] (Table 2). The data were compared
under different optimization conditions, and the comparison study gave the efficiency of
the materials at specific reaction conditions. From Table 2, our prepared material shows a
higher degradation efficiency of the RR 120 dye in a higher initial concentration (50 ppm)
compared with other reported literature.
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Table 2. Comparison of the efficiency of the AC-TiO2 composite with other carbon modified catalysts.

S.
No.

Catalysts/
(Dye or Pollutant) a Light Source Concentration Catalyst Amount %Degradation/

Time (min) Ref.

1 RFCA/TiO2/(MO) UV light 8 × 10−5 mol/L 1 mg/3 mL 55/240 [57]

2 TiO2@carbon/(MB) 35-W Xe arc lamp/
89 mWcm−2 1.5 × 10−5 M

Immersion of
TiO2@carbon

core-shell
nanowires/2 mL

65/180 [58]

3 TiO2/MWCNT/(MB) UV/Philips 96 W 10 ppm 0.01 g/20 mL 61.6/30 [59]
4 F-TiO2/C60@ NiFe2O4/(MG) Halogen lamp (500 W) 30 ppm 10 mg/100 mL 98.7/120 [60]

5 F-TiO2/MWCNT@
NiFe2O4/(MG) Halogen lamp (500 W) 30 ppm 10 mg/100 mL 93.5/120 [60]

6 CNT/CD/FA/TiO2/ (MB) UV-C (32 W) 10 ppm 200 mg/25 mL 99/187 [61]

7 TiO2@carbon nanotube/(MB) UV-C/254 nm, 2.5 mW
cm−2 1.25µM 0.4 mg/mL 85/60 [62]

8 CX/TiO2/(APP)
125 W mercury

lamp/80 Wcm−2 to
300 Wcm−2

25 ppm 0.1 g/50 mL 96/250 [63]

9 TiO2/CNDs/MIP/(PM) LED lamps/(λ >
390 nm) 20 ppm 10 mg/100 m L 94.4/120 [64]

10 rGO/TiO2/BiOI/(MO) 300 W xenon lamp 50 ppm 50 mg/100 mL 94/50 [65]

11 AC-TiO2/(RR 120) 365 nm UV-A light/
32 W 50 ppm 50 mg/100 mL 95/50 Present work

12 AC-TiO2/(OFL) 365 nm UV-A light/
32 W 10 ppm 50 mg/100 mL 82/50 Present work

a RFCA—carbon aerogel; MWCNT—multiwall carbon nanotube; CX—carbon xerogel; MO—methyl orange;
MB—methylene blue; MG—malachite green; APP—acetaminophen: MIP—molecularly imprinted poly-o-
phenylenediamine.

4. Conclusions

Biomass-derived activated carbon was prepared from pistachio shell and effectively
loaded on TiO2 (AC-TiO2) for photocatalytic applications. The formed composite was
utilized for RR 120 and OFL degradation under UV-A light. The prepared nanocomposite
was characterized using various characterization techniques such as FT-IR, Raman, XRD,
HR-TEM, FE-SEM, EDS, elemental mapping, XPS, PL, and DRS. In XRD, there were no
new peaks observed for AC in AC-TiO2, although AC showed two broad predominant
peaks. FE-SEM revealed that bare TiO2 is agglomerated, but the agglomeration occurs in
a definite order. Spheres were formed by the aggregation of individual fine nanosized
particles. The less intense PL peaks in AC-TiO2, when compared with bare TiO2, may
be due to the presence of AC in the composites, which can suppress the electron-hole
recombination. This may be the reason for the enchantment of photocatalytic activity
of the AC-TiO2. The AC-TiO2 composite was efficient toward photodegradation of RR
120 and OFL under UV-A light compared with bare TiO2. The intermediates formed
during degradation of RR 120 with AC-TiO2 under UV-A light were analyzed by GC-MS,
and a suitable degradation pathway was proposed. The degradation of RR 120 occurred
via the two identified intermediates (6Z)-6-(1-(4-(4-aminophenylamino)-6-chloro-1,3,5-
triazine-2-ylamino)ethylidene)cyclohexa-1,3-dienol (DP I), and(6Z)-6-((4-(phenylamino)-
1,3,5-triazin-2-ylamino)methylene)cyclohexa-1,3-dienol (DP 2). The optimum pH for the
efficient removal of RR 120 was found to be 5. The photocatalyst’s stability and reusability
indicated that the as-prepared material significantly influenced photocatalytic performance.
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