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Background

Graft-versus-host disease (GVHD) results from recognition of host antigens by donor T cells
following allogeneic hematopoietic cell transplantation (AHCT). Notably, histoincompatibility
between donor and recipient is necessary but not sufficient to elicit GVHD. Therefore, we tested
the hypothesis that some donors may be “stronger alloresponders” than others, and
consequently more likely to elicit GVHD.

Methods and Findings

To this end, we measured the gene-expression profiles of CD4" and CD8" T cells from 50
AHCT donors with microarrays. We report that pre-AHCT gene-expression profiling segregates
donors whose recipient suffered from GVHD or not. Using quantitative PCR, established
statistical tests, and analysis of multiple independent training-test datasets, we found that for
chronic GVHD the “dangerous donor” trait (occurrence of GVHD in the recipient) is under
polygenic control and is shaped by the activity of genes that regulate transforming growth
factor-B signaling and cell proliferation.

Conclusions

These findings strongly suggest that the donor gene-expression profile has a dominant
influence on the occurrence of GVHD in the recipient. The ability to discriminate strong and
weak alloresponders using gene-expression profiling could pave the way to personalized
transplantation medicine.

The Editors’ Summary of this article follows the references.
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Introduction

Graft-versus-host disease (GVHD) is initiated by donor T
cell responses to host alloantigens [1-3]. However, the
occurrence and severity of GVHD are not determined solely
by the level of histoincompatibility between donor and
recipient. Thus, two major histocompatibility complex
(MHC)-identical individuals (excluding identical twins) or
two inbred strains of mice will display over 50 minor
histocompatibility antigen differences [4,5]. If histoincom-
patibility was sufficient for triggering GVHD, the rate of
GVHD in MHC-matched recipients of allogeneic hemato-
poietic cell transplantation (AHCT) that receive no immu-
nosuppressive agents should therefore be 100%. Under these
conditions, however, GVHD was found in only 50% and 73%
of mouse and human recipients, respectively [6,7]. Even in
mouse MHC-mismatched AHCT models, some, but not all,
donor strains induce severe acute GVHD (aGVHD) [8,9].
Thus, histoincompatibility is necessary, but not sufficient, to
elicit fatal GVHD. Recent evidence suggests that aside from
the mere presence of genetic polymorphisms, two host
factors may influence the severity of aGVHD and chronic
GVHD (cGVHD): elusive properties (for example, tissue
distribution) of the immunodominant host alloantigens [10]
and polymorphisms of host cytokine genes [11,12]. Another
nonexclusive and largely unexplored rationale would be that
some donors are “stronger alloresponders” than others
because of quantitative or qualitative differences in immune
responses. Indirect evidence for the latter hypothesis are
reports suggesting that several donor genetic polymorphisms
may correlate with GVHD severity [12].

The seminal studies of Biozzi and colleagues have shown
that the strength of B cell responses to natural immunogens
is under multigenic control [13,14]. Approximately ten
independently segregating loci endowed with additive effects
are responsible for the major (240-fold) multispecific differ-
ences separating high- and low-antibody responders [15,16].
No similar data are available for T cell responses in general,
and those against histocompatibility antigens in particular.
Since GVHD is by far the main barrier in AHCT [17-20],
identification of high-risk donors would allow better donor
selection and tailoring of immunosuppressive regimens to
GVHD risk. In addition to complex genetic trait linkages, it
may also be assumed that environmental factors and donor
immune system histories may contribute toward determining
GVHD. While the latter two factors would be hidden from
the analysis of inherited genetic traits or gene-sequence
variation, they might be reflected in gene-expression
signatures. We therefore chose to measure the activity of a
broad range of genes with expression microarrays as a means
of surveying the overall molecular-state signature of the
donor immune system, independent of whether that state is
largely determined by inherited genetic factors, environ-
ment, donor history, or mixtures thereof. The objective of
our study was, therefore, to determine whether gene-
expression profiling could discriminate AHCT donors that
induced either aGVHD or ¢cGVHD in their recipient host
from donors who did not. In other words, is it possible to
distinguish high from low alloresponders? Notwithstanding
the fundamental importance of that question, a positive
answer could pave the way to personalized transplantation
medicine.
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Table 1. Donor-Recipient Characteristics

Variables Subcategories Data

Total number donors/recipients 50/50
Recipient median age at 45 (19-58)
transplantation, y (range)
Donor median age at
transplantation, y (range)
Number of male recipients 30
Number of male donors 38
Disease numbers Acute lymphoblastic leukemia 3
Acute myelogenous leukemia 2
Chronic myelogenous leukemia 34
Myelodysplastic syndrome 2
Non-Hodgkin lymphoma 7
Other diseases 2
Acute GVHD 20
Grade | 8
S1LoGlo: 4
SoLoGlo:
Grade Il 2
SoLoGly:
S3LoGlo:
Grade Il 7
SoLoGly:
SHLoGlg:
SoLoGls: 4
Grade IV 3
SoLoGla:
SoL1Gly:
S1LoGla:
Chronic GVHD (extensive) 32

40 (17-59)

IS

_ =

- N

_ - -

SLGI: Staging of skin, liver, and gastrointestinal tract involvement by acute GVHD.
doi:10.1371/journal.pmed.0040023.t001

Methods

Study Patients

Only patients with hematological malignancies and their
healthy sibling donors who were identical with regard to HLA
participated in this study (Table 1). The AHCT myeloablative
regimen consisted of cyclophosphamide (120 mg/kg) and total
body irradiation (12 Gy), or busulfan (16 mg/kg) and cyclo-
phosphamide (200 mg/kg). All patients received unmanipu-
lated peripheral blood-stem-cell grafts (mobilized with G-
CSF) and were given GVHD prophylaxis consisting of
cyclosporine A and short-course methotrexate [21]. Donor
blood samples were obtained one day prior to mobilization of
peripheral blood-progenitor cells with G-CSF. Diagnosis of
aGVHD and cGVHD was made after clinical evaluation and
histologic confirmation according to previously reported
criteria [22-24]. Patients with grade 0 and grades I-IV
aGVHD were considered aGVHD- and +, respectively.
Biopsies of skin and gut were carried out in 90% and 15%
of patients with aGVHD, respectively; overall, 95% of
participants with aGVHD had biopsies, including all patients
with grade I GVHD. All participants with cGVHD showed
extensive clinical GVHD [19]. Clinical protocols were
approved by the Human Subjects Protection Committee of
the Maisonneuve-Rosemont Hospital. Samples were obtained
with the informed consent of the patients.

RNA lIsolation, Amplification, and Microarray Hybridization
CD4" and CD8" T cells were enriched from peripheral
blood mononuclear cells by positive isolation using magnetic
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microbeads (Dynal, http://[www.invitrogen.com). Sample RNA
was extracted using an RNA extraction kit (Qiagen, http:/
www.qiagen.com), then amplified using the MessageAmp RNA
kit (Ambion, http:/lwww.ambion.com), as per the manufac-
turers’ instructions. Universal human RNA (Stratagene, http://
www.stratagene.com) was amplified in the same way. Probes
for microarray hybridization were prepared by labeling 3 pg
of amplified RNA with Cy-3 (universal RNA; green values) or
Cy-5 (CD4" or CD8" T cells; red values) by reverse tran-
scription. Detailed information on the microarrays as well as
the labeling and hybridization procedures can be obtained at
The Microarray Centre of The Toronto University Health
Network (http://www.microarrays.ca/).

Microarray Data Preprocessing

Microarrays were scanned at 16 bits using the ScanArray
Express scanner (Packard Bioscience, http://las.perkinelmer.
com) at 10-um resolution at 635 (red)- and 532 (green)-nm
wavelengths for Cy-5 and Cy-3, respectively, to produce image
(tiff) files that were quantified using Genepix Pro 6.0 image-
analysis software (Molecular Devices Corporation, http:/lwww.
moleculardevices.com). Bad spots were flagged manually
according to their morphologies. The results were saved as
Quantarray files where the intensity values ranged from 0 to
2! _ 1 (65,535) units. The tiff and Quantarray files were
compressed and archived for permanent storage and further
analysis. The microarrays were then screened for quality, first
by visual inspection of the array with flagging of poor-quality
spots, and second with automated scripts that scanned the
quantified output files and measured overall density distri-
bution on each channel and number of flagged spots. Box
plots and density-distribution plots were drawn and in-
spected. Each quantified output file was run through the
following preprocessing steps using the R language and
environment (http://www.r-project.org) and the Limma pack-
age [25]. For minimum-intensity filtering, red and green
values were treated with a surrogate-value replacement policy
for estimating subthreshold values. For normalization within
arrays, the raw merged red and green channels were lowess-
normalized (grouped by print tip) and transformed to logs
ratios [26]. The commensurability of average brightness
between the arrays of a pool of arrays was then assured using
zero-centering of log-distributions normalization. For the
ImmunArray design (The Microarray Centre of The Toronto
University Health Network), each clone (gene) is represented
by two independent spots, to provide for internal replicates.
When both duplicate spots of a clone (gene) passed quality
control, the average value of the duplicate clones was
calculated and used as the representative value for that gene.
If only one of the clone duplicate spots passed quality control,
only that value was used in the downstream analysis. All data
were then represented as logy, (red/green) expression ratios
for further analysis.

Quantitative Real-Time-PCR

Total RNA was reverse transcribed in a final volume of 50 pl
using the High Capacity cDNA Archive kit with random
primers (Applied Biosystems, http:/lwww.appliedbiosystems.
com) as described by the manufacturer. Reverse-transcribed
samples were quantified using spectrophotometer measure-
ments, diluted to a concentration of 5 ng/ul, and stored at —20
°C. A reference RNA (human reference total RNA [Stratagene])
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was also transcribed to cDNA and was used as the calibrator.
Gene-expression levels were determined using primer and
probe sets from Applied Biosystems (ABI Assays on Demand
[http:/lwww.appliedbiosystems.com/]). The human glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) predeveloped TagMan assay
(PN4326317E) was used as the endogenous control. PCR
reactions were performed using 4 ul of cDNA samples (20
ng), 5 ul of the TagMan Universal PCR Master mix (Applied
Biosystems), and 0.5 pl of the TagMan Gene Expression assays
(20X) in a total volume of 10 pl. The ABI PRISM 7900HT
Sequence Detection system (Applied Biosystems) was used to
detect the amplification level, and was programmed to an
initial step of 10 min at 95 °C, followed by 40 cycles of 15 s at 95
°C, and 1 min at 60 °C. All reactions were run in triplicate, and
the average values of the triplicates were used for quantifica-
tion. The relative expression level of target genes was
determined by using the AACT method. Briefly, the CT
(threshold cycle) values of target genes were normalized to an
endogenous control gene (GAPDH) (ACT = CTiagee — CTearpr)
and compared with a calibrator (human reference RNA): AACT
= ACTqmple — ACT ulibraor- Relative expression (RQ) was
calculated using the Sequence Detection system (SDS) 2.2.2
software (Applied Biosystems) and the formula RQ = gmAACT

Student’s t-Test and Linear Discriminant Analysis

The well-established univariate Student’s t-test can deter-
mine whether the differences in expression for each gene are
statistically significantly different in the aGVHD+ versus the
aGVHD—- and the c¢cGVHD+ versus the cGVHD— sample
classes, respectively. Specifically, given knowledge of the
GVHD+ and GVHD- class arithmetic means and standard
deviations from measurements, the t-test provides the
probability or p-value of rejecting the null hypothesis of
equal class means, given the null hypothesis being true (i.e.,
that both sample classes are essentially indistinguishable and
derive from the same underlying distribution). It is also well
established in practice that the t-test is robust against
substantial departures from normality [27]. However, the t-
test does not address per se the question of the robustness of
class-prediction accuracy for a predictive model. A clinical
user of such a model would ultimately like to predict whether
a donor sample falls in the GVHD+- or GVHD— class, and what
the expected accuracy and robustness of such a prediction
would be. To this end, we used linear discriminant analysis
(LDA) to estimate the accuracy of GVHD predictive genes
discovered in microarray and quantitative real-time (qRT)-
PCR experiments [28]. In addition, we assessed the robustness
for all the genes validated by qRT-PCR by performing 500
independent instances of training-test dataset splits cross-
validation to determine empirically through computational
resampling the expected generalizable class-prediction accu-
racy on independent test datasets [29,30]. In LDA with
assumed equal class a priori probabilities, the boundary
between class P (GVHD+4) and class N (GVHD-) is determined
by the value of the separatrix, S, which is the point (in
univariate analysis) between the class P and N means that is
equidistant to both [28]. If the observed mean of class P is
smaller than the observed mean of class N, all values less than
or equal to S will be classified by the model as P, and all values
greater than S will be classified as N. When the observed mean
of class P is greater than the observed mean of class N, all
values greater or equal to S will be classified by the model as
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P, and all values smaller than S will be classified as N. For all
the samples that were classified by the model as P, the ones
that also correspond to known P samples in the measured
data constitute true positives, and the ones that correspond
to known N samples in the measured data constitute false
positives. For all the samples that were classified by the model
as N, the ones that also correspond to known N samples in the
measured data constitute true negatives, and the ones that
correspond to known P samples in the measured data
constitute false negatives. Accuracy rate is (true positives +
true negatives)/total number of samples. Sensitivity is true
positives/(true positives + false negatives), and specificity
denotes true negatives/(true negatives + false positives).

Predictive Interaction Analysis

Predictive interaction analysis (PIA) was carried out on the
105 gene pairs formed by 15 genes that were individually
predictive of GVHD in both microarray and qRT-PCR
experiments. Gene pairs and single genes were compared as
to their ability to distinguish GVHD+ from GVHD— samples
according to the statistical methods outlined below.

Two-class discriminant analysis. Standard equations of
LDA [28] are employed for determining two-class separations
(GVHD+ versus GVHD—), based on single-gene or two-gene
abundances. Column vector x represents the log;( abundan-
ces of a gene pair (mapping of gene pair abundances to a
single variable is defined in PIA below). T denotes transpose.
The variable ¢1 denotes one known class (e.g., GVHD+), and ¢2
denotes a second known class (e.g., GVHD-). The general two-
class linear discriminant equation [28] is:

J5) = (= i)Y
+ (ELTl 271 ﬁtl - ETZ 271 ECQ)/2 + n(Ps/P1), (1)

where gene pair vectors Hd and Hcg are the respective class
means; >~ ! is the inverse of the gene pair by gene-pair data-
derived pooled covariance matrix X, which is the sample
number-weighted sum of the data-derived within-class cova-
riance matrices. P;; and P, are the prior probabilities of the
two classes. The In(P,o/P.;) term in Equation 1 is zero because
we set Pio=P,;. In the LDA we are performing, the proportion
of c2 samples compared to cl samples in the data is not
germane. Of relevance in the LDA are the individual sample
data values, the class means, and the within-class variations,
not the class prior probabilities per se. Setting Equation 1 to
zero defines the general equation for the separatrix L:

al “x+c=0, (2)

where parameter vector al = (Efgfﬁd)TEfl and scalar
c= (ﬁ;rlffl Hd - ﬁfgz” Hf_))/? are data-dependent con-
stants. The general L then can be written immediately in
slopel/intercept form as

X9 = _(al/aQ)xl - 6/427 (3)

where [a1,as] = a’. However, in the PIA to be described
below we use a specialized, deliberately constrained form of
Equation 3. Namely, the separatrix L has slope —1 (synergistic
PIA [SPIA]), or +1 (competitive PIA [CPIA]), and necessarily
bisects the chord between the two class means Hcl and ﬁfg.
CPIA and SPIA. The product X X Y for gene X and gene Y
represents a synergistic phenomenological gene-gene inter-
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action (SPIA), and the abundance ratio X/Y (or Y/X) for gene X
and gene Y represents a competitive phenomenological gene-
gene interaction (CPIA). We define x = logo(X), y = log1o(Y),
and new coordinates or axes: u = x + y and v = x — y. Class
separation in (x, y) with respect to univariate u is termed SPIA,
and class separation with respect to univariate v is termed
CPIA. PIA refers to either SPIA or CPIA. Hence, good class
separation in SPIA is demonstrated by good separation in (x,
y) by a separatrix u = x + y = constant (equivalent to y = —x +
constant, i.e., slope —1), and good class separation in CPIA is
demonstrated by good separation in (x, y) by a separatrix v=x
—y=constant (equivalent to y=x — constant, i.e., slope +1). Thus,
we apply LDA under models restricted to separatrices whose
slopes are constrained deliberately to —1 or +1.

Classification performance measures. We use straightfor-
ward sampling statistics to characterize class separation by p-
values, as well as by counts of correctly classified samples
relative to the total number of samples being classified
(univariate LDA accuracies). The class-separation perform-
ance of a gene pair (X,Y) in SPIA or CPIA can be assessed
readily on single axes x, y, u, and v. When samples in (x,y) are,
for example, projected onto the x-axis, classification perform-
ance is assessed by the p-value returned by a simple
homoscedastic t-test for differences of two means. This is
computed analogously and separately for the y-, u-, and v-
axes. It is important—because of the biological interpreta-
tions offered by SPIA and CPIA—to focus on those gene pairs
for which two-class separation (as assessed by intercompar-
able p-values) is better in % or in v than in x and in y. Thus, we
seek gene pairs (X,Y) for which along the “single variable” u-
axis or v-axis, the classes separate better than along the x-axis
only and better than along the y-axis only.

Results

Experimental Model

In our quest for a GVHD-predictive signature, our prime
objective was to correlate global gene-expression profiling of
AHCT donor T cells with the occurrence of GVHD in
recipients. A secondary objective was to evaluate whether
the donor gene-expression profile persisted long-term in the
recipient. Peripheral blood was obtained from 50 AHCT
donors pretransplant (referred to as day 0) and from 40
recipients on day 365 (ten recipients were dead by day 365)
(Figure 1). Donors and recipients were human leukocyte
antigen-identical siblings. Recipients were regarded as neg-
ative for aGVHD when they lived at least 100 days without
presenting GVHD. Recipients were considered negative for
cGVHD when they remained cGVHD-free for 365 days post-
AHCT. CD4" and CD8" T cell subsets were purified with
microbeads. Total RNA was purified, amplified, reverse
transcribed, and hybridized on microarrays developed by
The Microarray Centre of The Toronto University Health
Network. RNA from donor and recipient T cells was
hybridized on the human HI9K array (19,008 expressed
sequence tags), and donor T cell RNA was also hybridized on
the ImmunArray (3,411 ESTs from immune-related genes).
The ImmunArray provides additional genes for better cover-
age of immune responses to complement the H19K array.

The success rate of gene-expression profiling studies
decreases with the degree of biological noise inherent to
the experimental system [31-34]. Accordingly, our study
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Donor Recipient

l blood sampling l
y 0 day 365

purification of
T cell subsets
C

D8 CD4 CD8
| } l l
mRNA extraction, purification and amplification

+

preparation of cDNA probe

+

hybridization to cDNA chip

ImmunArray H19K
(Donor) Donor
and
Recipient

Figure 1. Study Design

Donor and recipient T cells were obtained on days 0 and 365,
respectively. Total RNA from purified CD4" and CD8" T cells was
reversed transcribed and hybridized on the human H19K array (donor
and recipient T cells) and the ImmunArray (donor T cells) from The
Microarray Centre of The Toronto University Health Network.
doi:10.1371/journal.pmed.0040023.g001

design included four features to reduce biological noise. First,
unlike recipients of solid organ grafts who inevitably present
organ failure (e.g., renal insufficiency), AHCT donors are
healthy individuals. This is important because serious ail-
ments (and their treatment) cause alterations in global gene
expression that are significantly greater than the background
variation in normal gene expression [35]. Second, our studies
were performed on purified CD4" and CD8" T cells because
cell lineage is a primary determinant of gene-expression
profile [36], and the transcriptome of CD4" and CDS" T cells
shows significant differences [37]. Third, CD4" and CDS8" T
cells are necessary and sufficient for induction of antiminor
histocompatibility antigen GVHD [38,39], the clinical end-
point of this study. Fourth, AHCT recipients were treated in a
single center using standardized therapeutic regimens and
uniform criteria for diagnosis of GVHD.

Donor T Cell Gene-Expression Profiling Using Microarrays
We first carried out eight searches for class-discriminating
genes using two methods, a statistical t-test and a specially
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constrained LDA, over four class divisions. Class divisions
were, for CD4" and CD8' T cells: (i) recipients with no GVHD
versus those with aGVHD (with or without cGVHD); and (ii)
recipients with no GVHD versus those with cGVHD (with or
without aGVHD). Recipients were considered GVHD— only
when they presented no signs of GVHD after a minimum
follow-up of one year post-AHCT. We selected for analysis
genes showing a GVHD-predictive LDA accuracy (ability to
discriminate donors whose recipient presented GVHD or
not) > 65% and class discrimination t-test p < 0.05 (Figure
2A). Consistent with the notion that aGVHD strongly
correlates with cGVHD [19], many of the genes predictive
for aGVHD were also predictive for cGVHD (Figure 2B). A
substantial proportion of GVHD-predictive genes were
common to both CD4" and CD8" donor T cells (Figure 2C).
However, the fact that most GVHD-associated genes were
found in only CD4" or CD8' T cells supports the need to
analyze T cell subsets independently (Figure 2C). Among
genes emerging from the ImmunArray and H19K datasets,
those that are annotated and have a demonstrated or putative
function in T cell biology are listed in Table S1 (genes
overexpressed in GVHD+ relative to GVHD— donors) and
Table S2 (genes repressed in GVHD+ donors). Overall, the
numbers of genes that were up-regulated/down-regulated in
GVHD+ relative to GVHD— donors were 22/42 for CD4" T
cells and 31/40 for CD8' T cells. About 60% of these genes are
involved in cell proliferation, signal transduction, or tran-
scription (unpublished data).

gRT-PCR Analyses of GVHD-Predictive Genes

Predictive value of single genes. To evaluate the validity of
predictive genes identified with microarrays, we performed
qRT-PCR analyses on fresh mRNA aliquots extracted from
donor CD4" (n=33) and CD8" (n=35) T cells. We focused on
cGVHD-predictive genes and tested a total of 26 genes,
including 24 genes present in Table S1 and Table S2. We
selected the latter 24 genes based on two criteria: they are
involved in cell proliferation and/or cytokine signaling and
were differentially expressed in ¢cGVHD+4 versus cGVHD—
donors. Analyzing several genes involved in a common
signaling cascade has special interest because it provides a
unique opportunity to validate the biological coherence of
differentially expressed genes. Preliminary analysis of Table
S1 and Table S2 showed that at least five cGVHD-predictive
genes were components of the transforming growth factor-p
(TGF-B) signaling pathway. These five genes were selected for
quantitative PCR studies. To further evaluate the possible
role of the TGF-B pathway, we also tested TGIF and TGF-f-
induced (TGFBI) (which were not present on the microarrays),
which are transcriptional targets of TGF-B. Performance of
individual genes was evaluated using univariate Student’s t-
test and LDA. The statistical significance corresponds to t-test
p-value, whereas classification performance (sensitivity, spe-
cificity, and overall accuracy) was derived from LDA.

qRT-PCR did not confirm the predictive value of nine
genes (Table 2). This result can be explained by the limited
sample size and the idiosyncrasies of the two mRNA-
measurement procedures (e.g., cross-hybridization and splic-
ing variants) [34]. Out of the 26 genes tested, 17 were
differentially expressed in GVHD+ and GVHD- donors
(Table 2): 15 genes selected from Table S1 and Table S2
(they showed consistent change directionality in microarrays
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A

, CD4 CD8
DNAChip - 2GVHD [ ¢GVHD | aGVHD| cGVHD
ImmunArray 88 76 110 69

H19K 194 | 243 | 174 | 227
B C

CD4 aGVHD
aGVHD cD8

cD8 cGVHD

Figure 2. GVHD Predictive Genes Identified by One-Dimensional
Analyses

Searches were performed using two methods: a linear discriminant-
analysis-based approach and statistical t-test.

(A) Number of genes showing a GVHD-predictive accuracy > 65% and p
< 0.05.

(B and C) Data from the H19K and ImmuArray were pooled. Among
GVHD-predictive genes, Venn diagrams represent counts relationships
between CD4" versus CD8" T-cell gene profiles (B) and aGVHD versus
cGVHD predictive-genes (C).

doi:10.1371/journal.pmed.0040023.g002

and qRT-PCR) plus the two supplementary TGF-B target
genes. The statistical significance (t-test p- value) of individual
cGVHD-predictive genes ranged from 0.046 to 0.0005, and
their GVHD-predictive accuracy (LDA) from 63% to 80%. Of
note, there was a weak negative correlation (r = —0.53, p =
0.03) between the specificity and sensitivity of the 17 genes.
Thus, some genes were better in predicting the occurrence of
GVHD than its absence, and vice versa for other genes. PRFI
showed the best specificity (Figure 3; Table 2). PRFI codes for
perforin, whose high expression in CD8" T cells was
associated with occurrence of GVHD. SMAD?3, a transcription
factor that is activated following TGF-P binding, showed the
highest sensitivity (Figure 3; Table 2). High levels of SMAD3
transcripts in CD4" T cells correlated with absence of GVHD.
Based on the LDA-generated class separatrix, the specificity
and sensitivity for SMAD3 were 53% and 89% with an overall
accuracy of 73%. We repositioned post-hoc the separatrix in
order to have all cGVHD+ donors on one side of the
separatrix (hereafter referred to as the 100% cGVHD+
separatrix). This new separatrix, which by definition in-
creased the sensitivity to 100%, also increased the overall
accuracy to 79% without changing the specificity (Figure 3).
Thus, low levels of SMAD3 were found in all GVHD+ and
some GVHD- donors, while all donors expressing high levels
of SMAD3 were GVHD— (Figure 3). Mechanistically, this
suggests that high levels of SMAD3 are sufficient (but not
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necessary) to prevent GVHD, while low levels are necessary
(but not sufficient) for the occurrence of GVHD.

One major point highlighted by gene-expression profiling
studies is the primacy of pathways over the effects of
individual genes (pathways ultimately define the profiles)
[36,40]. With this in mind, a most salient finding was that all
components and targets of the TGF- pathway tested by qRT-
PCR were differentially expressed in GVHD+ versus GVHD—
donors (Table 2). Compared with GVHD+ donors, GVHD—
donors showed up-regulation of EP300, FURIN, FNBP3,
SMAD3, TGFBI, and TGIF, and repression of PRFI. From a
pathway perspective, that expression profile is entirely
consistent and points to increased TGF- signaling in T cells
from GVHD- relative to GVHD+ donors [41-47]. The ten
other cGVHD-predictive genes whose differential expression
was confirmed by qRT-PCR are involved in regulation of cell
growth and proliferation (AKT2, ATBFI, CD24, CDI5I,
MYCLI, NFAT5, NMI, SIL, SH3KBPI1, and TCIRGI) [48-57].

PIAs using a pairwise interaction model. A global approach
is required to properly understand cellular responses,
because interpathway cross-talk and other properties of
networks reflect underlying complexities that cannot be
explained by the consideration of individual pathways in
isolation [58,569]. In their simplest form, gene-gene inter-
actions may be phenomenologically competitive or syner-
gistic. We posited that such interactions might be reflected in
particular gene-pair expression patterns. For example, if
gene X and gene Y represent a competitive interaction, the
ratio of gene Y/X expression should determine GVHD
outcome (e.g., presence and absence of GVHD will correlate
with high and low Y/X ratios, respectively). Alternatively, for
synergistic interactions, the occurrence of GVHD should be
regulated by the product of genes’” X X Y activities. We
therefore examined gene-pair expression ratios and products
within the context of competitive and synergistic models. To
this end, we evaluated the gene pairs formed by the 15
GVHD-predictive genes validated in both microarray and
qRT-PCR experiments (Table 2). The total number of gene
pairs analyzed corresponds to n(n — 1)/2 (i.e.,, 105). We asked
whether CPIA and SPIA would highlight gene pairs whose p-
value for cGVHD versus no GVHD was at least 10-fold lower
than that of constituent genes. A total of four gene pairs
satisfied this stringent criterion (Figure 4A). PIAs suggest that
NFATS5, a transcription factor that regulates gene expression
induced by osmotic stress [53], has competitive interactions
with SH3KBPI (alias CINS85), which interacts with CBL (a
negative regulator of immune signaling) [56], and with PRFI,
a quintessential component of CDS' T cell granule exocytosis
cytotoxicity pathway [60]. Likewise, PIAs suggest that PRFI
has competitive interactions with TCIRGI (alias TIRC7), a
negative regulator of T cell activation and cytokine response
[57]; and that CDI151, a negative regulator of Ag-induced T
cell proliferation [51], collaborates synergistically with SIL, a
gene whose expression is associated with cell proliferation
[61]. From a mechanistic perspective, these data suggest that
interactions between the four pairs’ constituent genes are
biologically relevant and should be investigated.

Gene pairs discovered by PIA can provide better perform-
ance than constituent single genes in terms of prediction
accuracy. Performance gain is illustrated by further analyses
of the SH3KBPI/NFAT5 gene pair using LDA and two class-
separatrices: the LDA-generated separatrix and the 100%
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Table 2. qRT-PCR Analyses of GVHD-Predictive Genes

Gene Cell Type qRT-PCR: Specificity Sensitivity Accuracy
cGVHD+ Versus
cGVHD— p-Values

SMAD3*< CD4* 0.0005 53% 89% 73%
TCIRGT® CD4* 0.0005 73% 78% 76%
ATBF1? CD4" 0.0013 67% 83% 76%
si? cD4* 0.0017 60% 83% 73%
TGIF<4 CcD4* 0.0018 60% 83% 73%
AKT2? CcD4* 0.0020 67% 72% 70%
cD151° CcD4* 0.0020 73% 78% 76%
FNBP3*< CcD4* 0.0021 60% 83% 73%
cD24? cp8* 0.0026 65% 72% 69%
PRF1°< cD8* 0.0037 88% 72% 80%
EP300°< CD4" 0.0040 47% 78% 64%
TGFBP<? CcD4* 0.0043 67% 61% 64%
SH3KBP1® D8t 0.0059 65% 61% 63%
FURIN®< CD4" 0.0095 73% 56% 64%
NMP CcD4* 0.0099 60% 67% 64%
NFAT5® cD8* 0.0193 71% 72% 71%
TCIRGT? cp8* 0.0464 76% 56% 66%
STK38%, IL1R1P cDat NS — — —
PDCD8®, FAF1® CD4* NS — — —
IL6R?, MYCL1® cD4* NS — — —
SH3KBP1®, RAN? CcD4t NS — — —
RANP D8t NS — — —

“Specificity”: true negatives/(true negatives + false positives); “Sensitivity”: true positives/(true positives + false negatives).

“Genes repressed in cGVHD+ relative to cGVHD— donors.

bGenes overexpressed in cGVHD+ relative to cGVHD— donors.
“Components and targets of the TGF- signaling pathway.

9TGF-B target genes that were not represented on the microarrays.
NS, not significant by qRT-PCR.
doi:10.1371/journal.pmed.0040023.t002

cGVHD+ separatrix (designed to maximize sensitivity) (Figure
4). Compared to the LDA-generated separatrix, the 100%
cGVHD+ separatrix increased the sensitivity by 22%-39%
without compromising overall accuracy (Figure 4). Using the
LDA-generated separatrix, the SH3KBPI/NFAT5 gene pair
provided a 6% gain in both sensitivity and overall accuracy
compared with single genes. With the 100% cGVHD+
separatrix (which by definition gives a 100% sensitivity), the
overall accuracy gain was 8%. From a clinical standpoint,
these data suggest that PIAs can identify gene pairs with
greatly enhanced predictive accuracies and stronger p-values
compared to their constituent genes. Furthermore, they
imply that in further studies with a larger number of
participants, higher-order combinatorial searches could
significantly improve the prediction performance of gene-
expression profiling [30].

Multiple training-test dataset split cross-validation. We can
be confident that genes with good cGVHD+- and cGVHD—
differentiating t-test p-values over the complete set of
samples have a statistically significant ability to distinguish
between these classes (in terms of rejecting the equal means
null hypothesis). However, the assessment of LDA classifica-
tion accuracy on a single set of samples may not be robust,
since accuracy could be highly sensitive to chance fluctua-
tions of measurement points in the vicinity of the separatrix.
Such situations might not have a large impact on p-value, but
can disproportionately affect accuracy assessments. To
establish whether cGVHD+/~— discrimination accuracy may
be generalizable and robust, we need to determine the
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accuracy of the model prediction on test datasets that are
independent (with regard to sampling) of the training
datasets from which the predictive LDA models are derived.
However, a single instance of training-test dataset compar-
ison can be considered neither representative nor robust,
since it is potentially sensitive to idiosyncratic fluctuations of
datapoints around the separatrix. We therefore determined
the robust average accuracy over many independently
generated test datasets for each gene, on the basis of different
selections of training-set data for each gene [30], using
conventional cross-validation procedures [29]. These analyses
were performed on the 17 single genes (Table 2) and the PIA
variables representative of the four gene pairs (Figure 4A)
that were predictive of cGVHD occurrence. Specifically, for
each gene, we carried out 500 different 60% training samples
and 40% test-samples dataset splits by randomly assigning
(for each data split) 60% of the respective cGVHD+ and
cGVHD— samples to a training dataset, and the remaining
40% of the samples to the respective test datasets. For CDh4"
cells, 11 ¢cGVHD+ and nine cGVHD— samples were selected
randomly for training datasets, while the seven cGVHD+ and
six cGVHD— remaining samples were used in test datasets.
For CD8" cells, 11 cGVHD+ and ten cGVHD— samples were
selected randomly for training datasets, while the remaining
seven cGVHDH-and seven cGVHD— samples were used in test
datasets. The test dataset accuracy was determined separately
for each of the 500 training/test random-sampling splits by
using the LDA-predictive model separatrix from the corre-
sponding training dataset. We emphasize that each test
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dataset-accuracy determination for each gene was carried out
500 separate times on randomly chosen dataset splits, each
time using a predictive model that has never been exposed to
the test data.

We report for each gene the robust cross-validation
ensemble average test-set accuracy and its standard deviation,
as well as bar graphs depicting occurrences of specific
accuracies in 10% accuracy increments (Figure 5). We found
that the average test-set cross-validation accuracy was 71% *
10%, and that genes such as CD151 for CD4" cells achieved an
accuracy of 77% * 9%, and PRFI for CD8" cells achieved
76% * 10%. Notably, the test-set cross-validation accuracy of
gene pairs identified by PIA often outperforms that of single
genes. For example, the CD151-SIL gene pair achieved 80%
* 9%, while its constituent genes CDI151 and SIL provided
accuracies of 77% = 9% and 69% * 10%, respectively. In
addition, in Figure 5 we see a conspicuous shift of
occurrences of accuracies from the 70% and 80% histogram
bins for the constituent genes to the 90% and 100% bins for
the gene pairs. These data provide strong evidence that the 17
genes and four gene pairs reported herein not only show
statistically significant differences between cGVHD+ and
cGVHD-— donors, but also that these differences are sub-
stantial in magnitude and robustly provide higher than 70%
accuracies overall. We therefore infer that the robust
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discrimination performance of these genes and gene pairs
could be of clinical value for cGVHD prediction.

The Microarray-Based Donor Gene Profile Persists Long-
Term in the Recipient

To determine whether differences in donor gene-expres-
sion profiles were transferable, we evaluated whether they
persisted in the recipient. All our recipients were adults that
were given a myeloablative-conditioning regimen and re-
ceived a non-T cell-depleted AHCT. In these conditions,
essentially all T cells on day 365 are donor-derived [62-65].
We therefore studied the relationship between the donor
gene profiles on day 0 (0) and the recipient profiles on day
365 (t3). In other words, we compared the transcriptome of T
cells derived from a single zygote (the donor) but residing in
two types of environments (the donor and the recipient). To
get a manageable yet broad basis for analyses, we included
two gene sets tested on the H19K chip: the top 400 genes
showing differential expression in GVHD+ versus GVHD—
donors on day 0, combined with the top 400 genes showing
differential expression in GVHD+ versus GVHD— recipients
on day 365 (Table S3). Because of overlap between the two
gene sets, a total of 711 genes was analyzed. Genes that
exhibited little variation across arrays were excluded because
they do not contribute useful information for distinguishing
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Figure 4. Competitive and Synergistic Interactions between GVHD-Predictive Genes

(A) PIA identified four gene pairs whose p-value for cGVHD prediction was at least 10-fold lower than that of constituent genes. LDA-based scatterplots
of qRT-PCR data for (B) NFAT5, (C) SH3KBP1, and (D) the NFAT5/SH3KBP1 gene pair. Dotted lines represent LDA-generated separatrices. Red lines
correspond to 100% cGVHD+ separatrices (designed to maximize sensitivity).

doi:10.1371/journal.pmed.0040023.g004
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Figure 5. Multiple Training-Test Dataset Split Cross-Validation

For each single gene (n=17, blue) and gene pairs (n =4, red), we carried out 500 different 60% training samples and 40% test samples dataset splits by
randomly assigning 60% of the respective cGVHD+ and cGVHD— samples to a training dataset and the remaining 40% of the samples to the respective
test datasets. The test dataset accuracy was determined separately for each of the 500 training/test random sampling splits by using the LDA predictive
model separatrix from the corresponding training dataset. Bar graphs show the occurrence of specific accuracies in 10% accuracy increments. Numbers
in each panel represent the mean test-set accuracy (%) * standard deviation.
doi:10.1371/journal.pmed.0040023.g005

among specimens [36]. The basic postulate underlying our

analyses was that if the donor profile is largely transferred to

the recipient, correlation between a donor on day 0 and its
recipient on day 365 (t0i — t3i) would be stronger than (i)
correlation of that donor with other donors on day 0 (z0i — ¢0)
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and (ii) correlation of that recipient with other recipients on
day 365 (¢3i — t3). The reverse would be true, and the donor-
specific characteristics should be “washed out,” if the gene-
expression profiles were either unstable or regulated primar-
ily by adaptive (environmental) effects.

0078
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Figure 6. The Pre-AHCT Donor Gene Expression Profile Correlates with
the Recipient Expression Profile Examined One Year Post-AHCT

The Pearson correlation coefficient (rho) over the expression vectors of
711 informative genes (listed in Table S3) was calculated between
members of all matching donor-recipient pairs, and all donor-donor and
recipient-recipient pairs, and then averaged for each group. Bar graphs
show the mean Pearson correlation coefficient between individual
donors on day 0 with their recipient on day 365 (t0i — t3i) (red bar),
between individual donors and all other donors on day 0 (t0i — t0)
(yellow bar), and between individual recipients and all other recipients
on day 365 (t3i — t3) (blue bar). Data are from all (40) donor-recipient
pairs (A), or from pairs in which the recipient presented cGVHD (B), or not
(Q). Error bars represent the standard error of the mean. The vector of (tOi
— t3i) correlations was compared to the vectors of (t0i — t0) and (t3i — t3)
correlations using Student’s t-test, to determine whether the differences
between these observed sample pair correlation groups are statistically
significant. t-Test p-values relative to (t0i — t3i) are labeled as follows: *,
0.01 < p < 0.05; **,0.001 < p < 0.01; **, p < 10°°.
doi:10.1371/journal.pmed.0040023.9g006
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We found that the average gene-expression profile corre-
lation among corresponding donor-recipient pairs (t0i — #3i)
was consistently higher than the average correlation among
donors (0i — ¢t0) and among recipients (¢3i — ¢3) (Figure 6). This
was true for CD4" and CD8" T cells, in recipients that were
cGVHD+ and those that were cGVHD— (Figure 6). Thus,
interindividual differences in expression of GVHD-associated
transcripts are remarkably stable over time (365 days).
Stability over time increases their potential value as predictive
markers. The donor gene-expression profiles are also very
robust since they persist following transfer in a different host
(the recipient) even in the presence of confounding disease-
related factors (cGVHD and its treatment). The stability and
“transferability” of the GVHD-linked gene-expression pro-
files point to a major genetic (as opposed to environmental)
influence. Since donors and recipients were siblings it is
formally possible that the similar environments (nonhemato-
lymphoid cells) in which T cells resided may have contributed
to the transferability of the T cell-expression profiles.

Discussion

Several conclusions can be drawn from our work. First, the
donor gene-expression profile has a dominant influence on
the occurrence of aGVHD and cGVHD in the recipient.
Second, extensive studies on cGVHD prediction revealed that
the “dangerous donor” trait (occurrence of GVHD in the
recipient) is under polygenic control and is determined by
competitive and synergistic gene interactions. Third, the risk
of ¢cGVHD is shaped by the activity of genes that regulate
diverse cell functions in donor T cells, including TGF-B
signaling and cell proliferation. Finally, the donor gene
profile persists long-term in the recipient. We wish to
emphasize that several convergent pieces of evidence under-
pin the robustness of conclusions presented herein: (i) in
microarray experiments, the donor gene profile defined on
day 0 showed exceedingly strong correlation with that of
recipient CD4" and CD8" T cells harvested on day 365; (ii) for
most genes tested by qRT-PCR, differential gene expression
between cGVHD+ and cGVHD— donors was confirmed to be
robust, on the basis of statistical tests and computational
analysis of independent training-test datasets; (iii) from a
pathway perspective, differential expression of TGF-f-related
transcripts was entirely consistent with increased TGF-B
signaling in T cells from cGVHD- relative to cGVHD+
donors. Compared with cGVHD+ donors, cGVHD— donors
showed higher levels of activating components of the TGF-3
signaling pathway (EP300, FNBP3, FURIN, SMAD3) and of
genes induced by TGF-B (TGFBI, TGIF) but lower expression
of PRFI, which is repressed by TGF-B (Table 2). Notably,
transcripts for TGF-B (TGFBI) and its receptors (TGFBR2 and
TGFBR3) were represented on the microarrays and were not
differentially expressed in T cells from cGVHD+ relative to
cGVHD- donors (unpublished data). Collectively, these data
suggest that under basal conditions interindividual variations
exist in TGF-B signaling activity. Moreover, they imply that
these interindividual variations are stable over time (Figure 6)
and are due, at least in part, to differential expression of
intracellular TGF-f pathway components rather than mem-
brane-associated factors. The latter idea is consistent with
recent data on Wnt and TGF-B signaling. Among thymocyte
subsets, differential responsiveness to Wnt signals is not

January 2007 | Volume 4 | Issue 1 | €23



determined by expression of membrane-associated factors,
but rather by the balance between activating and inhibiting
intracellular components of the Wnt pathway (e.g., B-catenin,
v-catenin, and TCF-1) [66]. In addition, two recent studies
demonstrated that modulation of SMAD proteins such as
SMAD3 was sufficient to regulate the strength of TGF-B
signaling [67,68].

To the best of our knowledge, our study is the first to
present evidence that differential gene expression in donor
CD4" and CDS8' T cells is predictive of the risk of GVHD in
the recipient. As mentioned in the Introduction, histoincom-
patibility is necessary but not sufficient to elicit GVHD. On
the basis of our data, we propose that the occurrence of
GVHD is determined by another key factor: a dangerous
donor (strong alloresponder). Further studies are required to
decipher how this complex polygenic trait is regulated.
Nevertheless, the concept that TGF-f signaling in donor cells
has a protective role against GVHD is consistent with the
well-known pivotal function of TGF-B in maintaining
tolerance and preventing the development of immunopa-
thology [42]. TGF- is the cytokine expressed constitutively at
highest levels in lymphoid and nonlymphoid organs [69], and
its pervasive influence on immune responses results from
pleiotropic effects. TGF-f blocks T cell proliferation, inhibits
differentiation of Thl (T helper class 1) cells and CTLs
(cytotoxic T lymphocytes), and promotes expansion as well as
maintenance of CD4TCD25" regulatory T cells that can
inhibit GVHD [42,70-77]. Moreover, recent studies in mice
have shown that production of TGF- by donor T cells early
after AHCT attenuates GVHD, and that neutralization of
TGF-B significantly increases the severity of GVHD [78]. Since
AHCT is generally used to treat hematologic malignancies,
the fact that TGF-f has a tumor suppressor role in
hematologic malignancies [79] might constitute an additional
benefit associated with induction of the TGF-B pathway.

Among cGVHD-predictive genes that are not related to the
TGF-B pathway, TCIRGI (alias TIRC?) is of particular interest,
since it ranked first in terms of statistical significance for
prediction of cGVHD (Table 2). GVHD— donors expressed
higher levels of TCIRGI transcripts than GVHD+ donors.
This is consistent with the function of TCIRGI1, which
colocalizes with the T cell receptor and mediates inhibitory
signals that lead to up-regulation of CTLA4 and repression of
interleukin-2 and interferon-y [57,80]. Remarkably, TCIRG1-
specific stimulatory antibodies significantly prolonged heart
and kidney graft survival [81,82].

During the early months post-AHCT, recipient T cells derive
to a large extent from proliferation of mature donor T cells
present in the graft. However, by one year post-AHCT,
recipient T cells derive mainly, if not exclusively, from
development of donor-derived hematolymphoid progenitors
in the recipient’s thymus [83-85]. Thus, on day 365, recipient T
cells originate essentially from donor hematopoietic stem cells
as opposed to donor post-thymic T cells. The fact that the pre-
AHCT donor gene profile correlates with the recipient profile
one year post-AHCT (Figure 6) is therefore quite remarkable.
These data provide compelling, albeit indirect, evidence that a
significant portion of the differential gene profiles between
GVHD+ and GVHD- donors is imprinted at the hematopoietic
stem cell level. Moreover, stability of the gene-expression
profiles in the donor and recipient over a one-year period
suggests that the profiles result from inherited genetic traits as
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opposed to environmental factors. Genetic linkage analyses will
be needed to test directly this inference.

Can identification of strong versus weak alloresponders be
used to select AHCT donors? The predictive value of our best
genes was about 80% based on the LDA model separatrix
(Table 2). However, predictive models and separatrices can be
fine tuned for clinical decision-making to either optimize
sensitivity or specificity. An increase in sensitivity usually
comes at the expense of a decrease in specificity, and vice
versa. Given that the avoidance of GVHD is usually para-
mount, one would expect that a bias toward the best
achievable sensitivity, allowing for the most reliable (or total)
elimination of GVHD+4 donors (while not eliminating too
many donor candidates), would be clinically desirable (Figure
3 and Figure 4). Interestingly, PIA based on a pairwise gene-
interaction model suggested that some genes have synergistic
or competitive interactions that lead to increased predictive-
model performance (Figure 4). This result also suggests that
higher-order combinatorial searches beyond two genes could
improve significantly the predictive performance of gene-
expression profiling [30]. Thus, predictive models limited to a
set of ten to 20 genes may achieve even greater than 80%
accuracy and the robustness required for dependable AHCT
donor selection. However, higher-order predictive variable
combinations do require the support of many more samples
to prevent overfitting of the model. Cogent assessment of this
question will therefore necessitate expression profiling of
genes identified herein in larger cohorts of participants.
Thus, before gene-expression profiling can be widely used to
guide clinical decision-making, it must be validated at other
centers, in a wider range of patients. Similar to a recently
reported index for post-AHCT assessment of GVHD severity
[86], we envision predictive models based on pre-AHCT
donor-expression profiling as an “evolving” evidence-based
process for determining the risk of GVHD, to be recalibrated
over time to account for changes in practice. As a corollary, a
gene set that can identify strong alloresponders should also
have predictive value for rejection of solid organ grafts. In
summary, the results presented here could represent the basis
of a breakthrough in transplantation medicine by helping
selection of low-risk donors for AHCT, and tailoring the
immunosuppressive regimens given to the recipient accord-
ing to the risk of GVHD (AHCT) or rejection (solid organ).
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Microarray data in this paper are compliant to the minimum
information about a microarray experiment (MIAME) criteria and
are deposited at Gene Expression Omnibus (http://www.ncbi.nih.gov/
geo; accession number GSE4624). The National Center for Biotech-
nology Information (http://www.ncbi.nih.gov) accession numbers for
TGIF and TGFBI transcripts are NM__170695 and NM__000358,
respectively. Those for all other transcripts used in this study are
listed in Table S1 and Table S2.

Acknowledgments

CP and RPS hold Canada Research Chairs in Immunobiology and in
Human Immunology, respectively. We are grateful to Abdelkader
Yachou for management of the S2K Genome Quebec/Canada
program, Claudette Fortin and Hélene Grangé for judicious com-
ments, and Caroline C6té for technical help.

Competing Interests: The University of Montreal has filed a
provisional patent application entitled “Assessment and reduction of
risk of graft-versus-host disease” that is based on the present work.
CB, RS, LDG, and CP are listed as co-inventors on that provisional
patent application.

Author contributions. CB and CP designed the study. DCR and LB
enrolled patients. RS, LDG, DCR, LB, and RPS gave comments at each
stage. CB and VR purified T cell subsets and extracted RNA. RS, LDG,
and CRC were involved in the conception and design of the
mathematical model and statistical analysis of model results. MJC
and DJK supervised RNA amplification and microarray hybridization.
PW and MJC performed microarray data preprocessing. CB and PC
performed and analyzed real-time RT-PCR. CB, RS, LDG, and CP
drafted the manuscript. VR, PW, CRC, M]JC, DJK, PC, DCR, LB, and
RPS reviewed the work and edited the manuscript.

References

1. Sykes M, Auchincloss H, Sachs DH (2004) Transplantation immunology. In:
Paul WE, editor. Fundamental immunology. Philadelphia: Lippincott
Williams & Wilkins. pp. 1481-1555.

Perreault C, Décary F, Brochu S, Gyger M, Bélanger R, et al. (1990) Minor
histocompatibility antigens. Blood 76: 1269-1280.

Anderson BE, McNiff JM, Jain D, Blazar BR, Shlomchik WD, et al. (2005)
Distinct roles for donor- and host-derived antigen-presenting cells and
costimulatory molecules in murine chronic graft-versus-host disease:
Requirements depend on target organ. Blood 105: 2227-2234.

Loveland B, Simpson E (1986) The non-MHC transplantation antigens:
Neither weak nor minor. Immunol Today 7: 223-229.

Fischer-Lindahl K (1991) Minor histocompatibility antigens. Trends Genet
7: 219-224.

Fontaine P, Langlais ], Perreault C (1991) Evaluation of in vitro cytotoxic T
lymphocyte assays as a predictive test for the occurrence of graft vs host
disease. Immunogenetics 34: 222-226.

Martin PJ (1991) Increased disparity for minor histocompatibility antigens
as a potential cause of increased GVHD risk in marrow transplantation
from unrelated donors compared with related donors. Bone Marrow
Transplant 8: 217-223.

Gleichmann E, Pals ST, Rolink AG, Radaszkiewicz T, Gleichmann H (1984)
Graft-versus-host reactions: Clues to the etiopathology of a spectrum of
immunological diseases. Immunol Today 5: 324-332.

Via CS, Shearer GM (1988) T-cell interactions in autoimmunity: Insights
from a murine model of graft-versus-host disease. Immunol Today 9: 207-
213.

Kaplan DH, Anderson BE, McNiff JM, Jain D, Shlomchik M], et al. (2004)
Target antigens determine graft-versus-host disease phenotype. ] Immunol
173: 5467-5475.

Lin MT, Storer B, Martin PJ, Tseng LH, Gooley T, et al. (2003) Relation of
an interleukin-10 promoter polymorphism to graft-versus-host disease and
survival after hematopoietic-cell transplantation. N Engl ] Med 349: 2201-
2210.

Dickinson AM, Middleton PG, Rocha V, Gluckman E, Holler E (2004)
Genetic polymorphisms predicting the outcome of bone marrow trans-
plants. Br ] Haematol 127: 479-490.

Biozzi G, Asofsky R, Lieberman R, Stiffel C, Mouton D, et al. (1970) Serum
concentrations and allotypes of immunoglobulins in two lines of mice
genetically selected for “high” or “low” antibody synthesis. ] Exp Med 132:
752-764.

Biozzi G, Stiffel C, Mouton D, Bouthillier Y, Decreusefond C (1972)
Cytodynamics of the immune response in two lines of mice genetically
selected for “high” and “low” antibody synthesis. ] Exp Med 135: 1071-
1094.

Feingold N, Feingold J, Mouton D, Bouthillier Y, Stiffel C, et al. (1976)
Polygenic regulation of antibody synthesis to sheep erythrocytes in the
mouse: A genetic analysis. Eur J Immunol 6: 43-51.

10.

11.

12.

13.
14.

15.

@ PLoS Medicine | www.plosmedicine.org

0081

16.

—
~

19.

21.

22.

24.

25.

32.

34.

37.

38.

39.

40.

41.

42.

43.

44.

'S
o

46.

Prediction of Graft-Versus-Host Disease

Puel A, Mevel JC, Bouthillier Y, Feingold N, Fridman WH, et al. (1996)
Toward genetic dissection of high and low antibody responsiveness in

Biozzi mice. Proc Natl Acad Sci U S A 93: 14742-14746.

. Blazar BR, Korngold R, Vallera DA (1997) Recent advances in graft-versus-

host disease (GVHD) prevention. Immunol Rev 157: 79-109.

. Teshima T, Ferrara JL (2002) Understanding the alloresponse: New

approaches to graft-versus-host disease prevention. Semin Hematol 39:
15-22.

Vogelsang GB, Lee L, Bensen-Kennedy DM (2003) Pathogenesis and
treatment of graft-versus-host disease after bone marrow transplant. Annu

Rev Med 54: 29-52.

. Lee SJ, Vogelsang G, Gilman A, Weisdorf DJ, Pavletic S, et al. (2002) A

survey of diagnosis, management, and grading of chronic GVHD. Biol
Blood Marrow Transplant 8: 32-39.

von Bueltzingsloewen A, Bélanger R, Perreault C, Bonny Y, Roy DC, et al.
(1993) Acute graft-versus-host disease prophylaxis with methotrexate and
cyclosporine after busulfan and cyclophosphamide in patients with
hematologic malignancies. Blood 81: 849-855.

Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, et al. (1974)
Clinical manifestations of graft-versus-host disease in human recipients of
marrow from HL-A-matched sibling donors. Transplantation 18: 295-304.

. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, et al. (1995)

1994 Consensus Conference on Acute GVHD Grading. Bone Marrow
Transplant 15: 825-828.

Martin PJ, McDonald GB, Sanders JE, Anasetti C, Appelbaum FR, et al.
(2004) Increasingly frequent diagnosis of acute gastrointestinal graft-
versus-host disease after allogeneic hematopoietic cell transplantation. Biol
Blood Marrow Transplant 10: 320-327.

Smyth KG (2005) Limma: Linear models for microarray data. In: Gentle-
man R, Carey V, Dudoit S, Irizarry R, Huber W editors. Bioinformatics and
computational biology solutions using R and bioconductor. New York:
Springer. pp. 397-420.

. Yang YH, Speed TP (2003) Design and analysis of comparative microarray

experiments. In: Speed TP editor. Statistical analysis of gene expression
microarray data. Boca Raton: Chapman & Hall/CRC Press. pp. 35-91.

. Armitage P, Berry G, Matthews JNS (2002) Statistical methods in medical

research. Oxford: Blackwell Science Ltd. 784 p.

. Fukunaga K (1990) Introduction to statistical pattern recognition. San

Diego: Academic Press. 592 p.

. Duda RO, Hart PE, Stork DG (2001) Linear discriminant functions. In:

Pattern classification. New York: John Wiley & Sons, Inc. pp. 215-281.

. Baranzini SE, Mousavi P, Rio ], Caillier SJ, Stillman A, et al. (2005)

Transcription-based prediction of response to IFNb using supervised
computational methods. PLoS Biol 3: e2. doi:10.1371/journal.pbio.0030002

. Yang YH, Speed T (2002) Design issues for cDNA microarray experiments.

Nat Rev Genet 3: 579-588.

Ebert BL, Golub TR (2004) Genomic approaches to hematologic malig-
nancies. Blood 104: 923-932.

Goldrath AW, Luckey CJ, Park R, Benoist C, Mathis D (2004) The molecular
program induced in T cells undergoing homeostatic proliferation. Proc
Natl Acad Sci U S A 101: 16885-16890.

Allison DB, Cui X, Page GP, Sabripour M (2006) Microarray data analysis:
From disarray to consolidation and consensus. Nat Rev Genet 7: 55-65.

. Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, et al. (2003)

Individuality and variation in gene expression patterns in human blood.
Proc Natl Acad Sci U S A 100: 1896-1901.

. Miller LD, Long PM, Wong L, Mukherjee S, McShane LM, et al. (2002)

Optimal gene expression analysis by microarrays. Cancer Cell 2: 353-361.
Evans EJ, Hene L, Sparks LM, Dong T, Retiere C, et al. (2003) The T cell
surface—How well do we know it? Immunity 19: 213-223.

Korngold R, Sprent J (1983) Lethal GVHD across minor histocompatibility
barriers: Nature of the effector cells and role of the H-2 complex. Immunol
Rev 71: 5-29.

Perreault C, Roy DC, Fortin C (1998) Immunodominant minor histocom-
patibility antigens: The major ones. Immunol Today 19: 69-74.

Shaffer AL, Rosenwald A, Hurt EM, Giltnane JM, Lam LT, et al. (2001)
Signatures of the immune response. Immunity 15: 375-385.

Kim JE, Kim SJ, Jeong HW, Lee BH, Choi JY, et al. (2003) RGD peptides
released from big-h3, a TGF-B-induced cell-adhesive molecule, mediate
apoptosis. Oncogene 22: 2045-2053.

Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming
growth factor-p regulation of immune responses. Annu Rev Immunol 24:
99-146.

Dubois CM, Blanchette F, Laprise MH, Leduc R, Grondin F, et al. (2001)
Evidence that furin is an authentic transforming growth factor-pl1-
converting enzyme. Am J Pathol 158: 305-316.

Park SR, Lee EK, Kim BC, Kim PH (2003) p300 cooperates with Smad3/4
and Runx3 in TGFBl-induced IgA isotype expression. Eur J Immunol 33:
3386-3392.

. Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, et al. (2004)

Functional proteomics mapping of a human signaling pathway. Genome
Res 14: 1324-1332.

Chen F, Ogawa K, Nagarajan RP, Zhang M, Kuang C, et al. (2003) Regulation
of TG-interacting factor by transforming growth factor-p. Biochem J 371:
257-263.

January 2007 | Volume 4 | Issue 1 | €23



47.

48.

49.

50.

51.

52.

54.

56.

at
~1

60.

61.

64.

66.

67.

Thomas DA, Massague ] (2005) TGF-B directly targets cytotoxic T cell
functions during tumor evasion of immune surveillance. Cancer Cell 8:
369-380.

Woodgett JR (2005) Recent advances in the protein kinase B signaling
pathway. Curr Opin Cell Biol 17: 150-157.

Jung CG, Kim HJ, Kawaguchi M, Khanna KK, Hida H, et al. (2005)
Homeotic factor ATBF1 induces the cell cycle arrest associated with
neuronal differentiation. Development 132: 5137-5145.

Li O, Zheng P, Liu Y (2004) CD24 expression on T cells is required for
optimal T cell proliferation in lymphopenic host. J Exp Med 200: 1083-
1089.

Wright MD, Geary SM, Fitter S, Moseley GW, Lau LM, et al. (2004)
Characterization of mice lacking the tetraspanin superfamily member
CD151. Mol Cell Biol 24: 5978-5988.

Ingvarsson S (1990) The myc gene family proteins and their role in
transformation and differentiation. Semin Cancer Biol 1: 359-369.

. Go WY, Liu X, Roti MA, Liu F, Ho SN (2004) NFAT5/TonEBP mutant mice

define osmotic stress as a critical feature of the lymphoid microenviron-
ment. Proc Natl Acad Sci U S A 101: 10673-10678.

Zhu M, John S, Berg M, Leonard WJ (1999) Functional association of Nmi
with Statb and Statl in IL-2- and IFNy-mediated signaling. Cell 96: 121-
130.

. Aplan PD, Lombardi DP, Kirsch IR (1991) Structural characterization of

SIL, a gene frequently disrupted in T-cell acute lymphoblastic leukemia.
Mol Cell Biol 11: 5462-5469.

Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I (2002) Cbl-
CIN85-endophilin complex mediates ligand-induced downregulation of
EGF receptors. Nature 416: 183-187.

. Utku N, Boerner A, Tomschegg A, Bennai-Sanfourche F, Bulwin GG, et al.

(2004) TIRC7 deficiency causes in vitro and in vivo augmentation of T and
B cell activation and cytokine response. ] Immunol 173: 2342-2352.

. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life:

Systems biology. Annu Rev Genomics Hum Genet 2: 343-372.

. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal

protein-signaling networks derived from multiparameter single-cell data.
Science 308: 523-529.

Barry M, Bleackley RC (2002) Cytotoxic T lymphocytes: All roads lead to
death. Nat Rev Immunol 2: 401-409.

Erez A, Perelman M, Hewitt SM, Cojacaru G, Goldberg I, et al. (2004) Sil
overexpression in lung cancer characterizes tumors with increased mitotic
activity. Oncogene 23: 5371-5377.

. Roux E, Helg C, Dumont-Girard F, Chapuis B, Jeannet M, et al. (1996)

Analysis of T-cell repopulation after allogeneic bone marrow trans-
plantation: Significant differences between recipients of T-cell depleted
and unmanipulated grafts. Blood 87: 3984-3992.

. Mathioudakis G, Storb R, McSweeney PA, Torok-Storb B, Lansdorp PM, et

al. (2000) Polyclonal hematopoiesis with variable telomere shortening in
human long-term allogeneic marrow graft recipients. Blood 96: 3991-3994.
Guimond M, Busque L, Baron C, Bonny Y, Bélanger R, et al. (2000) Relapse
after bone marrow transplantation: Evidence for distinct immunological
mechanisms between adult and paediatric populations. Br ] Haematol 109:
130-137.

. Antin JH, Childs R, Filipovich AH, Giralt S, Mackinnon S, et al. (2001)

Establishment of complete and mixed donor chimerism after allogeneic
lymphohematopoietic transplantation: Recommendations from a work-
shop at the 2001 Tandem Meetings of the International Bone Marrow
Transplant Registry and the American Society of Blood and Marrow
Transplantation. Biol Blood Marrow Transplant 7: 473-485.

Weerkamp F, Baert MRM, Naber BAE, Koster EEL, de Haas EFE, et al.
(2006) Wnt signaling in the thymus is regulated by differential expression
of intracellular signaling molecules. Proc Natl Acad Sci U S A 103: 3322-
3326.

Yu J, Wei M, Becknell B, Trotta R, Liu S, et al. (2006) Pro- and
antiinflammatory cytokine signaling: reciprocal antagonism regulates

@ PLoS Medicine | www.plosmedicine.org

0082

68.

70.

71.

72.

73.

74.

76.

K
J

78.

79.

80.

81.

82.

83.

84.

85.

86.

Prediction of Graft-Versus-Host Disease

interferon-y production by human natural killer cells. Immunity 24: 575-
590.

Yang YA, Zhang GM, Feigenbaum L, Zhang YE (2006) Smad3 reduces
susceptibility to hepatocarcinoma by sensitizing hepatocytes to apoptosis
through downregulation of Bcl-2. Cancer Cell 9: 445-457.

69. Kalies K, Blessenohl M, Nietsch J, Westermann J (2006) T cell zones of

lymphoid organs constitutively express Thl cytokine mRNA: Specific
changes during the early phase of an immune response. ] Immunol 176:
741-749.

Laouar Y, Sutterwala FS, Gorelik L, Flavell RA (2005) Transforming growth
factor-p controls T helper type 1 cell development through regulation of
natural killer cell interferon-y. Nat Immunol 6: 600-607.

Park I-K, Shultz LD, Letterio JJ, Gorham JD (2005) TGF-B1 inhibits T-bet
induction by IFN-y in murine CD4" T cells through the protein tyrosine
phosphatase Src homology region 2 domain-containing phosphatase-1. J
Immunol 175: 5666-5674.

Chen ZM, O’Shaughnessy M], Gramaglia I, Panoskaltsis-Mortari A, Murphy
WJ, et al. (2003) IL-10 and TGF- induce alloreactive CD4'CD25™ T cells to
acquire regulatory cell function. Blood 101: 5076-5083.

Peng Y, Laouar Y, Li MO, Green EA, Flavell RA (2004) TGF-B regulates in
vivo expansion of Foxp3-expressing CD4"CD25" regulatory T cells
responsible for protection against diabetes. Proc Natl Acad Sci U S A
101: 4572-4577.

Marie JC, Letterio JJ, Gavin M, Rudensky AY (2005) TGF-B1 maintains
suppressor function and Foxp3 expression in CD4'CD25" regulatory T
cells. ] Exp Med 201: 1061-1067.

. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, et al. (2003)

CD4"CD25" regulatory T cells preserve graft-versus-tumor activity while
inhibiting graft-versus-host disease after bone marrow transplantation. Nat
Med 9: 1144-1150.

Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL (2002)
CD4"CD25" immunoregulatory T Cells: New therapeutics for graft-
versus-host disease. J Exp Med 196: 401-406.

. Taylor PA, Lees CJ, Blazar BR (2002) The infusion of ex vivo activated and

expanded CD4"CD25" immune regulatory cells inhibits graft-versus-host
disease lethality. Blood 99: 3493-3499.

Banovic T, MacDonald KP, Morris ES, Rowe V, Kuns R, et al. (2005) TGFB in
allogeneic stem cell transplantation: Friend or foe? Blood 106: 2206-2214.
Dong M, Blobe GC (2006) Role of transforming growth factor-p in
hematological malignancies. Blood 107: 4589-4596.

Tamura A, Milford EL, Utku N (2005) TIRC7 pathway as a target for
preventing allograft rejection. Drug News Perspect 18: 103-108.

Utku N, Heinemann T, Tullius SG, Bulwin GC, Beinke S, et al. (1998)
Prevention of acute allograft rejection by antibody targeting of TIRC7, a
novel T cell membrane protein. Immunity 9: 509-518.

Kumamoto Y, Tomschegg A, Bennai-Sanfourche F, Boerner A, Kaser A, et
al. (2004) Monoclonal antibody specific for TIRC7 induces donor-specific
anergy and prevents rejection of cardiac allografts in mice. Am J
Transplant 4: 505-514.

Storek J, Joseph A, Dawson MA, Douek DC, Storer B, et al. (2002) Factors
influencing T-lymphopoiesis after allogeneic hematopoietic cell trans-
plantation. Transplantation 73: 1154-1158.

Poulin JF, Sylvestre M, Champagne P, Dion ML, Kettaf N, et al. (2003)
Evidence for adequate thymic function but impaired naive T-cell survival
following allogeneic hematopoietic stem cell transplantation in the absence
of chronic graft-versus-host disease. Blood 102: 4600-4607.

Hakim FT, Memon SA, Cepeda R, Jones EC, Chow CK, et al. (2005) Age-
dependent incidence, time course, and consequences of thymic renewal in
adults. J Clin Invest 115: 930-939.

Leisenring WM, Martin PJ, Petersdorf EW, Regan AE, Aboulhosn N, et al.
(2006) An acute graft-versus-host disease activity index to predict survival
after hematopoietic cell transplantation with myeloablative conditioning
regimens. Blood 108: 749-755.

January 2007 | Volume 4 | Issue 1 | €23



Editors’ Summary

Background. Human blood contains red blood cells, white blood cells,
and platelets, which carry oxygen throughout the body, fight infections,
and help blood clot, respectively. Normally, blood-forming (hemato-
poietic) stem cells in the bone marrow (and their offspring, peripheral
blood stem cells) continually provide new blood cells. Tumors that arise
from the bone marrow (such as leukemia and lymphoma, two types of
hematopoietic tumor) are often treated by a bone marrow or peripheral
blood stem cell transplant from a healthy donor to provide new blood-
forming stem cells, as a follow-up to chemotherapy or radiotherapy
designed to eradicate as much of the tumor as possible. This procedure
is called allogeneic hematopoietic cell transplantation (AHCT)—the word
allogeneic indicates that the donor and recipient are not genetically
identical. When solid organs (for example, kidneys) are transplanted, the
recipient’s immune system can recognize alloantigens (proteins that vary
between individuals) on the donor organ as foreign and reject it. To
reduce the risk of rejection, the donor and recipient must have identical
major histocompatibility complex (MHC) proteins. MHC matching is also
important in AHCT but for further reasons. Here, donor T lymphocytes (a
type of white blood cell) can attack the skin and other tissues of the host.
This graft versus host disease (GVHD) affects many people undergoing
AHCT despite MHC matching either soon after transplantation (acute
GVHD) or months later (chronic GVHD). As an aside, the transplant may
also act against the tumor itself—this is known as a graft versus leukemia
effect.

Why Was This Study Done? GVHD can usually be treated with drugs
that damp down the immune system (immunosuppressive drugs), but it
would be preferable to avoid GVHD altogether. Indeed, GVHD continues
to be the leading cause of nonrelapse mortality following AHCT.
Unfortunately, what determines who will develop GVHD after MHC-
matched AHCT is unclear. Although GVHD only develops if there are
some mismatches in histocompatibility antigens between the donor and
host, it does not inevitably develop. Until now, scientists have mainly
investigated whether differences between ACHT recipients might explain
this observation. But, in this study, the researchers have examined the
donors instead to see whether differences in their immune responses
might make some donors stronger “alloresponders” than others and
consequently more likely to cause GVHD.

What Did the Researchers Do and Find? The researchers used a
molecular biology technique called microarray expression profiling to
examine gene expression patterns in the T lymphocytes of peripheral
blood stem cell donors. From these patterns, they identified numerous
genes whose expression levels discriminated between donors whose
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MHC-identical transplant recipient developed GVHD after AHCT (GVHD"
donors) and those whose recipient did not develop GVHD (GVHD™
donors). The researchers confirmed that the expression levels of 17 of
these genes discriminated between GVHD' and GVHD™ donors using a
second technique called quantitative reverse transcriptase polymerase
chain reaction. Many of these genes are involved in TGF-f3 signaling (TGF-
B is a protein that helps to control the immune system), cell growth, or
proliferation. The researchers also identified four gene pairs that
interacted with each other to determine the likelihood that a given
donor would induce GVHD. Finally, the researchers computationally
retested their data and showed that the measurement of expression
levels of each of these genes and of the four interacting gene pairs could
correctly identify a donor sample likely to cause GVHD in up to 80% of
samples.

What Do These Findings Mean? These findings provide the first
evidence that the donor's gene expression profile influences the
development of GVHD in the recipient after AHCT. The researchers
suggest that a “dangerous donor” (strong alloresponder) is a key factor
in determining whether GVHD occurs after AHCT and propose that gene
expression profiling of donor T lymphocytes might identify those donors
likely to cause GVHD. Before this approach can be used to reduce the
incidence of GVHD after AHCT, these findings need to be confirmed in
many more donors. Also, the development of a test that is accurate
enough for clinical use—one that does not miss dangerous donors but
does not discard too many safe donors—may require the identification
of larger groups of interacting genes. But, if it survives further
investigation, the concept of a dangerous donor could represent an
important advance in transplantation medicine, one that could help
clinicians select low-risk donors for AHCT and tailor patients’ immuno-
suppressive drug regimens according to their donor-determined risk of
GVHD.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/doi:10.1371/journal.pmed.
0040023.

e The National Marrow Donor Program provides information for patients
and physicians on all aspects of hematopoietic stem cell transplanta-
tion, including GVHD

e The MedlinePlus encyclopedia has pages on bone marrow transplants,
GVHD and transplant rejection

e The US National Cancer Institute has a factsheet on bone marrow and
peripheral blood stem cell transplantation
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