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ABSTRACT

Understanding transcription factor (TF) mediated
control of gene expression remains a major chal-
lenge at the interface of computational and experi-
mental biology. Computational techniques predicting
TF-binding site specificity are frequently unreliable.
On the other hand, comprehensive experimental
validation is difficult and time consuming. We intro-
duce a simple strategy that dramatically improves
robustness and accuracy of computational binding
site prediction. First, we evaluate the rate of recur-
rence of computational TFBS predictions by com-
monly used sampling procedures. We find that the
vast majority of results are biologically meaningless.
However clustering results based on nucleotide
position improves predictive power. Additionally, we
find that positional clustering increases robustness
to long or imperfectly selected input sequences.
Positional clustering can also be used as a mecha-
nism to integrate results from multiple sampling
approaches for improvements in accuracy over each
one alone. Finally, we predict and validate regulatory
sequences partially responsible for transcriptional
control of the mammalian type A g-aminobutyric acid
receptor (GABAAR) subunit genes. Positional cluster-
ing is useful for improving computational binding site
predictions, with potential application to improving
our understanding of mammalian gene expression.
In particular, predicted regulatory mechanisms in the
mammalian GABAAR subunit gene family may open
new avenues of research towards understanding

this pharmacologically important neurotransmitter
receptor system.

INTRODUCTION

Co-regulation is a basic mechanism to coordinately control
expression of genes in modules, biochemical pathways and
protein complexes (1–3). In eukaryotes, expression is most
often mediated by transcription factors (TFs) that bind
upstream of the transcription start site (TSS) and recruit the
polymerase assembly (4). TFs bind, with varying affinity, to
a set of similar, short (�6–20 nt) sequences (5). Computational
binding site discovery focuses on finding significantly over-
represented sequences in upstream regions of co-regulated
genes (6–8). Thus, computational TFBS prediction algorithms
must begin with an input set of promoters from genes hypo-
thetically co-regulated by a shared TF. The algorithms aim
to predict the binding positions and consequently the nucleot-
ide specificity of the TF (9–11).

The first part of transcription factor binding site (TFBS)
discovery, the input set, can be identified using either compu-
tational or experimental methods. Experimental techniques,
such as chromatin immunoprecipitation (ChIP) (12), have
been successfully used to generate a genome scale mapping
of approximate TF-binding positions (10,13,14). Computa-
tional techniques, such as phylogenetic profiling (15,16)
and artificial neural networks, can also be used to identify
sets of co-regulated genes. Both experimental and computa-
tional approaches, however, suffer from a significant false
positive (FP) prediction rate. Inclusion of extraneous promot-
ers in the input sets dilutes the enrichment of the shared
TFBS sequences making computational TFBS discovery
significantly more challenging (17). We term such erro-
neously included promoters decoy sequences (DSs).

*To whom correspondence should be addressed. Tel: +1 617 353 1122; Fax: +1 617 353 3333; Email: delisi@bu.edu

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors

� 2006 The Author(s).
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Published online 3 January 2007 Nucleic Acids Research, 2007, Vol. 35, No. 3 e20
doi:10.1093/nar/gkl1062



After receiving a set of upstream regions co-regulated by
a shared TF as input, computational methods aim to predict
the binding positions of that TF (6–8,18). Given a set of input
promoters, motif detection algorithms identify a set of short,
oligonucleotide segments hypothesized to bind to the TF of
interest. The predicted sequences can be used to construct a
position weight matrix (PWM) representing the average nuc-
leotide frequencies for each position in the site (19). Ideally,
computational detection will return all sequences that bind
to every TF with biologically relevant function in those
upstream regions. However, since the source of binding
specificity for TFs is not well understood (20), heuristic
approaches and ad hoc multiple alignment based scoring
schemes are used to identify locally optimal solutions (17).
Each local optimum that exists in a given set of promoters
may correspond to distinctly different motifs, and may
score differently relative to each other according to different
scoring schemes.

Binding site prediction algorithms are generally con-
founded by several factors: degeneracy in the binding site;
the unknown length of the binding site; the relatively large
length of promoters; and the inclusion of DSs in the input
sets (17,21,22). As a result as few as 10% of predicted posi-
tions correspond to biologically functional binding sites (23).
Due, in part, to the low accuracy rate, computational binding
site identification has been of limited use (23). Problems
identifying binding sites are further exacerbated in mamma-
lian genomes by larger promoter regions (24) and scarcity
of reliable information on co-regulation of genes. Thus, the
most demanding test of efficacy for TFBS identification
approaches lies in their application to mammalian systems
and subsequent validation of predictions.

Because of computational complexity of the problem,
Gibbs sampling is often used to identify binding positions
(18). In this paper, we present a new strategy that clusters
Gibbs sampling results at each input nucleotide—a technique
we term positional clustering—to improve accuracy of pre-
dicted TF binding. We evaluate the efficacy of our approach
using known examples of binding and regulation in yeast and
experimentally testing predicted TF-binding sites upstream of
the subunit genes coding for the heteromeric mammalian neu-
rotransmitter receptor system, the type A g-aminobutyric acid
receptor (GABAAR).

The GABAAR is the major inhibitory neurotransmitter
receptor in the central nervous system (CNS) (25,26) with
important roles in development (27,28) and disease
(29–31). The receptor is believed to be a pentamer made up
of multiple subunits that come from at least four different
subunit classes (a, b, g and d) (32). At least 19 genes code
for the various subunits that differentially combine to form
numerous pharmacologically distinct GABAA receptor iso-
forms (29,30). Isoform utilization depends in part on the
relative abundance of the subunits, which may change
under various conditions (33–35). Understanding subunit
regulatory mechanisms may provide insight into GABAA

receptor isoform usage and related phenotypes (36).
In the current study, we test the ability of positional clus-

tering to detect known TF-binding sites in a series of increas-
ingly noisy sets of yeast promoters, and found marked
improvement in the percentage of correct predictions over
Gibbs sampling alone. We also present de novo predictions

of TF-binding sites in promoter regions of GABAA receptor
subunit genes (GABRs) whose expression is altered (either
up-regulated or down-regulated) in an animal model of tempo-
ral lobe epilepsy (35). Positional clustering identified a number
of putative cis-regulatory sites, many of which correspond
to known binding elements for TFs found in the CNS. Mobility
shift assays showed several predicted GABR-binding
sequences specifically bind nuclear proteins derived from
primary neocortical neurons kept in culture. Furthermore, a
particular non-consensus GABR putative regulatory sequence
was shown to have a functional role in cultured cortical
neurons demonstrating the efficacy of positional clustering
in detecting functional regulatory elements in mammals.

METHODS

Saccharomyces cerevisiae promoter selection

We identified S.cerevisiae genes predicted at high confidence
(P < 0.001) to be regulated by the TF STE12 in YPD growth
media, according to whole-genome TF location data (14). For
the 51 identified genes, we collected upstream intergenic pro-
moters. Intergenic regions were truncated at 1 kb upstream of
the gene’s TSS.

GABR promoter selection

We selected for study a set of six GABRs: GABRA1,
GABRA4, GABRB1, GABRB3, GABRD and GABRE. Pro-
moters were extracted for each gene, including two alternative
first exons of the GABRB3 (37), giving a set of seven promot-
ers. The length of each promoter was: GABRA1, 3733 bp;
GABRA4, 1546 bp; GABRB1, 1353 bp; GABRB3 (exon 1),
1310 bp; GABRB3 (exon 1A), 2080 bp; GABRD, 6625 bp;
and GABRE, 5278 bp. We augmented the input set with
orthologous promoters from rat, with the exception of
GABRB3 for which an orthologous gene from mouse was
used. In total, 14 promoters upstream of six GABRs were
selected for analysis.

Evaluating long-term Gibbs sampling behavior

For a given input set of promoters, we ran the Gibbs sampler
BioProspector (8) 400–550 times, evenly distributed across
all motifs widths from 6–15 bp. We used a third-order back-
ground model derived from appropriate genomic promoters.
We collected the best three results from each BioProspector
run. We counted the number of times BioProspector identi-
fied each nucleotide in the input set. For each promoter, we
identified the maximally occurring nucleotide, and extracted
all positions identified by BioProspector >35% of the maxi-
mum. We clustered together neighboring positions into puta-
tive TFBS. As a dust filter, we removed all putative TFBSs
<6 bp long (Figure 1).

For sets of S.cerevisiae promoters, we used 1200 results
from 400 BioProspector runs in our evaluation. For GABRps,
we considered all 127 non-empty subsets of the seven pro-
moters (orthologous sequences were always considered
together). We used results from 70 000 BioProspector runs,
evenly distributed across all promoter subsets, in our analysis.
In addition to dust filtering, we required putative TFBSs
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to occur both in the human and in the orthologous rodent
promoter.

Evaluating STE12-binding site recovery

We used positive predictive value,

PPV ¼ TP/ðTP þ FPÞ‚

to evaluate STE12-binding site predictions. We classified pre-
dictions as true positive (TP) or false positive (FP) by compar-
ison to the STE12-binding motif, TGAAACA, as determined
by (14). For each sequence, we calculated distance from
the known STE12 PWM using a modified local ungapped
sequence alignment similar to that in (38). Alignments were
scored as the sum of Pearson’s correlation coefficient,

rðXÞ ¼ covðX‚PWMÞ
sxsPWM

‚

between prediction X and the STE12 PWM across all aligned
positions. Thus, scores ranged from zero, with no positions
aligned, to seven, the length of the STE12 PWM. We observed
a bimodal distribution of scores (Supplementary Figure S1),
and chose the alignment score corresponding to the minima
of the distribution (alignment score ¼ 4.5) as the threshold
to classify predictions as TP or FP.

Evaluating robustness to DSs

We complemented the seed set of 51 STE12-bound promot-
ers with 1–50 randomly chosen yeast promoters. We per-
formed our motif detection procedure on each input set,
and compared the PPV of putative TFBS with that of raw
BioProspector results (Figure 2, solid lines).

To evaluate the background rate of STE12-binding site
recovery, we created a seed set of 51 randomly chosen
S.cerevisiae promoters. We evaluated the percentage of
STE12-like binding sites identified in the random seed set,
as well as in versions of the seed set augmented with 1–50
randomly chosen yeast promoters (Figure 2, dashed lines).

For additional yeast evaluations (HAP4, TEC1, YAP1 and
YDR026C), we substituted for BioProspector an in-house
implementation of the BioProspector algorithm. Comparisons
of results from each implementation show the two implemen-
tations to be approximately equivalent.

Identification of known binding motifs
in GABR predictions

We ran MotifScanner (39) to search GABR promoters for all
vertebrate TF-binding motifs found in TRANSFAC (40). For
each promoter analyzed, we used a prior probability of 0.1
and the corresponding organism specific third-order promoter
background model from Eukaryotic Promoter Database
(EPD) (41).We considered positional overlap between Motif-
Scanner predictions and putative TFBSs indicative of known
binding motifs in our predictions.

Electrophoretic mobility shift assay (EMSA)

Double-stranded oligonucleotides for EMSA contained the
following sequences:

(i) GABRB1: AATACGGTCCCTACT,
(ii) GABRD: ACTTAATTTGATTCCAT,

(iii) GABRB3: CGTGCCGGGGCGCGGCGGA,
(iv) GABRA4: AGCGCGGGCGAGTGTGAGCGCGAGT-

GTGCGCACGCCGCGGG,
(v) GABRA4: GTGCACACACACGCCCACCGCGGCT-

CGGG and
(vi) GABRD: TGACCGTAGTAGA.

Nuclear extracts were prepared (42) and used for gel shift
analysis after concentration (Microcon no. 10 columns, Amicon,
MA). Quantification was performed on EMSAs under condi-
tions that yield a standard curve for band intensity.

Double-stranded oligonucleotide functional analysis

Single-stranded sense and antisense phosphorothioate oligonu-
cleotides for the predicted GGCGGCGTGCACACACACGC-
CCACCGCGG binding site are annealed by boiling sense and
antisense oligonucleotides for 5 min at equal molar ratios in
dH2O. Oligos are then cooled to room temperature and placed
on ice. Transfections using DOTAP (Roche)/HEPES solutions
are performed with oligonucleotides corresponding to wild-
type, mutant or with DOTAP (Roche)/HEPES solution lacking
oligonucleotides (MOCK) as described in (29). Effects
of oligonucleotide application to neurons are assessed by
real-time RT–PCR.

RESULTS

Gibbs sampling framework

Since TFBS are predicted computationally by local optimiza-
tion strategies, we evaluate the extent to which one of these
strategies, Gibbs sampling, identifies the same set of

Figure 1. Schematic diagrams of the positional clustering process. (1) Sets of
putatively co-regulated genes are identified. (2) Gibbs sampling is iterated on
the input set thousands of times across numerous motif widths. Results are
clustered on promoter position, creating a per-nucleotide frequency of the
long term recurrence of Gibbs sampling. (3) A linear threshold is used to
isolate the most frequently recurring positions, discarding all positions which
fall below the threshold.
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segments in repeated runs using the same input data. Identi-
fying stably recurring motifs requires clustering of related
results which, in turn, requires definition of ‘related’.
Sequence similarity based clustering is impaired by the com-
bination of sequence variation within motifs, the short length
of TF-binding sites, and aligning motifs of different lengths.
Instead of using sequence based clustering, we chose to clus-
ter results by position, counting the number of times Gibbs
sampling identifies each nucleotide in the promoter
(Figure 1). We find that Gibbs sampling predictions, gener-
ated using BioProspector (8) are power-law distributed over
nucleotide position (Supplementary Figure S2). Gibbs sam-
pling converges on the majority of nucleotides very infre-
quently, and a small number of nucleotides very frequently.
Thus, the most frequently recurring nucleotides appear in as
few as 10% of results. Moreover, we find the power-law dis-
tribution of results is robust to Gibbs sampling algorithm and
scoring scheme (data not shown). We can hypothesize that
the most frequently occurring positions are the most biologi-
cally significant. Thus, discarding the least frequent Gibbs
sampling results may yield higher accuracy and robust iden-
tification of biologically insignificant positions.

As a preliminary test of the above hypothesis, we applied
repeated runs of Gibbs sampling to a set of 51 S.cerevisiae
promoters enriched in STE12 binding as identified by whole-
genome ChIP-chip experiments (10). We used positional clus-
tering of 1200 results to identify the most frequently recurring
positions (see Methods). Incorporation of additional results
did not significantly alter the distribution of results (data not
shown). We chose STE12 because it is one of the best studied
TFs, with a well known, highly conserved and experimentally
well-defined binding motif (10,43). The most frequently

recurring positions were compared with the known STE12-
binding motif (40). We classified predictions into two cate-
gories: true positive (TP) if they resemble the experimentally
identified STE12-binding motif, and false positive (FP) other-
wise (see Methods). Finally, we calculated the positive predic-
tive value PPV as PPV ¼ TP/(TP + FP).

We find that positional clustering and subsequent selection
of frequently recurring nucleotides improved the PPV of the
STE12 binding site by at least 37% over Gibbs sampling
alone (Figure 2). To validate that the above results were not
specific to the number of input promoters, the STE12-binding
motif, or the particular Gibbs sampling implementation, we
repeated the above prediction process for promoters predicted
to bind to YAP1, TEC1, HAP4 and YDR026C. We also
repeated the analysis replacing the original Gibbs sampling
procedure with our own implementation and MotifSampler
(44). In all cases, we found positional clustering significantly
improves on results over local optimization procedures alone
(Figure 3).

Computational discovery of TFBS can have two types of
FP predictions. One type is the identification of an incorrect
motif from a set of upstream regions known to bind to a TF of
interest as described above (see Methods). The second type
of FP error is the background discovery rate of the correct
motif using upstream regions that do not bind to the TF. To
simulate this rate for STE12-like binding site recovery we
repeated the analysis as described above starting with 51 ran-
domly chosen yeast promoters. We find that positional clus-
tering identifies STE12-like sites in <5% of results, compared
with 10–15% for Gibbs sampling alone. Thus, using posi-
tional clustering, the performance of computational motif
discovery is enhanced not only by improving the positive pre-
dictive value in promoters of genes co-regulated by STE12,
but also by decreasing the false discovery of STE12-like
sites by �10%.

Robustness to DSs

Next, we evaluated the effect of adding DSs on the perfor-
mance of Gibbs sampling with and without positional cluster-
ing. Addition of DSs dilutes enrichment of the TF-binding
site in the input set, making motif detection more challenging
(17,22). Modeling DSs, we repeated our estimate of PPV of
TFBS detection with the addition of 1–50 random yeast pro-
moters (DSs) to the original set of 51 STE12-bound promot-
ers. We found that positional clustering improves the PPV of
Gibbs sampling by >20% through the addition of up to 80%
noise or 40 DSs (Figure 2, Supplementary Figure S3). Addi-
tionally, results of Gibbs sampling both with and without
positional clustering decay linearly with the addition of
decoys [R2 ¼ 0.81 and 0.95, respectively (Supplementary
Figure S4)]. Extrapolating, we predict positional clustering
will maintain an improved PPV through the addition of
>100% noise or 70 DSs.

To address issues of generality, we repeated the procedure
on additional sets of S.cerevisiae promoters (YAP1, TEC1,
HAP4 and YDR026C). An added benefit is that we can evalu-
ate the effect of information content of the binding motif and
number of promoters on the improvement from positional
clustering (22). Repeating the analysis, we again find that
independently of the set or sampling procedure, positional

Figure 2. The robustness to decoy sequences (DSs) of Gibbs sampling with
and without positional clustering. Fifty-one increasingly noisy STE12-
binding site enriched datasets were analyzed using Gibbs sampling with
positional clustering (red solid line) and without (black solid line). The dotted
lines represent null controls, e.g. identification of STE12-like motifs by Gibbs
sampling (black dotted line) and positional clustering (red dotted line) given
random upstream regions. x-axis counts over the addition of DSs. Each set of
DSs was chosen independently from all upstream regions in the S.cerevisiae
genome. We evaluated the positive predictive value of each technique on
each dataset, and found positional clustering significantly improved the PPV
through addition of 45 DSs.
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clustering improves accuracy through a broad range of ran-
dom DSs (Figure 3). Improvement appears to be limited
and unreliable only when sampling alone correctly identifies
the binding site in fewer than �20% of results. This result is
consistent with our analysis of STE12-bound promoters
(Figure 2), and may correspond to a lower limit for the
efficacy of positional clustering.

Integrating sampling strategies

Recently, researchers have noted that complementary motif
detection approaches can be used together to predict binding
sites more effectively than either method alone (23). With
this in mind, we evaluated positional clustering in terms of
its ability to combine results from two different sampling
implementations. For each dataset, an equal number of results
from each approach were combined into a single dataset, and
positional clustering was used to predict binding sites as
described above (Figure 3C). We measured the average per-
cent change in PPV for each TF on each dataset, and found
positional clustering improved combined sampling by 94%

compared with 25% and 27% improvement for BioProspector
and MotifSampler, respectively. Additionally, clustering
combined sampling improved 19 of the 22 datasets evaluated,
whereas clustering of BioProspector and MotifSampler
results improved 17 and 16 datasets, respectively. Thus, posi-
tional clustering is an effective mechanism to integrate results
from multiple sampling procedures.

Identification of GABR cis-regulatory sequences

As described above in Introduction, identifying functional
TFBS in mammals is difficult due in part to inclusion of
decoy sequence from long upstream regions and lack of
information on co-regulation of genes. Positional clustering,
as shown above, is more robust to noisy input than Gibbs sam-
pling alone, and thus may be better suited to identify de novo
cis-regulatory elements in mammalian promoters that are
coordinately regulated. To test this possibility, we chose seven
mammalian GABR promoters (GABRps) whose activity is
potentially altered in response to status epilepticus as identi-
fied through change in mRNA levels of the gene products

Figure 3. Improvement and robustness of positional clustering on promoters bound to other yeast TFs. Sets of S.cerevisiae promoters bound by the TFs YAP1,
TEC1, HAP4 and YDR026C were chosen according to ChIP-chip experiments (10). For each set, the initial promoters were analyzed using Gibbs sampling with
positional clustering (solid triangles) and without (open triangles). Two Gibbs sampling approaches were applied to each dataset: a Gibbs sampler procedure
similar to BioProspector (8) (row A), and MotifSampler (39) (row B). Row C shows the combination of both sampling procedures, along with positional
clustering of the combined results. x-axis counts over addition of DSs. We evaluated the positive predictive value of each technique on each dataset, and found
positional clustering generally improved the PPV through addition of 100% random DSs.
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(31,35). We also included orthologous rodent promoters in the
input sets (45). Orthologous promoters were included to pro-
vide more instances of binding sites in the input set than would
be expected by random, allowing for easier detection of the
sites. Inclusion of orthologous promoters has the additional
effect of selectively amplifying evolutionarily conserved
binding sites. Such binding sites are more likely to have
major functional roles in the regulation of the GABR receptor.
Thus, sensitivity to such sequences is improved at the expense
of sensitivity to species-specific binding sites. With this effect
in mind, we require all GABR-binding site predictions to
exist in orthologous promoters. Since the mechanisms of
co-regulation for the seven GABRs are unknown, hypothetical
co-regulation models were evaluated by querying all 27 possi-
ble subsets of the seven GABRps. Clustering results on nucle-
otide positions and selecting the most frequently occurring
positions, we predicted 13 functional TF-binding sites.

Predictions were compared with instances of known bind-
ing motifs from TRANSFAC (40), and 8 of the 13 predictions
(61.5%) resembled known binding sites for 10 TFs (Table 1).
Of the 10 TFs, 7 have been identified in the CNS of rodents:
SP-1 (46); AP-2, TST-1 (POU3F1), OCT-1 (POU2F1), OLF-1

(47); CP-2 (48); and RREB-1 (49). Furthermore, previous
analyses of GABR promoter regions agree with our predic-
tions that assign putative regulatory roles to SP-1, OCT-1,
OLF-1 in the regulation of GABRs (29). We chose to validate
novel motif predictions with EMSAs and functional studies in
primary cultured neurons.

EMSA (50) was performed with an excess of cold competi-
tors to define specificity of protein binding in nuclear extracts
derived from primary neocortical neurons and fibroblasts
(FIBs) kept in culture. As shown in Figures 4–6, out of six
predicted binding sites found upstream of the (a, b, g and
d) subunit genes, four (GABRA4, GABRB1, GABRB3 and
GABRD) displayed specific binding. In addition to specific
binding of neuronal extracts to novel GABRA4 motifs, we
have evidence for specific binding using FIB extracts
(Figure 5A and B), of especial interest given that the expres-
sion of GABRs is restricted to the nervous system and repres-
sors such as the RE1-silencing transcription factor (REST)
(51,52) expressed in non-neuronal cells have been implicated
in the neural specificity of gene expression.

Clearly, protein binding to DNA does not always necessi-
tate regulatory function. To begin to address the functional

Table 1. Positional clustering based predictions of transcriptional regulatory sequences upstream of GABRs

In total, we predict 15 orthologous pairs of regulatory sequences, representing 13 unique sequences. Comparing with known mammalian binding motifs, eight of
the predictions show similarity to previously characterized TFBS, as indicated. Where no known binding motif exists, the corresponding in vitro EMSA and
functional assay, if applicable, is indicated. Similar predictions are grouped together and aligned by hand.
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significance of our predicted regulatory motifs, we evaluated
the effects of transfecting neurons with double-stranded
oligonucleotides containing one of the GABRA4 novel bind-
ing motifs (dsA4O), as described above. GABRA4 is espe-
cially interesting given that it is regulated by brain derived
neurotrophic factor (BDNF) after status epilepticus (31,53).
Transfection with the dsA4O produced a significant down-
regulation of GABRA4 gene expression in neocortical neurons
as monitored by quantitative real-time RT–PCR with no

change after MOCK transfection or transfection with a dsO
containing three copies of a cAMP regulatory element
(CRE) (Figure 6).

DISCUSSION

How reliable are the binding site predictions returned by
Gibbs sampling based TFBS identification algorithms? We
began by evaluating the stability of binding site predictions
via repeated runs of Gibbs sampling. To quantify the robust-
ness of predictions, we counted the number of Gibbs sam-
pling results at each nucleotide position in the input set
(Figure 1) over a large number of repeated trials. We find
that the most frequently returned positions better predict TF
binding sites than the maximally scoring motifs from Gibbs
sampling (Figures 2 and 3). Since scoring functions are
empirically derived and do not necessarily represent biologi-
cal reality, the result is not altogether unexpected (17). How-
ever, we find that selecting frequently recurring positions
allows filtering of up to 90% of spurious sampling results
caused by convergence on biologically uninformative local
minima. Positional clustering allows unbiased aggregation
of results from different motif widths, thus approximating
the width of the binding site ‘for free’ (54).

Next we show that positional clustering improves robust-
ness to the addition of DSs (Figures 2 and 3). Such sequences
arise from inclusion of promoter regions in input sets without
direct binding to the TF either due to experimental error or
computational mis-annotation (17,22). In the STE12 example
studied, linear regression models indicate our approach will
maintain an advantage over traditional Gibbs sampling
through addition of up to 150% noise to the original signal
(Supplementary Figure S4). Empirical data, however, show
a sharp decrease in improvement close to the addition of
45 DSs, or roughly double the input set (Figure 2). Moreover,
evaluations using promoters co-regulated by other TFs

Figure 6. Double-stranded oligonucleotide functional assay for GABRA4
regulation. Primary cultures of rat neocortical neurons were treated with
DOTAP (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-
sulfate) alone (Mock) or with DOTAP and phosphothioate oligonucleotides
from either a cAMP response element (CRE Decoy) or a sequence from the
GABA-A4 promoter predicted using positional clustering (GABA-A4 Decoy)
(GTGCACACACACGCCCACCGCGGCTCGGG). mRNA was harvested
after 24 h, and real-time RT–PCR was performed with GABA-A4 specific
primers. Error bars refer to individual experiments; i.e. different platings of
cells from different animals. Data was normalized to rRNA levels, and
expressed as relative mRNA levels (GABA-A4/rRNA). Results are shown as
mean ± SEM, N ¼ 3, asterisk indicates significantly different from control at
the 95% confidence interval.

Figure 5. EMSA of three putative TF binding sites form DNA–protein
complexes in neocortical and fibroblast nuclear extracts. Neocortical (NEO)
and fibroblast (FIB) nuclear extracts from E18 rat embryos were incubated
with three 32P-radiolabeled probes from human A4 and D receptor subunits.
Cold wild-type oligonucleotides were used to define specificity through
competition. Cold oligonucleotides were added at 100-fold excess over probe.
The conditions for each lane are as indicated. Specific binding complexes are
shown using asterisks (*). The probe sequences are as follows: (A) GABA-
A4: AGCGCGGGCGAGTGTGAG CGCGAGTGTGCGCACGCCGCGGG,
(B) GABA-A4: GTGCACACACACGCCCACC GCGGCTCGGG and (C)
GABA-D: TGACCGTAGTAGA.

Figure 4. Three putative transcription factor binding sites form DNA–protein
complexes in neocortical nuclear extracts. Neocortical nuclear extracts from
E18 rat embryos were incubated with three 32P-radiolabeled probes from
human GABRB1, GABRD and GABRB3. Cold wild-type oligonucleotides
were used to define specificity through competition. Cold oligonucleotides
were added at 100-fold excess over probe. The conditions for each lane are as
indicated. Specific binding complexes are shown using asterisks (*). The
probe sequences are as follows: (A) GABRB1: AATACGGTCCCTACT, (B)
GABRD: ACTTAATTTGATTCCAT and (C) GABRB3: CGTGCCGGGG-
CGCGGCGGA.
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indicate positional clustering is less likely to improve predic-
tions when Gibbs sampling identifies a correct site in <20%
of repetitions (Figure 3). Thus, it is possible the rather simp-
listic linear model overestimates improvement in robustness
beyond what is practically achievable. Moreover, when mul-
tiple motifs exist in the input promoters, preliminary evidence
suggests positional clustering will uniquely identify a single
dominant motif (Supplementary Figure S5). With further
refinement, however, it may be possible to recover subordi-
nate motifs, enabling identification of cis-regulatory modules.
In spite of these limitations, using positional clustering of
repeated runs, researchers can successfully apply sampling
algorithms in identification of functional binding sites in
datasets with a significant proportion of noise.

Computational prediction of TF binding in mammalian
genomes poses just such a challenge due to increased decoy
sequence in large upstream regions (24). Thus, having estab-
lished increased robustness to DSs in yeast, we applied our
approach to identify potentially unknown GABAA receptor
subunit gene regulatory sequences that may participate in
the response of the genome to seizure activity. We reasoned
that GABAA receptor subunit genes either up-regulated or
down-regulated in the animal model of epilepsy would
share common binding motifs. Using positional clustering,
we predicted 13 TF-binding sites upstream of GABAA recep-
tor subunit genes (Table 1). Twelve of our predictions were
verified by either comparison to known binding sites or
experimental verification using in vitro binding assays. Ini-
tially positive experimental results highlight the ability of
computational techniques to direct research into transcrip-
tional regulation in mammalian models. As such, our
approach may be applicable in the study of other protein
complexes in the mammalian proteome.

The reported predictions may enable pharmacologically
important downstream research. For example the predicted
sites can be used as a starting point for quantifying in vivo
effect on downstream transcription; for identifying the TFs
bound; and even for the more complex task of understanding
the role of each site in determining the relative abundance of
GABAA receptor isoforms. Research along these lines may
dramatically improve our understanding of GABAA receptor
regulation and its role in disease and development. Addition-
ally, a more comprehensive evaluation of the remaining
GABAA receptor subunit genes may reveal additional TF-
binding sites that uncover the evolutionary significance of
g-a-b GABR clusters in the human genome.
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