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Dpath software reveals hierarchical
haemato-endothelial lineages of Etv2 progenitors
based on single-cell transcriptome analysis
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Developmental, stem cell and cancer biologists are interested in the molecular definition of

cellular differentiation. Although single-cell RNA sequencing represents a transformational

advance for global gene analyses, novel obstacles have emerged, including the computational

management of dropout events, the reconstruction of biological pathways and the isolation of

target cell populations. We develop an algorithm named dpath that applies the concept of

metagene entropy and allows the ranking of cells based on their differentiation potential. We

also develop self-organizing map (SOM) and random walk with restart (RWR) algorithms to

separate the progenitors from the differentiated cells and reconstruct the lineage hierarchies

in an unbiased manner. We test these algorithms using single cells from Etv2-EYFP transgenic

mouse embryos and reveal specific molecular pathways that direct differentiation

programmes involving the haemato-endothelial lineages. This software program quantita-

tively assesses the progenitor and committed states in single-cell RNA-seq data sets in a

non-biased manner.
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C
ardiovascular lineages, including: blood, endothelium,
endocardium, and myocardium, arise within a narrow
time window from nascent mesoderm exiting the

primitive streak and these lineages develop in synchrony to form
the circulatory system. The haematopoietic and the endothelial
lineages are closely related and express a number of common
transcripts1. Based on the number of gene mutations that affect
both haematopoietic and endothelial lineages, it has been
proposed that that they arise from common progenitors2–10.
The bifurcation point of these two lineages in embryos, however,
has been debated and the gene expression profiles of the
progenitors have not been fully defined, in part, due to the
difficulty with the isolation of these bipotential cell populations.

Etv2, an ETS domain transcription factor, is critically required
for endothelial, endocardial and haematopoietic development and
has a negative impact on myocardial development11–15. Etv2
mutants are nonviable and completely lack haematopoietic
and endothelial lineages. Furthermore, Etv2 overexpression in
differentiating embryonic stem cells (ESs) induces the haema-
topoietic and endothelial lineages13,16. Etv2 is expressed in a
narrow developmental window starting from embryonic
day 7 (E7.0) and has diminished expression after E8.5 during
murine embryogenesis14,16 Collectively, these data support a role
for Etv2 in mesodermal differentiation at the junction of blood,
endothelial and cardiac lineages. In the present study, we utilized
Etv2-EYFP transgenic embryos14 and single-cell RNA-seq
analysis to develop a blueprint of the lineage hierarchies of
Etv2-positive cells early during development.

Single-cell RNA-seq provides an unprecedented opportunity to
study the global transcriptional dynamics at the single-cell
resolution17–23. Although multiple methods have been publi-
shed to analyze the single-cell sequencing data, there are technical
hurdles that need to be resolved in order to fully appreciate the
biological impact. We developed mathematical solutions to
two major issues encountered by the single-cell RNA-seq field.
The first issue addresses the dropout events, arising from the
systematic noise. This is a common problem in which an
expressed gene observed in one cell cannot always be detected in
another cell from the same population24. The presence of dropout
events combined with sampling noise and the natural stocha-
sticity and diversity of transcriptional regulation at the single-cell
level25 makes profiling the low amounts of mRNA within
individual cells extremely challenging. In the present study, we
provide a weighted Poisson non-negative matrix factorization
(wp-NMF) method as a solution to this problem.

The second outstanding issue is the need for additional
biological information to determine the directionality of differ-
entiation using the currently available methods. A number of
conventional methods allow us to cluster cells into subpopula-
tions and qualitatively associate the subpopulations with different
cellular states during embryogenesis19. Recently, several single-
cell RNA-seq analysis pipelines were developed to detect the
branching trajectories and order single cells based on their
maturity23,26–28. However, these methods required either a set of
differentially expressed genes be predefined or the beginning and
the end of the trajectory be determined by the investigator,
limiting their general and non-biased applicability to a hetero-
geneous novel cell population. Here we develop a concept termed
metagene entropy, which is combined with a self-organizing
map (SOM) and random walk with restart (RWR) algorithms to
separate the progenitors from the differentiated cells and
reconstruct the lineage hierarchies in an unbiased fashion.

In these studies, we report solutions to these two major issues
in the analysis of single-cell RNA-seq data. We develop an
R package named dpath that decomposes the expression profiles
with the awareness of the dropout events, quantitatively assesses

the cellular state and prioritizes genes for both progenitor and
committed cellular states. Importantly, we undertake a head-to-
head comparison with commonly used factorization methods and
pseudotime inference algorithms and demonstrate the superiority
of the dpath program. Finally, we use dpath to decipher three
major lineages of Etv2þ cells and identify key genes and
signalling pathways for the group of progenitor cells with both
endothelial and haematopoietic characteristics. This program,
dpath, will facilitate and decipher the biological mechanisms that
govern stem cell and progenitor cell populations.

Results
Single-cell RNA-seq analysis using the dpath pipeline. The
dpath pipeline consists of four major steps. First, this program
decomposes the expression profile matrix of single-cell RNA-seq
into metagenes using wp-NMF. Second, dpath maps cells into
metacells using a SOM algorithm. Third, the dpath algorithm
prioritizes cells with respect to specific cellular states using a
RWR algorithm on a heterogeneous metagene–metacell graph.
Finally, this algorithm ranks genes for cellular states according to
their expression profile (Supplementary Fig. 1a).

NMF is distinguished from principal component analysis (PCA)
by its use of non-negativity constraints29. These constraints lead to
a parts-based representation of subpopulations, instead of the
holistic representations observed using PCA29. To account for
the dropout events, we used a weighted Poisson model as the
cost function for NMF. The expected gene expression level was
modelled as the linear combination of non-negative metagene
basis and coefficients. The observed gene expression level was then
modelled as a mixture of Poisson distribution of expected
expression level and a dropout event represented by a low-
magnitude Poisson process24. When decomposing the single-cell
expression profile, wp-NMF gave each entry a different weight
depending on the odds of being a dropout event. The simulation
study suggested, that in the presence of the dropout noise, wp-
NMP was superior to PCA in the separation of the cell clusters on
the low dimensional space and with regards to the t-distributed
stochastic neighbour embedding of top principal components
(Supplementary Fig. 1b)30.

We used wp-NMF to decompose the expression profile matrix
of 281 Etv2-EYFPþ cells captured from E7.25, E7.75 and E8.25
into four metagenes (Supplementary Fig. 1c,d)31. The expression
matrix was therefore approximated by the product of non-
negative metagene basis and coefficients. The metagene basis
represented the contribution of each gene to each metagene, and
the metagene coefficient, a probabilistic simplex that indicated the
relative weight of each metagene in each cell, assigns distinct
metagene signatures for individual cells (Fig. 1a).

To verify that this deconvolution strategy produced biologically
relevant results, we first examined a list of selected genes
with known expression patterns. The haematopoietic markers:
Gata1, Ik2f1, Itga2b, Hba-a1, and Runx1, contributed to several
metagenes, but primarily to the second metagene (MG2). The
endocardial/cardiac genes: Gata4, Smarcd3, Tbx20, Alcam, and
Dok4, contributed primarily to the third metagene (MG3)32–34.
The mesodermal marker, Pdgfra, also contributed significantly to
MG3, consistent with the previous observations that Pdgfra is
expressed in the cardiac mesoderm35,36. Also the previously
described endocardial marker, Cgnl1, contributed to MG1 and
MG3 metagenes. The endothelial markers, Plasmalemma vesicle
associated protein (Plvap), Endomucin (Emcn) and Icam1 contri-
buted primarily to MG1. Interestingly, other common endothelial
markers, such as Pecam1, Cd34 and Cdh5, contributed broadly to
a number of metagenes. The broad contribution of several
haematopoietic and endothelial markers supported the notion
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that the current lineage markers for these populations are not
specific. In contrast, the mesodermal lineage marker Brachyury
(T) and Gli2, a critical effector of sonic hedgehog signalling
pathway, contributed strongly to MG4. Moreover, Pou5f1
and Nanog that are expressed at the primitive steak stage
(E7.25) contributed exclusively to MG4 (refs 37,38). The gene set
enrichment analysis (GSEA) also suggested that genes that were
specific to MG1 to MG4 were significantly associated with blood
vessel development (GO:0001568), erythrocyte differentiation
(GO:0030218), heart development (GO:0007507) and stem cell
maintenance (GO:0035019), respectively (Fig. 1b–e). Collectively,
these data demonstrated that four metagenes represented the
endothelial, haematopoietic, endocardial lineages and mesoder-
mal progenitors, respectively.

The observation that the single cells carrying different
metagene signatures associated with different biological functions
prompted us to hypothesize that the cells with a distinct metagene
signature had a distinct spatial distribution. To experimentally
test this hypothesis, we first identified Emcn, Gata1 and Tbx20 as
the distinguishing marker genes for MG1 (endothelium), MG2
(blood) and MG3 (endocardium). Expression levels of these genes
were strongly positively correlated with the metagene intensity of
MG1, MG2 and MG3, respectively (Fig. 2a). Immunohistochem-
ical staining demonstrated that the Etv2-EYFPþ cells segregate
into three distinct subpopulations defined by these markers,
namely, those exclusively marked by (1) Emcn (Etv2þ /Emcnþ /
Gata1� /Tbx20� ), (2) Gata1 (Etv2þ /Emcn� /Gata1þ /Tbx20� )
and (3) Tbx20 (Etv2þ /Emcn� /Gata1� /Tbx20þ ). These
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Figure 1 | dpath successfully separated Etv2-EYFPþ cells into four metagenes. (a) Wp-NMF decomposed the expression profile matrix of Etv2-EYFPþ

cells into metagene coefficients and metagene basis. Selected markers of expected lineages were used to identify the lineage represented by each

metagene. (1) The heatmap showed the cell-wise metagene coefficients. Every row represented a single cell and the colour indicated the expression

intensity of metagenes in each cell (cell-wise metagene signature). (2) Bar plot indicated the median expression levels of a list of known marker genes for

haematopoietic, endocardial and endothelial lineages and the mesodermal progenitors across all 291 single cells. The heatmap showed each gene’s

observed cell-wise expression levels, scaled to a minimum of zero (black) and a maximum of one (green). (3) The heatmap showed the metagene basis for

selected marker genes. Every column represented a gene and the colour indicated the contribution of each gene to each metagene. (b–e) GSEA showed

that genes ranked by the correlation between their expression levels and cell-wise metagene coefficients of four metagenes were significantly associated

with distinct Gene Ontology terms (*0.01rP value o0.05; **0.001rP value o0.01; ***P value o0.001. The statistical significance (nominal P value) was

estimated by the permutation test. In each panel, x axis indicated the genes ordered according to the correlation between their expression levels and cell-

wise metagene coefficients, and y axis indicated the ES score from the GSEA.
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subgroups showed distinct spatial distribution in the E7.75
embryo (Fig. 2b) and confirmed that MG1 represented the
endothelium, MG2 represented the blood and MG3 the
endocardium. These results indicated that the metagene signature
determined by wp-NMF was able to successfully separate three
cell clusters with distinct spatial distribution. Moreover, wp-NMF
had superior performance for the separation of these three
spatially distinct Etv2-EYFPþ cell populations compared with
other popular factorization and dimension reduction tools, such
as PCA, dimensionality reduction for zero-inflated single-cell
gene expression analysis, diffusion map and t-distributed
stochastic neighbour embedding. To make these comparisons,

we used the leave-one-out cross-validation (LOO-CV) and
within-cluster sum of squares (WSS) to total sum of squares
(TSS) ratio (Fig. 2c,d)30,39,40.

Identification of progenitor and committed cells using dpath.
The metagene coefficient indicates the expression profile of each
metagene in each cell. For example, MG1, MG2 and MG3
dominated isolated groups of cells (Fig. 1a). Alternatively,
multiple metagenes could also be expressed in a single cell, sug-
gesting that this cell harbored the gene signature of multiple
lineages and is multipotent with regards to lineage commitment.
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Figure 2 | The metagene signature using wp-NMF successfully separated cell clusters with distinct spatial distribution. (a) The scatter plot showed the

relationship between the expression levels of Emcn, Gata1 and Tbx20 and the metagene coefficients of MG1 (endothelium), MG2 (blood) and MG3

(endocardium). The Pearson’s correlation coefficients in the parenthesis were computed between the expression levels and the metagene coefficients.

(b) Immunohistochemical techniques were used to locate cell populations identified by the metagene signature. A transverse section (at the level of the

heart) of an E8.25 mouse embryo was stained using antibodies to EYFP, Endomucin (Emcn), Tbx20 and Gata1 (from left to right). Note that EYFP-positive

populations segregated into three distinct populations, EYFPþEmcnþTbx20�Gata1� endothelial cells (closed arrowhead), EYFPþEmcnþTbx20þ

Gata1� endocardial cells (open arrowheads) and EYFPþEmcn�Tbx20�Gata1þ blood (small arrowheads). (c,d) Wp-NMF had superior performance for

the separation of Emcnþ/Gata1�/Tbx20� , Emcn�/Gata1þ/Tbx20� and Emcn�/Gata1�/Tbx20þ among the Etv2-EYFPþ cells compared with PCA,

dimensionality reduction for zero-inflated single-cell gene expression analysis, diffusion map and t-distributed stochastic neighbour embedding. In both

panels, x axis indicated the number of hidden dimensions (K), and the y axis represented (c) leave-one-out cross validation (LOO-CV) error and (d) WSS

(within-cluster sum of squares)/TSS (total sum of squares) ratio.
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Indeed, marker genes that are abundantly expressed in the
committed lineages tend to be expressed in their common
progenitor cells but at a lower level19,41. Thus we introduced the
concept of metagene entropy as a novel tool to use the hetero-
geneity of gene expression signature of a single cell to predict the
differentiation state of the cell42. Entropy is used in statistical
mechanics and information theory as a measure of disorder or
uncertainty. We hypothesized that cells with high metagene
entropy have higher differentiation potential than cells with low
metagene entropy. Our analysis using two published single-cell
RNA-seq data sets on lung epithelium development and mouse
fibroblasts reprogramming suggested metagene entropy was
indeed significantly higher in progenitor cells compared with
more differentiated cells (Supplementary Fig. 2)19,43. Following
the application of metagene entropy to the Etv2þ cells, we noted
that the cells from E7.25 had significantly higher metagene
entropy than the cells from E7.75, and the metagene entropy of
E7.75 cells was significantly higher than E8.25 cells (Wilcoxon
rank-sum test, P-value¼ 1.2E-10 and P-value¼ 0.00075). This
finding was consistent with the general consensus that cells from
early developmental stages have higher differentiation potency
than from the later stages (Fig. 3a). To our knowledge, this is the

first method in this field of single-cell RNA-seq analysis that
establishes a quantitative measurement of cellular (progenitor
versus committed) state.

Establishing the metacell landscape for Etv2 derivatives.
Although we defined metagene entropy and established the
directionality of the developmental programme, we introduced
another requirement such that the metagene expression profiles
between cells in the neighbouring developmental stages are
similar. We used a SOM algorithm to organize Etv2þ cells with
similar metagene coefficients into a hexagonal grid and visualized
the lineage structures in a 15� 15 two-dimensional (2D) map.
The SOM is an unsupervised machine learning method that was
developed to cluster and visualize the high dimensional data and
has been widely used in bioinformatics because of its superb
visualization capability44. In our application, each hexagonal grid
on the SOM was defined as a metacell, and each cell was mapped
to the metacell with the most similar metagene expression pattern.
Our analysis revealed a graded distribution of metagene entropy on
the SOM: in the central region of the SOM, the metacells had
higher metagene entropy than those at the periphery or corners,
and the region with the highest metagene entropy was enriched by
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the cells from E7.25. In contrast, the region with low metagene
entropy was associated with more cells from the later develop-
mental stages, E7.75 and E8.25 (Fig. 3b, Supplementary Fig. 3a–d).
Moreover, the committed haematopoietic, endothelial and
endocardial lineages were clearly separated or located at the
edges and corners of the SOM (Fig. 3c,d). This metacell landscape
therefore represented the lineage relationships reminiscent of the
branching valleys of the epigenetic landscape envisioned by
Waddington45 (Supplementary Fig. 3e).

Next, to reveal the identity of the major populations of Etv2-
EYFPþ cells, we clustered all 281 cells into 8 cell clusters by
partitioning the SOM using the Partitioning Around Medoids
(PAM) algorithm (Fig. 3d,e). Among these cell clusters, C2, C4,
C5 and C6 that expressed multiple metagenes were enriched
in earlier time points (E7.25 and E7.75) and therefore, we
hypothesized, represent the more progenitor-like cellular states.
In contrast, C1, C3 and C7 expressed primarily the endocardial
(MG3), endothelial (MG1) and haematopoietic (MG2) meta-
genes, respectively, and as such had relatively low average
metagene entropy, supporting the notion that these cell clusters
represent more differentiated cells (Fig. 3b and Supplementary
Fig. 3f). C8 is a unique population that is found abundantly in
E7.25 and disappears at later stages. As this population expresses
pluripotency markers and very low level of Etv2 and EYFP
(enhanced yellow fluorescent protein) compared with other
populations, we hypothesize that these cells represent descen-
dants of early blastomeres and epiblasts that express Etv2 at low
levels or stochastically46.

We found that the metacells with the highest entropy in our
cell population were positive for T (C5, highest expressors are
marked with asterisks). This Tþ group of cells clustered adjacent
to the common haematopoietic and endothelial progenitors
(highlighted in yellow) and represented the most immature
progenitors present in our Etv2-EYFP population (Supplemen-
tary Fig. 4a). The metacells with highest entropy in C5
(demarcated by yellow lines) expressed Etv2, Kdr, Sox7, Runx1,
Gata1 and Snca. Interestingly, these progenitors represented cells
that expressed Sox7 and Runx1. The central location of these cells
suggested that they were the earlier progenitors. In contrast, more
mature cells of the haematopoietic and endothelial lineages
segregated to peripheral locations. These peripherally located cells
expressed Hbb-y, Car1 and Hba-a1, which are the mature
markers of the haematopoietic lineage (C7), and Emcn, Plvap,
and Nos3, which are the mature markers of the endothelial
lineage (C3), respectively (Supplementary Fig. 6a).

Towards the lower left corner of the SOM, metacells enriched
in endocardial/cardiac mesodermal genes (Tbx20 and Pdgfra)
were localized. As these cells were isolated based on EYFP
expression driven by the Etv2 promoter, it is likely that C2
represents endocardium. To examine this hypothesis, we analyzed
the expression of Cgnl1 and Dok4, which are reported to be
enriched in endocardium47. We observed that both Cgnl1 and
Dok4 were expressed in C2 population (Supplementary Fig. 4a,b).
The segregation of the putative endocardium from the haemato-
poietic and endothelial lineages is consistent with previous
reports that endocardium is derived from cardiac mesoderm
(Fig. 3c)48.

Biological verification of the dpath pipeline output. Our data
demonstrated that, by combining the biologically relevant meta-
gene signature, metagene entropy and the metacell landscape, the
dpath pipeline provided a straightforward way to examine the
lineage relationships of underlying single cells. Here we experi-
mentally verified two predictions from analyzing the metacell
landscape of Etv2-EYFPþ single cells.

Identification of endocardial cushion progenitors. We first
compared C1, C2 and C3 clusters, which were particularly
intriguing. C2 had the metagene signature for endothelial, cardiac
and mesodermal progenitors (MG1, MG3 and MG4), while C1
and C3 were dominated by the endocardial (MG3) and
endothelial (MG1) metagenes, respectively (Fig. 4a). On the
SOM, C2 connected C1 and C3 clusters and it had higher
metagene entropy (Fig. 3b). We then predicted that the C2
population was the progenitors of the C1 population, according
to their metagene coefficients and metagene entropy change. The
gene profile analysis revealed that the general gene expression
change was C2 (Etv2-EYFPþ , Cardiacþ , Endothelialþ )-C1
(Etv2-EYFPþ , Cardiacþ , Endothelial� ). This transition is
similar to the endothelial–mesenchymal transition involved in
the generation of cardiac cushion from the endocardium49.
By using Emcn and Tbx20 as markers for MG1 and MG3,
respectively, our immunohistochemical experiments confirmed
the existence of the C2 cell populations and supported that the C2
population were progenitors of the cardiac cushion that origi-
nated from endocardium, and the molecular transition (that is,
changes in gene expression profile) occurred as early as E8.25
(Fig. 4b, Supplementary Fig. 5 and Supplementary Note 1).

Identification of two waves of haematopoiesis. Next, we
examined the paths leading to haematopoiesis. We observed
that, on the SOM, between the highest entropy cell cluster C5
and the committed haematopoietic cluster C7, there existed
a transitional cell cluster C6 with metagene entropy between C5
and C7, predicting that the differentiation path is C5-C6-C7.
Within the C6 cluster, Runx1 was expressed in most of the C6
metacells, while Gata1 was only expressed in a few metacells near
the border with C7 (Fig. 4c,d). This order of gene expression is
consistent with the observation that Runx1expression preceeds
Gata1 expression during primitive haematopoiesis50. C4 is
another group that neighbours C7. The C4 cell cluster also had
relatively higher metagene entropy than C7 and harbored the
endothelial and haematopoietic metagenes; C4 had relatively
stronger expression of genes related to definite erythrocyte
differentiation (GO:0060216) than those related to primitive
erythrocyte differentiation (GO:0060215), thus the C4 cell cluster
represents the haemogenic endothelial lineage (Fig. 4e,f).

Endothelial differentiation. The C2 cell cluster was located
between C5 and the committed endothelial cluster C3 and had an
intermediate metagene entropy levels and served as a transition
state between C5 and C3. Therefore, C5-C2-C6 transition
represents the early differentiation of endothelial lineages.

Identification of pathways for haematoendothelial bifurcation.
We hypothesized that the signalling pathways enriched in clusters
C2, C5 and C6 have functional roles in the haemato-endothelial
development. We identified 132 genes that were significantly
upregulated in progenitor cellular clusters C2, C5 and C6,
compared with the other five clusters (SCDE P value o0.001)24,
and 21 KEGG pathways that were enriched in these upregulated
genes (Fisher’s exact test P value o0.05). Sonic signalling
pathway (SHH) ranked as the fifth most enriched pathways in
C2/C5/C6 (Fig. 4g,h). SHH has critical functions during
development and regeneration51. To examine the roles of the
SHH pathway in haemato-endothelial differentiation, we used an
ES/embryonic body (EB) differentiation model system and
exposed them to SHH agonist (SAG) or the SHH antagonist
cyclopamine from days 2 to 4.5 (Fig. 4i). At day 4.5, we undertook
FACS analysis for the Etv2-EYFPþ cells from respective ES/EBs
and analyzed them for endothelial and haematopoietic markers.
Compared with the dimethyl sulfoxide control, we observed that
the SHH agonist significantly promoted the endothelial and
haematopoietic progenitor cells (CD41þ /Tie2þ ), while
cyclopamine significantly suppressed this cell population

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14362

6 NATURE COMMUNICATIONS | 8:14362 | DOI: 10.1038/ncomms14362 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


(Fig. 4j). The SHH agonist and antagonist also had similar effects
on differentiated endothelial (Tie2þ /CD31þ ) and
haematopoietic (CD41þ /CD45þ ) lineages (Supplementary
Fig. 6). These experiments confirmed SHH as a key signalling

pathway that regulates the differentiation of haemato-endothelial
lineages52–55. Our studies further established a new role for
hedgehog signalling in the regulation of the haemato-endothelial
(Etv2þTie2þCD41þ ) progenitors (Fig. 4i,j).
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Discovery of trajectory from progenitor to committed state.
After organizing cells into a SOM such that neighbouring meta-
cells had a similar metagene expression pattern and establishing
metagene entropy as a means to add directionality to the differ-
entiation process, we next quantitatively assessed the progenitor
and committed states on the metacell SOM and predicted
the developmental trajectories. We first built a heterogeneous
metacell–metagene probability graph (a transition matrix) to
describe the probability of transitioning from a metagene to a
metacell (or vice versa) or from a metacell to another metacell.
A metacell was considered as a parent (progenitor) of its neigh-
bouring metacell on the SOM only if its metagene entropy was
higher than that of the derivative metacell. Second, we used a
RWR algorithm on the heterogeneous graph to infer the prob-
ability of a metacell being in a committed state to one metagene
or being in a progenitor state with the ability to transition to
multiple metagenes56. Once the most likely progenitor and
committed states (metacells) were identified, developmental
trajectories from the progenitor cellular states toward the commi-
tted cellular states of endothelium, blood and endocardium were
determined as the shortest paths between them on the SOM
(Fig. 5a).

First, we verified the inferred the progenitor and committed
cellular states. We ranked genes according to the similarity
between their metacell expression profiles and the probability of
being a specific cellular (progenitor or committed) state of the

metagene(s) (Supplementary Fig. 7). The GSEA suggested that
regulation of vasculature development (GO:1904018), erythrocyte
differentiation (GO:0030218) and epithelial to mesenchymal
transition (GO:0001837) related genes were significantly enriched
at the top ranking genes for the committed metacells for the
first, second and third metagenes, while the cell fate commit-
ment (GO:0045165) related genes were significantly correlated
with both MG3 and MG4, which was consistent with our previous
determination of metagene fates based on known marker genes
(Supplementary Fig. 8a–d)57. The GSEA of known mouse
phenotypic-related genes suggested similar functional separa-
tions of metagenes (Supplementary Fig. 8e–g). To further confirm
the biological relevance of genes that are enriched in predicted
progenitor cellular states, we examined a previously published
Etv2 chromatin immunoprecipitation sequence data set and
found that the genes that had experimentally verified 3,953
highly confident (common in their V5 and PolyAb experiments)
Etv2-binding sites (at least one chromatin immunoprecipitation
sequence hit within � 5,000 to þ 1,000 bp region surrounding the
transcription start sites of at least one transcript) had significantly
greater prioritization scores than those that did not (Wilcoxon
rank-sum test, P value o1.0� 10� 20, Supplementary Fig. 8h)58.
These results verified the biological relevance of progenitor and
committed cellular states inferred by the RWR algorithm.

Second, by examining the expression of three known lineage
marker genes (Emcn, Gata1 and Tbx20) along the dpath’s
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Figure 5 | dpath allows the definition of the developmental trajectory and hierarchy of lineages. (a) The developmental trajectories were indicated from

the high entropy progenitor (HEP) cellular state toward the committed cellular states of endothelium, blood and endocardium. The most likely progenitor

cellular state and committed cellular states were determined by a RWR algorithms on a metagene–metacell heterogeneous graph. The developmental

trajectories between the progenitor and committed cellular states were determined as the shortest paths (between the progenitor and the committed/

differentiated cell) on the metacell landscape. P1, P2 and P3 represented the predicted developmental trajectories toward committed endothelial,

committed haematopoietic and committed endocardial lineages. (b) The heatmaps show the expression pattern of Emcn, Gata1 and Tbx20 along the

trajectories P1, P2 and P3. (c) The Kendall rank correlation coefficients between the pseudotime and temporal labels (E7.25, E7.75 and E8.25) were used to

evaluate the performance of trajectory inference. For dpath, the lineage-specific cells were ordered into pseudotemporal order along three separate

trajectories P1, P2 and P3, respectively. The cells were also reordered merely based on their metagene entropy. For Monocle and Wishbone, we used the

cell-wise pseudotime reported by the algorithms.
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developmental trajectories, we found that Emcn, Gata1 and
Tbx20 were upregulated along the endothelial path (P1),
haematopoietic path (P2) and endocardial path (P3) (Fig. 5b).
We then undertook a head-to-head comparison and evaluated
whether currently available methods can predict the trajectories
that we obtained. Results show that Monocle, Wishbone and
Mpath were not able to infer the pseudotemporal or develop-
mental trajectories that agree with the current biological knowl-
edge (Supplementary Fig. 9). Moreover, to quantitatively evaluate
the accuracy of inferred pseudotime, we counted how often a
pseudotime puts a cell from a later temporal sorting before an
earlier one (measured by Kendall rank correlation coefficient).
We found that there existed a strong positive correlation between
temporal labels (E7.25, E7.75 and E8.25) and dpath’s pseudotime
(mean Kendall rank correlation coefficient¼ 0.798), which was
noticeably higher than popular pseudotime inference algorithms
such as Monocle (0.213) and Wishbone (0.375) (Fig. 5c, Mpath
was excluded from this comparison as the pseudotime could not
be automatically calculated).

Taken together, the GSEA of genes that were enriched in
committed and progenitor cellular states confirmed the biological
significance of developmental trajectories predicted by dpath, and
the results also suggested that the predicted pseudotime was more
accurate than Monocle and Wishbone.

Discussion
Here we describe the use of the dpath pipeline to decompose
single-cell RNA-seq data with the awareness of dropout events.
We provide three major technical breakthroughs to the single-cell
analysis technology that includes: (1) a method to fill in dropout
events; (2) a method to rank the differentiation potential using
the metagene entropy, and (3) a method to visualize the
differentiation paths on a 2D map. We used this method to
prioritize committed and progenitor states for haematopoietic,
endocardial and endothelial lineages obtained from 281 Etv2þ

cells and ranked genes for distinct cellular states, especially for
progenitor endothelial and haematopoietic states.

The first unique feature of dpath is applying wp-NMF for
decomposing single-cell RNA-seq data. The use of the weighted
Poisson model as the cost function reduced the impact of dropout
events on matrix decomposition by maximizing the usage of
informative genes that have a high probability of being expressed.
The other advantage of NMF-based matrix decomposition
method, compared with PCA, is that NMF yields a sparse
parts-based representation of gene expression profiles31. Just as
NMF is able to distinguish different meanings of words used in
different contexts, metagene basis and coefficients can overlap
and thus expose the participation of a single gene in multiple
pathways and account for the activity of multiple pathways in a
single cell. As a result of the parts-based representation, the
metagene entropy, the entropy of metagene coefficients after
proper scaling, serves as a measure of how many distinct
programmes (parts) are active (expressed) in a cell. A cell with
high metagene entropy implies that multiple programmes
(represented by metagene basis) participate in the cellular
activity, leading to a high uncertainty with respect to the
lineage commitment and thus high level of cellular plasticity59.
We applied dpath to publicly available single-cell data sets and
undertook a head-to-head comparison with conventional
programs. We demonstrated the superiority of dpath as it
accurately predicted differentiation states and had higher
resolution than previously published methods. Although
entropy has been described as a potential measure for the
uncertainty concerning the cellular state, to our knowledge, this is
the first study to establish an entropy-based method to measure

the multipotency in the context of single-cell expression
analysis42.

Another unique feature of our new package dpath is that it
represents the cellular states on a 2D SOM where metacells with
similar metagene expression profiles are grouped together. This
not only provides an intuitive way to visualize the distribution of
cellular states from the input cells but also reduces the impact of
dominant lineages in the analysis. Another important feature of
this method is that one metacell is allowed to have multiple
parental states, and globally, there can be multiple progenitor
states that can give rise to individual committed states. This
provides additional flexibility of modelling lineage hierarchies
than organizing cells into a lineage tree-like structure where
all individual committed states originate from one single cell,
because single-cell transcriptome analysis represents a snapshot
of cells present at experimental time points (E7.25, E7.75 or
E8.25, in this case), and any given cell is unlikely to be a
descendant of similar cells present at the same time. Therefore,
SOM reflects continuous differentiation paths of multiple
cells that are asynchronously differentiating towards the same
differentiated state.

To further examine the dpath algorithm, we interrogated a
subpopulation of the Etv2-expressing cells during murine
embryogenesis. The high entropy progenitor cells of the haemato-
poietic and the endothelial lineages that we have identified are of
intense interest, with respect to lineage specification. At E7.25
(early streak), E7.75 (late streak—late allantoic bud stage60) and
E8.25 (linear heart loop stage), Etv2-EYFPþ cells are present in
endothelial cells and primitive erythrocytes of the yolk sac blood
islands (extraembryonic) and embryonic blood vessels, including
dorsal aortae, endocardium and migrating angioblasts14.
Moreover, previous studies are consistent with the notion that
prior to gastrulation epiblast cells are largely unspecified, and the
signals they encounter as they ingress through the primitive
streak specifies their fate60,61. New mesodermal cells emerging
from the streak are still plastic but commit quickly to specific
lineages based on the signals they received in the primitive streak.
Differential enrichment of multiple signalling pathways in
haematopoietic and endothelial metacells indicate that these are
candidates that cells encounter as they pass through the primitive
streak. In the present study, we used dpath to successfully identify
the dynamic expression pattern of the members of SHH
signalling pathway and experimentally verify its critical roles in
haemato-endothelial lineage differentiation. We do recognize that
the number of profiled cells was relatively small compared with
the total population of Etv2þ cells in vivo, especially for the later
time point E8.25 (Supplementary Table 1). Although we have
successfully identified the major developmental trajectories
within the Etv2þ cells, addition of more single cells will reveal
further subpopulations within committed endothelial, endo-
cardial and haematopoietic lineages.

In summary, using the dpath pipeline, we successfully clustered
single-cell RNA seq data without using previously known
information, which was then verified by gene expression analysis
and functional analysis. The expression patterns of known genes
and calculated metagene entropy were consistent with known
differentiation pathways of haematopoietic and endothelial
cells. Our data are significant in multiple ways. First, we provide
the full transcriptome of individual Etv2þ cells, which was not
available previously. This is important as many genes are
commonly expressed in haematopoietic and endothelial lineages.
Cell surface markers commonly used to distinguish them from
each other or their progenitors are not highly specific. Here we
analyzed the transcriptome of single cells that provides informa-
tion for identifying novel markers of these cell populations
to improve the purity of populations for transcriptome and
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functional analyses. Second, we identified differentiation paths
from progenitors to more mature cells using the novel concept of
metagene entropy. The gene expression observations within the
SOM differentiation paths validate the method and attests that
this concept is an excellent approximation of the differentiation
process. We predict that this method will be able to reconstruct
differentiation pathways with any data set, including different
populations and broader, heterogeneous data sets. Third, pathway
enrichment analysis based on our results identified signalling
pathways and molecules that were not previously identified as
well as those that have been previously identified. Finally, we
provide the dpath pipeline in a downloadable R package. This will
be an essential tool to extract meaningful information from
exponential amounts of RNA-seq data produced daily.

Methods
Cell isolation. Etv2-EYFP embryos were harvested from time mated females at
E7.25, E7.75 or E8.25 and screened using microscopy for EYFP expression14.
Embryos were divided into EYFP-positive and -negative pools for dissociation with
TrypLE Express (Gibco by Life Technologies). After dissociation, cells were diluted
with 10% foetal bovine serum in DMEM and pelleted at 1,000g. Cells were
resuspended in 0.1% propidium iodide and 2% serum in PBS. EYFP-negative
embryos were used as a gating control sample. Propidium iodide-negative,
EYFP-positive cells were sorted by FACS using a MoFlo XDP (Beckman Coulter)
into DMEM plus 10% foetal bovine serum. FACS sorted cells were resuspended at
500 cells ml� 1 before loading onto a Fluidigm 10–17 mm integrated fluidics circuit
for capture, viability screening, lysis and library amplification on a C1 Single-Cell
Auto Prep System (Fluidigm).

Single-cell RNA-seq. Libraries were analyzed for cDNA content by pico green
staining. Wells that contained a single viable cell and at least 0.2 ng ml� 1 cDNA
were chosen to proceed with sequencing. All libraries were sequenced using 75-bp
paired end sequencing on a MiSeq (Illuminia), generating 202K–1,910K paired end
reads for each cell. The cells with o100K paired reads were removed, resulting in
281 cells for analysis. The transcripts per million (TPM) estimates were obtained
with TopHat (v2.0.13) and Cufflinks (v2.2.1)61. The median mapping rate was
88.3%. Among 14,480 genes that could be detected in at least two cells (TPMZ1),
we fitted a noise model with respect to each gene’s mean and coefficient of variance
(CV, s.d. divided by the mean) as log2 CV ¼ log2 meana þ kð Þ. Then we removed
1,448 genes with high technical noise, which were furthest from the fitted line62,63.
We also removed 7,240 ubiquitously expressed genes whose CV was below the
median CV. The resulting 5,799 genes were used for the following analysis.

Weighted Poisson non-negative matrix factorization. Let Xnm be the
log-transformed TPM of gene n in cell m. We hypothesized that the expected
log-transformed TPM of gene n in cell m, lnm, could be represented as:

lnm ¼
XK

k¼1

UnkVkm

Unk � 0;Vkm � 0

XK

k¼1

Vkm ¼ 1

where K was the number of metagenes, Unk was the metagene basis indicating the
contribution of gene n on the kth metagene and Vkm was the metagene coefficient
indicating the expression profile of the kth metagene in cell m. Specifically,
the expected gene expression level was modelled as the linear combination of
non-negative metagene basis and coefficients. The cell-wise metagene coefficients
were summed up to one.

Similar to work by Kharchenko et al.24 on the identification of differentially
expressed genes in single-cell RNA-seq data, we defined a weighted log-likelihood
function for an observed expression level of gene n in cell m as:

L Un ;Vm ;pnm½ � ¼ pnm ln Pois Xnm jlnmð Þþ 1� pnmð Þ ln Pois Xnm jl0ð Þ

where pnm ranges from zero to one, approximating the likelihood of gene n being
expressed in cell m, that is, the probability that observed expression level Xnm

follows a Poisson distribution with the mean as lnm. The dropout event was also
modelled as a Poisson distribution with the mean as l0¼ 0.1. As it was reasonable
to hypothesize that pnm was proportional to the probability of being expressed, it
could be estimated by:

pnm ¼
Pois Xnm j lnmð Þ

Pois Xnm j lnmð Þþ Pois Xnm j l0ð Þ
pnm could be viewed as a weight for the observed expression level of gene n in cell
m, depending on the probability of being expressed over that of a dropout event.

Taken together, to decompose expression matrix into metagene basis and
coefficients, we solved such a constrained maximization problem:

max
U;V;p

XN

n¼1

XM

m¼1

L Un ;Vm ;pnm½ �

s:t: lnm ¼
XK

k¼1

UnkVkm;8n ¼ 1; � � � ;N; m ¼ 1; � � � ;M

Unk � 0;Vkm � 0; 8n ¼ 1; � � � ;N; m ¼ 1; � � � ;M; k ¼ 1; � � � ;K

XK

k¼1

Vkm ¼ 1;m ¼ 1; � � � ;M

Similar to solving a regular NMF problem with cost functions as Euclidean
distance or Kullback–Leibler divergence, we optimized the objective function using
a gradient ascent method and multiplicative rules to iteratively update U and V,
until convergence or maximum iterations were reached:

U U � p� X=UVð Þ½ �VT

pVT

V V � UT p� X=UVð Þ½ �
UTp

V Vdiag 1=
PK
k¼1

Vk1; . . . ; 1=
PK
k¼1

VkM

� �
pnm  Pois Xnm jlnmð Þ

Pois Xnm jlnmð ÞþPois Xnm j l0ð Þ ; 8n ¼ 1; � � � ;N; m ¼ 1; � � � ;M

8>>>>>><
>>>>>>:

where ‘3’ was the Hadamard matrix product, ‘/’ was the element-wise division and
‘diag(y.)’ represents a diagonal matrix where diagonal entries are indicated by
‘y’.

To accelerate the convergence, weighted NMF was used as a burn-in phase to
initialize U and V, where a fixed weight of w0¼ 0.1 was given to the zero entries in
the gene expression matrix X and a weight of one to non-zero entries64. In
weighted NMF, V was initialized using non-negative singular value
decomposition65.

The metagene entropy of cell m was defined as �
PK
k¼1

Vkm ln Vkm .

Choice of the size of metagene K. As the objective function was not convex,
wp-NMF may or may not converge to the same solution on each run, depending
on the initialization of U. The wp-NMF was repeated for rmf times with different
random initialization of U. The consensus matrix �C and the cophenetic correlation
coefficients rK

�Cð Þwere computed as described in Brunet et al.31. We selected values
of K¼ 4 where the magnitude of the cophenetic correlation coefficient began to fall
(Supplementary Fig. 3a). Our experiments also suggested that rmf¼ 20 was
sufficient to obtain stable aggregated metagene coefficients, as the cophenetic
correlation coefficients were not significantly less than rmf¼ 50 or 75
(Supplementary Fig. 3b).

Evaluating the performance of factorization methods. For LOO-CV-based
evaluation, we trained linear support vector machine classifiers by using the factors
from (m� 1) cells and predicted the cell group (Emcnþ /Gata1� /Tbx20� ,
Gata1/Emcn� /Gata1þ /Tbx20� and Emcn� /Gata1� /Tbx20þ ) of the remaining
cell. This procedure was repeated for every single cell and the LOO-CV error was
determined as the overall prediction error. Lower LOO-CV error suggested better
factorizations on capturing the difference of the three groups of cells. For WSS/TSS
ratio-based evaluation, we computed the ratio of WSS and TSS of resulting factors.
Lower WSS/TSS ratio suggested that three group of cells were more tightly
clustered together on the reduced dimensions.

Clustering cells into metacells using a SOM. We used SOM to map cells into
P¼ 225 prototype metacells that were spatially organized on a 15� 15 2D hex-
agonal grid44. The input space for SOM was the mean metagene expression profiles
(metagene coefficients) �V from rmf repetitive runs of wp-NMF. The R package
kohonen was used to fit the SOM model with default parameters66. We used Wkp to
represent scaled expression level of kth metagene in metacell p, wherePK

k¼1 Wkp ¼ 1.

Partitioning SOM using PAM. The SOM were partitioned into multiple segments
using PAM algorithm. If the number of desired clusters C was specified, the
metacells were directly clustered into C clusters; otherwise, the SOM would be
partitioned into the maximum number of clusters, as long as the size of each
metacell cluster was no o15 and every metacell cluster was connected on the SOM
(that is, no clusters were divided into two or more isolated regions).

Constructing a heterogeneous metagene–metacell graph. A transition
probability matrix was used to characterize the hierarchical relationships among
P metacells and between P metacells and K metagenes. The transition probability
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matrix was defined as:

G ¼ GMC GMCMG

GMGMC bI

� �

where b 2 0; 1½ � and I was a K�K identity matrix.
As with the metagene entropy for the cells, we defined the metagene entropy of

metacell p as:

Hp ¼ �
XK

k¼1

Wkp ln Wkp

Based on our hypothesis that cells in a progenitor state have higher metagene
entropy than cells at the committed state, we initially constructed a P�P directed
metacell graph GMC for the hierarchical relationship of metacells. To prioritize
committed (progenitor) states, for any metacell p on the SOM, the parental
metacells were its neighbouring metacells in which metagene entropy was higher
(smaller) than Hp and the derivative metacells were the neighbouring metacells
where the metagene entropy was lower (higher) than Hp.

Thus the similarity between any two metacell p and q could be computed as:

Apq ¼ 1= 1þ jj Wp �Wq jj 2
� �

; if p was a parental metacell of q
0; otherwise

�

where jjWp �Wq jj2 was the Euclidean distance between the metagene coefficients
of metacell p and q.

Finally, the transition probability from metacell p to metacell q, from metagene
k to metacell p and from metacell p to metagene k were defined as:

GMCð Þpq¼ bApq=
XP

j¼1

Apj

GMGMCð Þkp¼ 1� bð ÞWkp=
XP

i¼1

Wki

GMCMGð Þpk¼ 1� bð ÞWkp=
XK

k¼1

Wkp

Prioritizing metacells with respect to cellular states. To prioritize metacells
with respect to specified cellular states (committed or progenitor), we utilized a
RWR algorithm based on the transition probability matrix G (ref. 67). RWR is a
method that has been successfully used in numerous item prioritization tasks, such
as web searches and characterizing disease-related genes56,68. The flexibility and
robustness of RWR algorithms allowed us to prioritize cells/metacells with defined
cellular states. The random walker starts from the vertex representing the
metagene(s) and randomly moves to one of its neighbouring metacell or metagene,
based on the transition probability described by G. Finally, the probability that the
random walker reaching a metacell p converges to a scaled steady state up, wherePP

p¼1 up ¼ 1, and all the metacell vertices in the graph are ranked by the steady-
state probabilities. We used the R package igraph to perform the RWR with the
default restarting probability 0.85 (ref. 69).

During the random walk, the parameter b regulates the probability of staying in
the metagene graph. A large b encourages the random walker staying in the
metacell graph GMC, resulting in a sharper ranking results, whereas a small b
encourages the random walker staying in the metacell–metagene graph GMGMC

and GMCMG, resulting in a more smoothened ranking. For the results reported in
this study, we set b¼ 0.85.

Gene enrichment score. We prioritized genes for a specified cellular state based
on the correlation between their expression level in metacells and the steady-state
probability u. Let Ynp be the expression level of gene n in metacell p. The
enrichment score of gene n in prioritized metacells for a specified cellular state was
defined as:

ESn ¼
XP

p¼1

Ynp þ 1PN
i¼1 Yip þ 1
� � up �

1
P

XP

j¼1

uj

 !

The enrichment score was the sum of steady-state probability (after scaled to mean
of zero), weighted by the observed expression level. High enrichment score sug-
gested high correlation between steady-state probability and expression levels.

Simulating single-cell RNA-seq expression data. We assumed the
expected expression level of a gene n2 1; � � � ;N½ � in cell m 2 1; � � � ;M½ �,

lnm ¼
PK
k¼1

UnkVkm , where V was randomly filled with 0 and 1 with probability 0.3

and 0.7, respectively, followed by scaling each column so that
PK

k¼1 Vkm ¼ 1 for
each m, and Unk was randomly sampled from a Gamma distribution with fixed
shape and rate. Let Dnm be a binary indicator matrix of being a dropout event for
gene n in cell m, where the dropout rate is 50%. The observed expression level of

gene n in cell m is Xnm, followed a Poisson distribution with mean as lnm if
Dnm¼ 0, otherwise zero. In the experiments, the total number of genes and cells
were set to 200 and 50, respectively.

Data availability. The single-cell RNA-seq data that support the findings of this
study have been deposited in NCBI Sequence Read Archive database with the
project accession number PRJNA350294. The dpath pipeline was implemented as
an R package (see Supplementary Software 1). All other relevant data are available
from the authors.
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