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We have evolved a robust two-component signal transduction pathway from a sensor kinase (SK)
and non-partner response regulator (RR) that show weak cross-talk in vitro and no detectable cross-
talk in vivo in wild-type strains. The SK, CpxA, is bifunctional, with both kinase and phosphatase
activities for its partner RR. We show that by combining a small number of mutations in CpxA that
individually increase phosphorylation of the non-partner RR OmpR, phosphatase activity against
phospho-OmpR emerges. The resulting circuit also becomes responsive to input signal to CpxA. The
effects of combining these mutations in CpxA appear to reflect complex intragenic interactions
between multiple sites in the protein. However, by analyzing a simple model of two-component
signaling, we show that the behavior can be explained by a monotonic change in a single parameter
controlling protein–protein interaction strength. The results suggest one possible mode of evolution
for two-component systems with bifunctional SKs whereby the remarkable properties and
competing reactions that characterize these systems can emerge by combining mutations of the
same effect.
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Introduction

Two-component systems, which are found in large numbers
within bacteria, offer a rich setting for exploring the evolution
of cell signaling (Wuichet et al, 2010). These systems are
composed of a sensor kinase (SK) that receives input signals
and controls the phosphorylation state of a partner response
regulator (RR). Two-component systems generally show a high
level of specificity, with SKs controlling only their partner RRs
(Laub and Goulian, 2007). Weak phosphorylation between
non-partner proteins can be detected in vitro (Skerker et al,
2005; Yamamoto et al, 2005) but, in at least several examples,
has been shown to be suppressed in vivo in wild-type strains
(Silva et al, 1998; Siryaporn and Goulian, 2008; Groban et al,
2009). The weak interactions underlying this phosphorylation
cross-talk may provide an efficient starting point for the
evolution of new signaling circuits. However, signal transduc-
tion in many two-component systems depends on the SK
mediating two distinct and antagonistic reactions: RR phos-
phorylation and dephosphorylation. The critical role played by
these opposing reactions in controlling the level of RR

phosphorylation could significantly increase the barrier to
evolving a functional signaling system.

In several systems, weak cross-phosphorylation between a
non-partner SK and RR can be detected in vivo in strains for
which specific partner regulators have been deleted (Silva
et al, 1998; Siryaporn and Goulian, 2008; Groban et al, 2009).
However, the output is blind to input stimulus to the SK (Silva
et al, 1998; Siryaporn and Goulian, 2008). Thus, cross-talk in
these cases appears as a fixed offset in RR activity rather than
weak signal transduction activity. Analysis of interacting
partners have identified residues in SKs and RRs that are
important for controlling the specificity of interaction (White
et al, 2007; Burger and van Nimwegen, 2008; Skerker et al,
2008; Weigt et al, 2009; Bell et al, 2010; Szurmant and Hoch,
2010). By modifying specificity-determining residues, SK and
RR variants that specifically interact with non-partner proteins
have been engineered, effectively rewiring the flow of
phosphorylation (Skerker et al, 2008; Bell et al, 2010).
However, for bifunctional SKs, re-engineering the specificity
for phosphotransfer alone (as in Skerker et al, 2008), without a
comparable switch in phosphatase specificity, may not
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necessarily produce a new system that is signal responsive.
Indeed, while engineered SK variants tested in vivo showed
strong and specific phosphorylation of new partners (Skerker
et al, 2008), we have found that, at least for the cases that we
tested, the variants were unresponsive to changes in input
stimulus (Supplementary Figure S1). Taken together, the
above observations suggest that to produce a signal-respon-
sive system, it may be necessary to change both phospho-
transfer and phosphatase specificity of a bifunctional SK. Here,
we use a directed evolution approach to explore interactions
between the non-partner regulators CpxA and OmpR. We
show that by combining mutations in CpxA that individually
increase OmpR phosphorylation, phosphatase activity
emerges and results in a circuit that is responsive to changes
in CpxA stimulus.

Results and discussion

Amino-acid substitutions in CpxA that increase
cross-talk to OmpR

To explore the connections between specificity and signal
response, we screened for increased cross-talk between a pair
of non-partner regulators in Escherichia coli: CpxA and OmpR
(Figure 1A). Cross-talk from CpxA to OmpR is detectable
in vitro (Skerker et al, 2005) and in vivo in strains that lack the
partners for these regulators, EnvZ and CpxR (Siryaporn and
Goulian, 2008). To identify amino-acid substitutions in CpxA
that produce increased cross-talk, individual sites along the
DHp domain of CpxA, the portion of the protein associated
with SK–RR interaction (Zapf et al, 2000; Marina et al, 2005;
Laub and Goulian, 2007; Casino et al, 2009; Szurmant and
Hoch, 2010), were mutated by saturation mutagenesis. For
each site, a library with the corresponding codon randomized
was screened for increased expression of CFP from an OmpR-
regulated promoter and was characterized for its propensity to
produce increased cross-talk (Supplementary Figure S2).

Individual mutants that showed significantly increased
cross-talk were selected from the libraries for five sites
(I–V—Supplementary Figure S2B–D) and analyzed in greater
detail (Figure 1). For all of these single-site mutants, the level
of OmpR-regulated transcription was comparable to or
surpassed the level set by OmpR’s partner kinase EnvZ
(Figure 1B). CpxA expression levels were comparable for the
various mutants (Supplementary Figure S3). In addition, the
effect of these mutants on transcriptional regulation by CpxR,
the partner RR to CpxA, suggests the increased cross-talk is not
due to a general hyperactivity of the mutants (Supplementary
Figure S4). To provide further evidence that these mutants
produce increased cross-talk to OmpR, we used a previously
developed assay for co-localization of an OmpR-YFP protein
fusion with plasmids containing OmpR-binding sites in live
cells (Batchelor and Goulian, 2006; Siryaporn and Goulian,
2008). We tested two mutants (substitutions at sites I and III)
using this assay. Both showed dramatically increased localiza-
tion of OmpR-YFP when compared with wild-type CpxA
(Figure 1C). An in vitro phosphorylation assay also demon-
strated that these mutants phosphorylate OmpR with sig-
nificantly faster kinetics relative to wild-type CpxA (Figure 1D;

Supplementary Figure S5), again consistent with increased
cross-talk to OmpR.

Emergence of phosphatase activity, signal
response, and robustness

In an attempt to further increase cross-talk from CpxA to
OmpR, individual substitutions at sites I–V were combined,
resulting in CpxAmut1 (Figure 2A). CpxAmut1 showed very low
cross-talk to OmpR (Figure 1B). This could indicate a defect in
CpxA resulting from combining mutations or that the protein
functions as a phosphatase. To test for evidence of phospha-
tase activity, we used a strain with an envZ allele that encodes
a kinaseþ phosphatase� EnvZ mutant. Expression of wild-
type CpxA (in the absence of CpxR) resulted in an increase in
reporter gene expression, suggesting a further increase in
OmpR phosphorylation due to cross-talk from CpxA
(Figure 2B). We note that the kinaseþ phosphatase� EnvZ
mutant does not show the cross-talk suppression observed for
wild-type EnvZ (Siryaporn and Goulian, 2008; Groban et al,
2009). This is consistent with a mechanism of cross-talk
suppression that depends on the cycle of phosphorylation and
dephosphorylation of the wild-type protein (Siryaporn and
Goulian, 2008; Groban et al, 2009). In contrast with the
behavior of wild-type CpxA, expression of CpxAmut1 resulted
in a considerable decrease in OmpR-regulated transcription
(Figure 2B). Similar results were observed in an envZ� strain
in growth conditions that produced high levels of the
phosphodonor acetyl phosphate (Supplementary Figure S6).
These results suggest that CpxAmut1 may have significant
phosphatase activity toward OmpR-P.

CpxA responds to envelope stress (Raivio and Silhavy, 2000)
and is relatively unstimulated under ordinary growth condi-
tions. Over-expression of the lipoprotein NlpE, a condition that
stimulates CpxA (Snyder et al, 1995), produced a small
increase in OmpR-regulated transcription in the CpxAmut1

strain (Figure 2C), suggesting cross-talk from CpxAmut1 to
OmpR is weakly signal responsive. To improve the signal
response, we performed a genetic screen using CpxAmut1 as a
starting point for mutagenesis. By screening for colonies that
showed increased reporter gene expression upon induction of
NlpE, we identified CpxAmut2, which differs from CpxAmut1 by
a single substitution at site IV (Figure 2A). In contrast to
CpxAmut1, cross-talk from CpxAmut2 to OmpR shows a strong
dependence on activating and repressing stimuli (Figure 2C;
Supplementary Figure S7). CpxAmut2 also shows behavior
in vivo consistent with phosphatase activity toward OmpR-P
(Figure 2B; Supplementary Figure S6) and shows significant
phosphatase activity toward OmpR-P in an in vitro assay
(Figure 2D). It is also possible that CpxAmut2 decreases ompC-
cfp transcription by sequestering OmpR-P, although we note
that we have not detected localization of OmpR-GFP to the
periphery in cells expressing CpxAmut2 at wild-type levels
(data not shown).

The above results suggest that CpxAmut2 responds to input
signals and functions as a bifunctional SK, phosphorylating
and dephosphorylating OmpR. For a bifunctional SK, RR
phosphorylation is expected to be robust or insensitive to
changes in SK expression level (Batchelor and Goulian, 2003;
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CpxA/CpxR. Weak cross-talk from CpxA to OmpR (dashed line), which is detectable in the absence of the cognate partners EnvZ and CpxR (Siryaporn and Goulian,
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Evolving a robust signal transduction pathway from weak cross-talk
A Siryaporn et al

& 2010 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2010 3



Shinar et al, 2007; Shinar and Feinberg, 2010). This robust
behavior is evident for CpxAmut2, in marked contrast with the
behavior of wild-type CpxA (Figure 2E), providing further
support that CpxAmut2 functions as a bifunctional SK.

Model of SK–RR interaction

Combining five amino-acid substitutions in CpxA, each of
which individually increases OmpR phosphorylation, pro-
duces a signal-responsive mutant that phosphorylates and
dephosphorylates OmpR. Remarkably, in the context of a
simple model of the cycle of phosphorylation and depho-

sphorylation mediated by a bifunctional SK (Figure 3A; see
Supplementary information for details), this complex change
in phenotype can be accounted for by the change in a single
parameter: the strength of the interaction or affinity between
CpxA and OmpR. We used this model to ask how RR
phosphorylation level depends on the SK–RR interaction
strength. The model predicts qualitatively different behaviors
for the limits of weak and strong interaction, corresponding to
low and high affinity between SK and RR, respectively. In the
weak-interaction limit, the SK is monofunctional (only
phosphorylates the RR) and unresponsive to input signal.
With increasing interaction strength, RR phosphorylation first
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CpxAmut2 and plasmid containing PBAD-nlpE and cultures of the strain AFS29 containing only plasmid that expresses EnvZ were grown in glycerol minimal medium
supplemented with 0.1 mM arabinose. See Supplementary information for a detailed description of the strains and growth conditions.
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increases and then decreases (Figure 3A, middle and right
panels), indicating the emergence of phosphatase activity.
This counterintuitive result reflects the asymmetry between
SK-mediated phosphorylation and dephosphorylation of the
RR: the phosphorylation reaction requires that the SK first
autophosphorylates, whereas the dephosphorylation reaction
does not require any modification of the SK. The model
predicts that bifunctionality and signal responsiveness emerge
in the strong-interaction limit. This marked qualitative change
in behavior with varying SK–RR interaction provides a simple
interpretation of the CpxA mutants described above
(Figure 3A, right panel). In particular, the model suggests the
emergence of phosphatase activity, signal responsiveness, and
robustness in CpxAmut2 can result simply from a greatly
increased interaction with OmpR.

The model suggests that OmpR interacts significantly more
strongly with CpxAmut2 than with wild-type CpxA. To test this,
we over-expressed the SKs in a strain expressing a fusion of
GFP to the C-terminus of the OmpR receiver domain (OmpR’-
GFP), the region that interacts with EnvZ. Over-expression of
EnvZ produces increased fluorescence at the cell periphery
(Figure 3B), consistent with a strong interaction of the OmpR
receiver domain with the membrane protein EnvZ. Over-
expression of wild-type CpxA or a single-site mutant, on the
other hand, showed a uniform distribution of fluorescence,
which is consistent with a much weaker interaction of the

OmpR receiver domain with these membrane proteins. In
particular, although the CpxA single-site mutant shows cross-
talk to OmpR that is comparable to that of EnvZ (Figure 1B), it
nevertheless interacts relatively weakly with OmpR. In
contrast, over-expression of CpxAmut2 produced strong fluor-
escence at the cell periphery, similar to the fluorescence
distribution observed for over-expression of EnvZ, suggesting
a strong interaction with OmpR and consistent with the
predictions of the model (Figure 3A). Over-expression of
CpxAmut1 produced fluorescence localization that was similar
to that of CpxAmut2 (data not shown). In the context of our
model, the weaker signal response of CpxAmut1 compared with
CpxAmut2 could be due to a stronger SK–RR interaction for
CpxAmut1, although this effect is not distinguishable through
our measurements of OmpR’-GFP localization.

The subtle synergistic and antagonistic interactions between
amino acids in proteins present challenges for interpreting the
relations between sequence, structure, and function in protein
evolution and design (DePristo et al, 2005; Camps et al, 2007;
Bloom and Arnold, 2009). Indeed, it is not uncommon to
find that the outcome of combining multiple mutations in a
gene cannot be easily predicted from the effects of each
mutation alone. However, if a protein carries out more than
one function, such as the phosphorylation and dephosphor-
ylation reactions controlled by bifunctional SKs, its activity
may have a complex dependence on relatively simple
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physicochemical properties. This can give the appearance of
complex intragenic interactions between mutations and
produce dramatic changes in activity with relatively few
amino-acid substitutions.

Considering that phosphorylation cross-talk from CpxA to
OmpR is not detectable in wild-type cells (Siryaporn and
Goulian, 2008), a remarkably small number of amino-acid
substitutions were required to produce a robust signaling
pathway connecting these two proteins. This is consistent with
the above analysis, which suggests that the complex behavior
resulting from combining mutations can be explained by a
simple increase in the strength of interaction between SK and
RR. Interestingly, weak cross-phosphorylation has been
identified in vitro between numerous pairs of two-component
systems (Skerker et al, 2005; Yamamoto et al, 2005). The
suppression of cross-talk in vivo (Silva et al, 1998; Siryaporn
and Goulian, 2008; Groban et al, 2009) presumably prevents
these interactions from having a deleterious effect on fitness,
enabling them to persist. Based on the above results, we
suggest that this latent cross-talk may endow networks of
bifunctional SKs and RRs with a considerable level of
evolutionary plasticity. When additional bifunctional SKs or
RRs appear by gene duplication or lateral gene transfer, new
pathways could initially be established from basal cross-talk as
signal-blind connections with fixed levels of phosphorylation.
Strengthening the interactions leads to phosphatase activity,
signal responsiveness, and insulation from competing phos-
phorylation sources (Alves and Savageau, 2003; Siryaporn and
Goulian, 2008; Groban et al, 2009). By analogy with our
observations for CpxA and from our modeling work, this
complex behavior may emerge by simply combining muta-
tions that increase cross-phosphorylation, which would be a
relatively simple path in protein sequence space for the
evolution of new signaling systems. This also simplifies the
process of screening for new signaling pathways, which may
be useful for synthetic applications involving the engineering
of new microbial signaling circuits.

Materials and methods
A detailed description of the experimental procedures, with specific
references to each figure, is given in Supplementary information.
Plasmids and strains are listed in Supplementary Table S1.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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