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BACKGROUND Catheter ablation is a standard therapy for frequent
premature ventricular complex (PVCs). Predicting their origin from a
12-lead electrocardiogram (ECG) is crucial but it requires specialized
knowledge and experience.

OBJECTIVE The objective of the present study was to develop and
evaluate machine learning algorithms that predicted PVC origins
from an ECG.

METHODS We developed the algorithms utilizing a support vector
machine (SVM) and a convolutional neural network (CNN). The
training, validating, and testing data consisted of 116 PVCs from
111 patients who underwent catheter ablation. The ECG signals
were labeled with the PVC origin, which was confirmed using a 3-
dimensional electroanatomical mapping system. We classified the
origins into 4 groups: right or left, outflow tract, or other sites.
We trained and evaluated the model performance. The testing data-
sets were also evaluated by board-certified electrophysiologists and
an existing classification algorithm. We also developed binary clas-
sification models that predicted whether the origin was on the right
or left side of the heart.
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RESULTS The weighted accuracies of the 4-class classification were
as follows: SVM 0.85, CNN 0.80, electrophysiologists 0.73, and ex-
isting algorithm 0.86. The precision, recall, and F1 in the machine
learning models marked better than physicians and comparable to
the existing algorithm. The SVM model scored among the best accu-
racy in the binary classification (the accuracies were 0.94, 0.87,
0.79, and 0.90, respectively).

CONCLUSION Artificial intelligence–enabled algorithms that pre-
dict the origin of PVCs achieved superior accuracy compared to
the electrophysiologists and comparable accuracy to the existing al-
gorithm.
KEYWORDS Artificial intelligence; Convolutional neural network;
Electrocardiogram; Machine learning; Premature ventricular com-
plex; Support vector machine
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Introduction
Frequent premature ventricular complexes (PVCs) are gener-
ally considered as a benign condition if there is no comorbid
structural abnormality; however, the condition often causes
chest discomfort, which affects daily activity and also con-
tributes to a depressed ventricular function.1 Catheter abla-
tion is an optimal therapeutic option for those symptomatic
PVCs.2–5

The expert guidelines on catheter ablation of ventricular
arrhythmias stratify the strength of the recommendations
into a class IIa indication for PVCs from the left ventricular
outflow tract (LVOT) and a class I recommendation for
PVCs from other origins.6 That is because the catheter abla-
tion of LVOT PVCs can be challenging owing to the struc-
tural complexity in that region and the risk of collateral
injury to adjacent coronary arteries and systemic embo-
lisms.7,8 Predicting the origin of target PVCs before the abla-
tion procedure is important in terms of estimating the
procedural difficulty and possible adverse events. It also
helps reduce the labor and procedure time. Although the
PVC origin can be predicted from a standard 12-lead electro-
cardiogram (ECG) and several criteria have been proposed, it
is sometimes complicated and the accuracy is limited.9,10

Recently, machine learning technologies are emerging
and they are being utilized in the medical field.11,12 Artificial
intelligence (AI)-based ECG analyses are providing
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Training dataset for SVM Tes�ng dataset

95 PVCs (380 ECGs, 82%) 21 PVCs (84 ECGs,18%)

116 PVCs (464 ECGs) from 111 pa�ents 
included in the analysis

Training dataset for CNN Valida�on dataset for CNN

77 PVCs (308 ECGs, 66%) 18 PVCs (72 ECGs, 16%)

Figure 1 Flow diagram of the selection of the patients for the training,
validation, and testing cohorts. CNN 5 convolutional neural network;
ECG 5 electrocardiogram; PVC 5 premature ventricular complex; SVM
5 support vector machine.

KEY FINDINGS

� Catheter ablation is one of the important therapeutic
options for symptomatic frequent premature ventricular
complexes (PVCs). Predicting the source of PVCs prior to
ablation can reduce procedural time and fluoroscopy
time, save labor, and reduce the risk of complications.
Although it can be predicted from an electrocardio-
gram, it requires skill to interpret and it is sometimes
misleading.

� In this study, we developed 2 artificial intelligence–
based algorithms that were trained using real-world
spontaneous PVCs. The models used the support vector
machine and the convolutional neural network, both of
which showed excellent prediction accuracy. The
models were able to predict the origin of PVCs with
greater accuracy than the skilled electrophysiologists.

� The models showed satisfactory results even though the
number of training datasets was not abundant, espe-
cially for a convolutional neural network. We expect
that by accumulating data, models consisting of
complex deep networks will be implemented, which
can predict more detailed sites.
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promising results in the detection of arrhythmias and myop-
athies.13–16 We expected that this technology could be
applied to the detection of PVC origins and then developed
machine learning models.
Methods
Data description
We identified a total of 116 PVCs from 111 patients who un-
derwent catheter ablation of frequent PVCs in our hospital
from December 2011 to May 2020 (Figure 1). All of the
12-lead ECGs during the catheter ablation procedure had
been recorded and stored on the CardioLab electrophysi-
ology system (General Electric Healthcare, Barrington, IL).
The signals were recorded at a sampling frequency of 977
Hz and were filtered with a low-frequency digital filter cutoff
of 0.05 Hz and high-frequency digital filter cutoff of 100 Hz.
We manually identified the target PVC and exported it from
approximately 140 ms before to 120 ms after the absolute
peak of any leads as a CSV format. This step yielded a 12
! 260 matrix with the spatial first dimension and the tempo-
ral second dimension; each value indicated the voltage
measured every 1.02 ms. The output value ranged from -5
to 5 mV. We then selected 8 independent leads (leads I, II,
and V1–V6) and disregarded the other augmented leads (leads
III, aVR, aVL, and aVF) because the augmented leads did not
contain any incremental information and could be learned by
the models. This sample extraction was repeated 4 times for
each PVC at different times for data augmentation. Gener-
ally, flipping, stretching, and rotation are performed for
augmentation of image data, but we considered it is not appli-
cable for this study. Instead, we extracted 4 independent
pieces of data of each PVC in different timing. Since each
PVC waveform had slightly different potentials and baseline
noise, this data collection could be a substitute for data distor-
tion. Each piece of data was labeled with a PVC origin, which
is described in the following section. The datasets were
randomly split into a training set and testing set with a 4:1 ra-
tio on a PVC basis so that no PVCs overlapped between the
datasets. The training set was used for the training and opti-
mization of the support vector machine (SVM) model. The
training set was randomly subdivided into training and vali-
dation sets with a 4:1 ratio on a PVC basis for the training and
validation of the convolutional neural network (CNN) model.
Hence no PVCs overlapped among the datasets: 4 indepen-
dent ECG data from 1 PVC were included in the same data-
set.

This research protocol was designed by the authors and
approved by the institutional review board of the Japanese
Red Cross Musashino Hospital (approval number: 2034).
Written informed consent for ablation and data usage was
given by all patients. The information disclosure document
of this study has been published on the hospital website.
The research reported in this paper adhered to the Declaration
of Helsinki.
Ablation procedure
Mapping and ablation of frequent PVCs were performed in
the standard fashion using either of the 3-dimensional elec-
troanatomical mapping systems: CARTO 3 (Biosense
Webster, Irvine, CA) or Ensite (Abbott, Green Oaks, IL).
Endocardial activation maps of the chamber of interest
were generated with standard ablation catheters or multi-
electrode catheters supplied from each manufacturer. The
endocardial sites that were felt to be closest to the
arrhythmia origin based on the activation mapping and
pace mapping were selected for ablation. Radiofrequency
current was applied in a temperature-controlled mode set
to 60�C and with a power initially limited to 15–35 watts
and manually increased to as much as 40 watts for a
maximum of 60 seconds. Any advanced techniques, such
as epicardial ablation, bipolar or simultaneous unipolar
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4-class classifica�on
• LVOT
• Other LV
• RVOT
• Other RV

Binary classifica�on
• LV
• RV

or

Support Vector Machine

1-Dimensional Convolu�onal Neural Network

or

I, II, V1-6

Figure 2 Illustration of the input data processing and structure of the neural network. The electrocardiograms of the premature ventricular complexes are elec-
trically exported from a recording system and processed into a single strip (see text for detail). The datasets were fed into the classifiers used by the support vector
machine or 1-dimensional convolutional neural network. The classifiers performed a 4-class or binary classification. LV5 left ventricle; LVOT5 left ventricular
outflow tract; ReLU 5 rectified linear unit; RV 5 right ventricle; RVOT 5 right ventricular outflow tract.

78 Cardiovascular Digital Health Journal, Vol 2, No 1, February 2021
ablation, ethanol ablation, or needle ablation, were not at-
tempted in all cases. At the end of the ablation procedure,
a 15-minute observation period was made to evaluate the
acute outcome. The PVC origin was defined as the abla-
tion site where the PVC was eliminated or suppressed at
least 80% of burden if not eliminated. The PVC origins
were classified into 4 groups: LVOT, other left ventricle
(LV) sites, right ventricular outflow tract (RVOT), and
other right ventricle (RV) sites. The LVOT was defined
as the coronary cusps, the area immediately below the
aortic root, aortomitral continuity, and LV summit. The
RVOT was defined as the area between the conus arterio-
sus and pulmonary artery. This coding was used for the 4-
class classification. We also classified the origin into 2
groups: the right side of the heart or the left side of the
heart. This was used for the binary classification. If the
different morphologic PVCs were seen prior to the proced-
ure and both were targeted, they were counted as different
PVCs. If the PVC morphology changed during ablation
and several chambers were ablated, final morphology
was recorded and elimination site was considered as
origin. All patients underwent a routine follow-up Holter
ECG after 3–6 months from the index procedure.

Algorithm development: Support vector machine
The SVM with a radial basis function kernel was used to
conduct supervised machine learning. For an optimal se-
lection of the SVM parameters, a grid search was per-
formed on C and g using a 5-fold cross-validation
using the following sets of values: C 5 {0.0001, 0.001,
0.01, 0.1, 1, 10, 100} and g 5 {0.0001, 0.001, 0.01,
0.1, 1, 10, 100}. This meant that for each combination
of parameters, the training dataset was randomly split in
a 4:1 ratio, and the model training and internal validation
were repeated 5 times. The most optimal combination of
parameters was then selected. The features within the da-
taset were standardized prior to being fed into the model.
We developed a 4-class classification model and a binary
classification model. Those models were developed using
the Scikit-learn library and Python (Python Software
Foundation, Beaverton, OR).

Algorithm development: Convolutional neural
network
We implemented a 1-dimensional CNN using the Keras
Framework with a TensorFlow (Google, Mountain
View, CA) backend and Python. We tested multiple net-
works, including a light neural network and deep neural
network, and selected the model that provided the higher
accuracy and lower computing cost. The framework of
the CNN model is illustrated in Figure 2. The network
was composed of 2 convolution layers (filters were 64
and 32, respectively; kernel sizes were 3; kernel regular-
izers were L2 [0.001]) and both were followed by a
batch-normalization layer for normalization of the data
distribution and a nonlinear ReLU activation function to
provide nonlinearity for the model. The output was then
fed to 2 dense layers (units were 256 and 128, respec-
tively) with an intervening batch-normalization layer
with a ReLU activation. The final output layer was acti-
vated using the softmax function, which generated a prob-
ability of each class. For training, the training dataset was
fed to the network and the network weights were updated
using the stochastic gradient descent optimizer with cate-
gorical cross-entropy as the loss function. After each
epoch, the network was tested using the internal valida-
tion dataset. The network hyperparameters, batch, and
step size were also tuned during this process and the
network with the lowest categorical cross-entropy loss
value was selected once the loss value on the validation
set stopped decreasing for the following 30 epochs. A
grid search and cross-validation were not applied for
this model. The binary cross-entropy was used for the bi-
nary classification.



Table 1 Patient characteristics

Dataset Training for SVM Training for CNN Validation for CNN Test

Number of patients 91 73 18 21
Number of PVCs* 380 (95) 308 (77) 72 (18) 84 (21)
Age 64 [48–70] 64 [48–70] 64 [47–73] 67 [59–76]
Sex, male 48 (53%) 36 (49%) 12 (67%) 12 (57%)
EF, % 66 [60–71] 66 [60–71] 66 [61–72] 63 [54–75]
Myopathy
None 87 70 17 19
Ischemic 1 0 1 1
Nonischemic 3 3 0 1

PVC burden, before, % 22 [14–29] 22 [13–28] 23 [14–30] 18 [14–25]
PVC burden, after, % 0.02 [0–0.6] 0.02 [0–1.08] 0.01 [0–0.28] 1.1 [0.01–5.38]
PVC origin, %
RVOT 46% 48% 39% 52%
RV other area 14% 13% 17% 19%
LVOT 23% 22% 28% 19%
LV other area 17% 17% 17% 10%

Morphology change 14 (15%) 12 (16%) 2 (11%) 2 (10%)
Ablation from both sides 9 (9%) 7 (9%) 2 (11%) 3 (14%)
Elimination 86 (91%) 69 (90%) 17 (94%) 18 (86%)
Significant reduction 8 (8%) 7 (9%) 1 (6%) 2 (10%)
Failure 1 (1%) 1 (1%) 0 (0%) 1 (1%)

CNN5 convolutional neural network; EF5 ejection fraction; LV5 left ventricle; LVOT5 left ventricular outflow tract; PVC5 premature ventricular complex;
RV 5 right ventricle; RVOT 5 right ventricular outflow tract; SVM5 support vector machine.

Values are expressed in median [interquartile range].
*The type of waveform is shown in parentheses and the number of waveforms entered as data is shown outside the parentheses.
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Comparison of performance between models and
physicians
The testing dataset, which was not used for the training and
validation process, was used to assess the AI-enabled
model’s ability to classify the PVC origin. The 21 ECG strips
for testing PVCs were printed out anonymously and given to
3 board-certified electrophysiologists (Y.N., K.W., and
M.K.). They had been in clinical practice as an electrophys-
iologist for 10 to 25 years. They were requested to predict the
PVC origin in a 4-class and binary classification from the
PVC morphology. We also estimated the origin using an ex-
isting algorithm proposed by Enriquez and colleagues.9 The
performance of the SVM and CNN models was assessed ac-
cording to the receiver operating characteristic curve, area
under the curve (AUC), accuracy, precision, recall, and F1
score. The F1 score was the harmonic mean of the precision
and recall. We used confusion matrices to evaluate the perfor-
mance of the prediction of the PVC origin of the AI-enabled
models, electrophysiologists, and existing algorithm with
respect to the confirmed origins. Confusion matrices were
made for both the binary and 4-class classification.
Table 2 Diagnostic performance of the 4-class classification of
the prediction of the premature ventricular complex origin

Accuracy F1 Precision Recall

SVM 0.85 0.85 0.86 0.85
CNN 0.80 0.80 0.81 0.80
Enriquez et al9 0.86 0.86 0.90 0.86
Electrophysiologists 0.73 0.74 0.81 0.73

CNN 5 convolutional neural network; SVM 5 support vector machine.
Results
Study population
The patients’ background and description of the datasets used
for model training, validation, and testing are summarized in
Table 1. The age distribution was similar (median age was
around 65 years) and roughly half of the patients had a
male sex in all datasets. Five patients had 2 PVCs. As a result
of the random assignment, both PVCs were included in the
training dataset in 4 patients. In the remaining 1 patient,
PVC was allotted to the validation and testing datasets,
respectively. The waveforms and sources were completely
independent. Most patients had no organic heart disease,
but ischemic cardiomyopathy was present in 2 patients and
nonischemic cardiomyopathy in 4 patients. PVC waveform
changes by ablation were seen in 16 PVCs. Ablation from
both sides was needed in 12 PVCs. Ninety percent of the
PVCs were eradicated, 9% of the PVCs showed a significant
reduction, and 2 PVCs did not respond to treatment. Of the 2
failure cases, 1 PVC apparently arose from the parahisian
area and ablation to the area immediately suppressed the
PVC but had to be given up prematurely because of the
risk of atrioventricular block. Another unsuccessful PVC
ablation was apparently from LV summit and endocardial
ablation suppressed transiently.

The PVC origin distribution was also similar among the
datasets: 40%–50% were from the RVOT, 20%–25% from
the LVOT, 15% from other RV sites, and 15% from other
LV sites.



Figure 3 The confusion matrices of the 4-class classification for the board-certified electrophysiologists, existing classification algorithm, support vector ma-
chine, and convolutional neural network. The accuracy of each premature ventricular complex origin is displayed in a color gradient scale. LV 5 left ventricle;
LVOT 5 left ventricular outflow tract; ReLU 5 rectified linear unit; RV 5 right ventricle; RVOT 5 right ventricular outflow tract.
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Model performance: 4-class classification
The training and the output of the results were completed
within a very short time on all models. The most time-
consuming was the SVM with grid search, but it took no
longer than 5 minutes to complete. The diagnostic perfor-
mance of the models and physicians for the 4-class classifica-
tion of the PVC origin is presented in Table 2. The weighted
average of the accuracies, F1 scores, precisions, and recalls
were around 0.85 in the SVM model and 0.80 in the CNN
model. Both models achieved better results compared to
the board-certified electrophysiologists and were comparable
to the existing algorithm. The optimal hyperparameters of the
SVM model were as follows: {’C’: 100, ’gamma’: 0.0001,
’kernel’: ’rbf’}. Figure 3 shows the confusion matrices of
each model. Both machine learning models and the existing
algorithm had similar classification abilities. The representa-
tive case is demonstrated in Figure 4. This PVC was success-
fully eliminated by radiofrequency catheter ablation from the
RVOT. The existing algorithm determined this PVC to be of
LVOT origin, while both machine learning models and two-
thirds of the electrophysiologists correctly determined it to be
of RVOT origin. As shown in this example case, right-or-left
confusion may occur especially when the polarity of lead I
was subtle.
Model performance: Binary classification
The diagnostic performance of the models and physicians for
the binary classification of the PVC origin is presented in
Table 3 and the confusion matrices and receiver operating
characteristic curves are shown in Figure 5. The optimal hy-
perparameters of the SVM model were as follows: {’C’: 1,
’gamma’: 0.01, ’kernel’: ’rbf’}. As with the 4-class classifica-
tion, the machine learning algorithms achieved superiorly
compared to the electrophysiologists and showed compara-
ble classification abilities to the existing algorithm. The
SVM model achieved among the best results. The confusion
matrices exhibited in both AI models had a good classifica-
tion ability regardless of which side of the heart the PVC
was from. The classifier using the SVM achieved an AUC
of 0.997 and the CNN-utilized model achieved an AUC of
0.908.
Discussion
Recently, several studies have been reported to estimate the
origin of ventricular arrhythmias using machine learning.17,18

Most of them are for ventricular tachycardia from damaged
myocardium, and the training data are based on intraproce-
dural pacing waveforms. In contrast, the present study
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Figure 4 Representative case of premature ventricular complexes (PVCs).
This PVC was successfully eliminated by radiofrequency catheter ablation
from the right ventricular outflow tract (RVOT). The existing algorithm
determined this PVC to be of LVOT origin, while 2 machine learning models
and two-thirds of the electrophysiologists correctly determined it to be of
RVOT origin.
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targeted mainly solitary PVCs from normal hearts without
cardiomyopathy, and the training data are clinical PVC rather
than paced waveform. The pace map has been shown to be
inaccurate, especially in the outflow tract PVC owing to the
presence of preferential conductions; therefore, it was con-
cerning that the use of pacing waveforms for training would
not lead to accurate prediction of the origin.19–21

In this study, we developed 2machine learning models us-
ing the SVM and CNN. Both models showed superior distin-
guishability to the board-certified electrophysiologists and
comparable distinguishability to the existing algorithm. The
SVM is one of the most popular machine learning tools using
kernel tricks, which is considered particularly effective for
classification problems with small sample sizes. As is the na-
ture of a single-center study, the present study had a limited
sample size. The findings of the current study that the SVM
model showed among the best results implied that the data
Table 3 Diagnostic performance of the binary classification of the
prediction of the premature ventricular complex origin

Accuracy F1 Precision Recall

SVM 0.94 0.94 0.95 0.94
CNN 0.87 0.87 0.91 0.87
Enriquez et al9 0.90 0.91 0.93 0.90
Electrophysiologists 0.79 0.80 0.81 0.79

CNN 5 convolutional neural network; SVM 5 support vector machine.
size was sufficient for the SVM model and relatively small
for the CNN model. The CNN is an emerging technique to
act as a prognostic aid for a group of classification tasks.
The CNN shows its superb classification abilities mainly
for image recognition fields, but this technique can also be
applied to waveform identification tasks using a 1-
dimensional CNN, as we have done in this study. A unique
characteristic of the CNN is that it can perform an automatic
feature extraction without human intervention, unlike most
traditional machine learning algorithms, and it is extendable
to a deep learning algorithm by accumulating layers. In this
study, however, none of the deep learning models worked
effectively because of the vanishing gradient no matter which
hyperparameters we chose. We assumed this was because the
training dataset was too small, and indeed, it consisted of
only 308 ECGs. Although this quantity of data is generally
considered quite small for creating a CNN model, the present
model achieved comparable accuracy to that of established
algorithms. As the classifying ability of CNN will evolve
as the training data increases, we expect that the classifier us-
ing CNNwill be more accurate with increasing data. An ECG
is a diagnostic tool that visualizes electrical activity within a
heart from multiple aspects. Electrical conduction during
PVCs can be patterned; hence the predictive accuracy of
the AI model can theoretically be expected to reach nearly
100% as long as the heart does not have conductive abnor-
malities. We assume that the distinctive ability of the AI
model has the potential to become more precise by accumu-
lating datasets so that it will be able to perform more compli-
cated classifications, not only of the LVOT but also of sites
distinct from any of the coronary cusps or epicardium.
Another possible option for utilizing the CNN for machine
learning is to export the PVC ECG strips as image files and
put them into a 2-dimensional CNN as an image recognition
task; however, it may require far more training data, so we did
not attempt that in the present study.

The accurate origin prediction prior to the procedure is
crucial in the clinical setting and is not so difficult for well-
trained electrophysiologists in most of the PVC cases, so
these machine learning models are useful mainly for the per-
son who is not well trained. However, we think these are also
useful even for the skilled ablationist, as there do exist the
confusion cases as shown in Figure 4. Catheter ablation is
generally attempted from the right side of the heart via the
inferior vena cava for PVCs from the RV and possibly via
the superior vena cava for some case of RVOT PVCs. On
the other hand, the transaortic retrograde approach is usually
attempted first for PVCs from the LVOT and the transatrial
septal antegrade approach is attempted first for PVCs from
other LV sites. The accurate prediction of the PVC origin
prior to the procedure contributes to avoiding unnecessary
catheter manipulation and therefore reduces the procedure
time and perioperative adverse event risks. The waveform
change by ablation was observed in 16 PVCs. It means that
these could have emerged from the intramural area rather
than the endocardium. In this study, the final waveforms
and successful sites were registered, which means that the



Figure 5 Confusion matrices of the binary classification for the board-certified electrophysiologists, existing classification algorithm, support vector machine
(SVM), and convolutional neural network (CNN). The receiver operating characteristic (ROC) curves for the performance of the machine learning models are
shown in the right panels (top: ROC curve for the SVM; bottom: ROC curve for the CNN). The accuracy of the origin of each premature ventricular complex is
displayed in a color gradient scale.
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final remaining exit sites were registered. It might be more ac-
curate to say that these were the programs that predicted exit,
rather than the origin.
Limitations
The present study had several limitations. First, as described
in the discussion section, the sample size was sufficient for
SVM but relatively small for CNN. Therefore, the results
may be still preliminary and not definitive for the CNN
model. Second, this study was a single-center study and the
ECG data were derived from a specific recording system;
thus the applicability in other settings remains to be deter-
mined. Third, the conductibility within the heart can be
affected by the presence of bundle branch block or a myocar-
dial infarction, which were not considered in this study.
Finally, the ECGs in this study were derived during ablation
sessions using an electroanatomical mapping system. During
ablation with these systems, there are often many patches for
the mapping system and defibrillator, and this sometimes re-
sults in PVCs not recording the same as they would outside of
the lab. This might have made the analysis by humans chal-
lenging. In this study, we used Enriquez’s Criteria as a
comparator of the algorithms, but it has to be noted that
this is not a prospectively derived and validated algorithm,
nor was it intended to distinguish right vs left sources alone.
Conclusion
AI-enabled algorithms that predict the origin of PVCs
achieved superb accuracy compared to the electrophysiolo-
gists and comparable accuracy to the existing algorithm.
This study showed the promising perspective of the machine
learning models that predict PVC origin. Further model
training with accumulated samples is warranted to improve
the diagnostic efficacy.
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