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ABSTRACT

p63 is a sequence-specific transcription factor that
regulates epithelial stem cell maintenance and
epithelial differentiation. In addition, the TAp63
isoform with an N-terminal transactivation domain
functions as an inducer of apoptosis during the
development of sympathetic neurons. Previous
work has indicated that the co-activator and
histone acetyltransferase (HAT), p300, can bind to
TAp63 and stimulate TAp63-dependent transcription
of the p21Cip1 gene. Novel INHAT Repressor (NIR) is
an inhibitor of HAT. Here, we report that the central
portion of NIR binds to the transactivation domain
and the C-terminal oligomerization domain of
TAp63. NIR is highly expressed in G2/M phase of
the cell cycle and only weakly expressed in G1/S.
Furthermore, except during mitosis, NIR is pre-
dominantly localized in the nucleolus; only a small
portion co-localizes with TAp63 in the nucleoplasm
and at the p21 gene promoter. Consistent with NIR
acting as a repressor, the induced translocation of
NIR from the nucleolus into the nucleoplasm
resulted in the inhibition of TAp63-dependent
transactivation of p21. Conversely, knockdown of
NIR by RNAi stimulated p21 transcription in the
presence of TAp63. Thus, NIR is a cell-cycle-
controlled, novel negative regulator of TAp63. The
low levels of nucleoplasmic NIR might act as a
buffer toward potentially toxic TAp63.

INTRODUCTION

p63 is a close relative of the p53 tumor suppressor and
transcription factor. p53 stimulates, upon potentially
tumor-inducing damage, the transcription of cell cycle

arrest and pro-apoptotic genes among numerous others
(1). Both family members can target a common subset
of genes in response to damage, and p63 is also involved
in tumor suppression and progression, although more
subtly (2,3). In contrast to p53, however, p63 exerts
an important function during development—in the
morphogenesis of stratified epithelia (4). Point mutations
in the p63 gene have been associated with ectodermal
dysplasias in humans (5). It is therefore no surprise that
many target genes are unique to each transcription factor.
Tetrameric p63 seems to preferentially bind to two con-
secutive 10-mer sequence motifs with the consensus
(rrrCGTGyyy), (t/a,a/t,a,C,A/T,T,G,t,t/a,t), or (rrrC,A/
G,T/A,Gyyy), whereas tetrameric p53 preferentially
recognizes (rrrC,A/T,A/T,Gyyy) (r=purines; y=
pyrimidines). Both proteins apparently prefer spacing
between the 10-mers not exceeding 0–2 bp (1,6–8).
p63 exhibits a high degree of molecular complexity.

The presence in the p63 gene of an internal promoter in
intron 3 can give rise to proteins with the major
transactivation domain deleted (�Np63). These DNA
binding-active, transactivation-impaired isoforms seem
to act primarily as transcriptional repressors, although
the presence of two cryptic minor transactivation
domains may indeed allow them to transactivate a
distinct subset of genes (7,9,10). Adding to the complexity,
at least three variants (a, b and g) are generated by alter-
native splicing within the 30 part of the gene, coding for the
C-terminus, and all can occur in combination with
the N-terminus-complete (TAp63) and N-terminus-
deleted (�Np63) variants, thus adding up to at least six
isoforms (11). A recent comprehensive study has revealed
that almost 2000 genes are bound by p63 in a human
cervical carcinoma line, and that �800 of these are
differentially expressed in response to active p63 (12).
Among the sequences regulated by both p63 and p53 are
the genes for the cyclin-dependent kinase inhibitor
p21Waf/Cip1 (CDKN1A), the ubiquitin ligase MDM2,
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and the pro-apoptotic proteins Bax, Noxa, PERP and
PUMA. Many other targets, including the gene for the
SMARCD3 regulator of chromatin, are specifically
regulated by p63 (6,8,13). Physiologically, p63 function
is critical, for instance, for epithelial stem cell maintenance
(4,14), squamous epithelial differentiation and skin
renewal (15–17), and for the efficient apoptosis of
developing sympathetic neurons (18).
p300/CBP is a transcriptional co-activator that acts as a

bridging factor between various transactivators and the
basal transcription machinery in response to specific
signals. It is also a histone acetyltransferase (HAT) that
transfers an acetyl group to the e-amino group of a lysine
residue (19–21). Gene transcription by the p53 family of
proteins (comprising p53, p63 and p73) is regulated by
p300/CBP (22–26). Besides histones, p300 can acetylate
non-histone substrates, including p53, p63 and p73 them-
selves. Acetylation of p53 (27) and TAp63 (22), but not
�Np63 (22) and p73 (28), facilitates the transcriptional
activation of a major target, the p21Waf/Cip1 gene,
whereas acetylation of p73 seems to specifically influence
the expression of some pro-apoptotic genes upon DNA
damage (29).
NIR was recently discovered by us as being a new

member of the INHAT (inhibitors of HATs) family of
co-repressors (30). INHATs were first described as part
of a multiprotein complex capable of inhibiting the
p300/CBP and pCAF effects on histones (31). The active
moiety Set/TAFß1 was reported to sterically hinder HAT
activity by direct binding to histone substrates. Set/
TAFb1 as well as pp32, another member of the INHAT
family (32), and NIR (30) preferentially associate with
hypoacetylated histones and are inhibited by H3 and
H4 acetylation (30,33,34). However, in contrast to the
previously identified INHATs, NIR does not seem to
coexist in complexes with histone deacetylases (HDACs)
(30). NIR binds to the p53 tumor suppressor and is
recruited by it to p53-regulated genes. Here, we show
that NIR is controlled by the cell cycle and associates
with and regulates the TAp63 regulator of differentiation
and stem cells.

MATERIALS AND METHODS

Plasmids, chemicals and antibodies

pGEX-p53 was kindly provided by Lienhart Schmitz
(Department of Chemistry, University of Bern, Bern,
Switzerland). All GST-p63 deletion mutants, GST-
TAp63g full-length as well as GST-�Np63a were
generated by polymerase chain reaction (PCR) and
cloned into pGEX-4T1 (Amersham Biosciences).
pRTS-1 was kindly provided by Georg Bornkamm (GSF
Institute of Clinical Molecular Biology, Muinich,
Germany). pRTS-TAp63g and pRTS-p53 were generated
by PCR and cloning into pRTS-1. Cloning details are
available upon request. All constructs were verified by
sequencing. pCMX-myc-NIR full-length and pCMX-
Flag-NIR full-length were constructed as reported
previously (30). pRcCMV-p51A (corresponds to Homo
sapiens TAp63g) was kindly provided by Matthias

Dobbelstein (Molecular Oncology, University of
Goettingen, Goettingen, Germany). The drugs doxy-
cycline, actinomycin D, adriamycin (ADR), cyclohexi-
mide, 5-fluorouracil, MG132, methyl methanesulfonate
and mycophenolic acid were from Sigma (St Louis,
USA), as were the protease inhibitor cocktail,
40,6-diamidin-20-phenylindoldihydrochlorid (DAPI), the
ß-actin monoclonal antibody, the TRITC-conjugated sec-
ondary anti-mouse and the peroxidase-conjugated second-
ary anti-mouse and anti-rabbit antibodies. Hygromycin
B and the transfection reagent Nanofectin I were from
PAA (Pasching, Austria). RNAifect was from Qiagen
(Duesseldorf, Germany). The p63 monoclonal antibody
4A4 was purchased from Chemicon/Millipore (Billerica,
USA). The p53 monoclonal antibody DO-1 was
purchased from Calbiochem (San Diego, USA). The p21
monoclonal antibody SX118 was from BD Pharmingen
(Franklin Lakes, USA). The secondary Alexa Fluor
488-labeled rabbit antibody was from Invitrogen/
Molecular Probes (Carlsbad, USA).

Cell culture, transfection and synchronization

All cells were maintained at 37�C in a 7% CO2 atmo-
sphere. H1299 and HaCaT cells were maintained in
DMEM (PAA, Pasching, Austria) with 10% fetal calf
serum. HCT116 cells were maintained in McCoy’s 5A
Medium (Sigma, St Louis, USA) with 10% fetal calf
serum. Human primary fibroblasts were maintained in
MEM with Earle’s Salts (PAA, Pasching, Austria) supple-
mented with 10% fetal calf serum, 1% non-essential
amino acid solution (Sigma, St Louis, USA) and 1%
sodium pyruvate (PAA, Pasching, Austria). For transient
transfection, cells were seeded to a confluency of 60–70 %
and were transfected with Nanofectin I (PAA) following
the manufacturer’s recommendation. For stable
transfection, H1299 cells were seeded to a confluency of
60–70% and were transfected with the doxycycline-
inducible pRTS-TAp63g. 24 h after transfection cells
were selected in 400 mg/ml hygromycin B (PAA,
Pasching, Austria). Within the next 2–3 weeks, hygro-
mycin B-resistant cells grew out and were expanded.
The stable cell line was maintained in culture under
hygromycin B selection in the absence of doxycycline.
For synchronization of human diploid fibroblast
cultures, dishes with contact-inhibited cells were split
1 : 2 and incubated for 24 h in medium supplemented
with 0.1% FCS. Medium was then replaced by full
medium plus 10 ng/ml FGF (Biomol, Hamburg,
Germany) for 6 h, and supplemented with 0.25mM
mimosine (Sigma, St. Louis, USA) for 17 h. Cultures
were then washed several times in phosphate-buffered
saline (PBS; to remove mimosine) and fed with full
medium (time point: 0 h). The cells were harvested after
the indicated times for FACS, RNA and protein analysis.

GST pull-down assay

The GST-fusion proteins were expressed in Escherichia
coli by transformation with the appropriate plasmids
(available upon request). Expression was induced by
treating exponentially growing cultures with
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isopropyl-1-thio-b-D-galactopyranoside (100 nM) for 4 h,
and the cell pellets were then resuspended in GST-low
salt buffer [20mM Tris/HCl pH 7.5, 100mM NaCl,
1mM EDTA, 1% NP40, 2mM DTT, protease inhibitor
cocktail (Sigma)], supplemented with lysozyme to a final
concentration of 50 mg/ml. The extracts were sonicated for
1min, cleared by centrifugation and were then incubated
for 30min with Glutathione-Sepharose beads (50% slurry;
GE-Healthcare) and were washed four times with
GST-0.4M salt buffer (50mM Tris/HCl, 400mM NaCl,
2mM EDTA, 0.5% NP40). Quantities of bead suspension
loaded with approximately equal amounts of the fusion
proteins [tested by sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE)] were then incubated
over night at 4�C with equal amounts of in vitro translated
radiolabeled NIR proteins (2 mCi/reaction). The in vitro
translation was performed with a TNT-T7 Coupled
Reticulocyte Lysate System, according to the manufac-
turer’s protocol (Promega), using 2–4 mg plasmid and 35S
radiolabeled cysteine and methionine (20 mCi). After incu-
bation, all probes were washed four times with GST-0.4M
salt buffer. Then GST protein complexes were eluted from
the Sepharose beads by adding SDS-sample buffer and
boiling samples for 10min. The proteins were separated
by SDS–PAGE and visualized by autoradiography.

Quantitative RNA analyses and statistics

Cells were seeded in 10 cm-, 6 cm- or 35-mm dishes and
treated with the indicated reagents 24 h later. At the
indicated time points, medium was removed and
solution D (236.4 g guanidium thiocyanate in 293ml
water, 17.6ml 0.75M sodium citrate pH 7.0 and 26.4ml
10% sarcosyl, 0.72% 2-mercaptoethanol) was added. Cells
were scraped off and 0.1ml of 2M sodium acetate pH 4.0,
1ml of water-saturated phenol and 0.2ml of chloroform–
isoamylalcohol (49 : 1) were added, mixed and cooled on
ice for 15min. After centrifugation (10 000g, 20min, 4�C),
the aqueous phase was collected and precipitated over-
night with isopropanol at –20�C. After a further centri-
fugation (10 000g, 20min, 4�C), RNA was re-dissolved in
Solution D and precipitated with isopropanol at –20�C for
1 h. The pellet was washed in 70% ethanol and dissolved
in DEPC-water. The RNA was digested with RNase-free
DNase I (Roche, Germany) for 60min at 37�C, and 1.5–
5 mg was used for the first-strand cDNA synthesis with
SuperScriptTMIII (Invitrogen, USA) as specified by the
manufacturer. Semiquantitative real-time (RT)-PCR
analysis was performed with AmpliTaqR Gold DNA
polymerase (Applied Biosystems, USA), using the follow-
ing primers: p21 (for: ggcggcagaccagcatgacagatt; rev:
atgaagccggcccacccaacctc; TA: 64�C), NIR (for: cagctggt
gtcctgtctgtc; rev: gcagtgcacatactgccagt; TA: 58�C), p63�
(for: ttagcatggactgtatccgc; rev: aagctcattcctgaagcagg; TA:
60�C), gapdh (for: tggtatcgtggaaggactcatgac; rev: agtccag
tgagcttcccgttcagc; TA: 64�C). Quantitative RT-PCR for
p21, NIR and gapdh was performed with LightCycler�

FastStart DNA Master SYBR Green I (Roche,
Mannheim, Germany); the primers shown above were
used at a final concentration of 0.5mM (TA: 64�C,
MgCl2 2mM). Statistical analyses were performed with

GraphPad QuickCalcs and Sigma Plot; P-values <0.05
were considered statistically significant.

NIR knockdown

Short interfering RNAs [siRNA; NIR1- sense: r(GACCU
GAACUUCCCAGAGA)dTdT; antisense: r(UCUCUGG
GAAGUUCAGGUC)dTdT; NIR2- sense: r(GACAGGA
AGGAUGAAGACA)dTdT; antisense: r(UGUCUUCA
UCCUUCCUGUC)dTdT] were used to silence gene
expression in the indicated cell lines. As a control, an
unrelated siRNA [control-sense: r(UUCUCCGAACGU
GUCACGU)dTdT; antisense: r(ACGUGACACGUUC
GGAGAA)dTdT] was used. Exponentially growing cells
were transfected with siRNA (40 nM) by RNAifect
(Qiagen, Germany). With a routine transfection efficiency
for siRNA of >90 %, a knockdown of NIR could be
observed as early as 24 h after transfection.

Protein extraction and western blot analysis

Cells were lysed in standard SDS-lysis buffer heated to
100�C, containing 100mM Tris–HCl (pH 6.8), 100mM
DTT, 4% SDS and 20% glycerol. Fifteen micrograms of
protein were subjected to 8–13 % SDS-PAGE and trans-
ferred to a polyvinylidene fluoride (PVDF) membrane
(Immobilon-P; Millipore, USA). Signals were detected
upon overnight incubation of the membranes with one
of the indicated antibodies (a-NIR 1 : 1000; a-p63
1 : 1000, a-actin 1 : 10 000, a-p21 1 : 1000), followed by a
final incubation with a peroxidase-conjugated secondary
anti-mouse (1 : 2000) or anti-rabbit (1 : 2000) antibody and
Pierce ECL Western Blotting substrate (Rockford, USA),
performed as specified by the supplier.

Co-immunoprecipitation

For co-immunoprecipitation analysis, H1299 cells con-
taining an inducible pRTS1 vector with a HA-tagged
TAp63g transgene were induced with 1 mg/ml doxycyclin
for 12 h. H1299 control cells harbored TAp63g in reverse
orientation. All cells were harvested and washed twice in
sterile PBS. Subsequently, 9/10 of the cells were lysed for
1 h in BC100 buffer (50mM Tris–HCl pH 7.4, 100mM
NaCl, 10% glycerol and 0.2% Triton-X100) with freshly
added protease inhibitors. The remaining 1/10 of the cells
was lysed in SDS-sample buffer and served as an input
control. The BC100 extracts were sonicated for 5min,
divided into two equal parts and incubated with 4 mg
anti-HA antibody (Sigma, H6908) or 4 mg of irrelevant
mouse antibody. The extracts were then incubated over
night on a rotating wheel. A mixture of protein A,
G agarose/sepharose beads in a 1:1 ratio was added to
each tube. The samples were incubated on a rotating
wheel for another 4 h. Then extracts were washed three
times with a buffer containing 50mM Tris/HCl pH 7.4,
100mM NaCl, 2mM EDTA, 0.5% NP-40 and freshly
added protease inhibitors. Finally, SDS-sample buffer
was added to the Sepharose beads. All probes were
boiled for 10min and subjected to a 10% SDS-PAGE
for western blot analysis.
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Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) on HaCaT and
H1299 cells was performed essentially as suggested by
the Upstate ChIP protocol, with few variations. H1299-
pRTS-TAp63g cells were transfected for 24 h with 4 mg of
plasmid producing NIR per 2� 106 cells, and were
induced to express TAp63g for 12 h. Expression was mon-
itored by immunoblotting. For ChIP analysis, an addi-
tional quenching step with glycine (final concentration
0.125M) was inserted after formaldehyde fixation of
the cells. Extracts were diluted 5-fold in ChIP dilution
buffer. For immunoprecipitation, a mixture of salmon
sperm DNA protein A agarose (Upstate), gammaBindG
Sepharose and protein G Sepharose (both GE Healthcare)
were used in a 1 : 1 : 1 ratio. To block unspecific binding of
proteins, BSA (final concentration 1%; NEB) was added
to all agarose/Sepharose mixtures for 1 h prior to IP.
For ChIP on HaCaT cells, washing was done with
ChIP-dilution buffer (3�; Upstate), low-salt immune
complex wash buffer (3�), high-salt immune complex
wash buffer (3�), LiCl immune complex wash buffer
(3�) and, finally, TE buffer (5�). The sequential
washing for ChIP on H1299 cells involved washing in
dilution buffer (1�), low-salt buffer (2�), high-salt buffer
(3�), LiCl buffer (2�) and TE buffer (2�). Reverse
cross-linking was done over night. Immunoprecipitations
were performed with 2 mg anti-p63 antibody 4A4, anti-p53
antibody DO-1 or anti NIR antibody 2910, or with mouse
and rabbit irrelevant antibodies. PCR conditions and
primers were described before (30). Primer pair one
(PP1) for the detection of p21 promoter sequences was:
(for: acctttcaccattcccctac); (rev: gcccaaggacaaaatagcca).
Primer pair two (PP2) was: (for: ccttagcctgttactctgaac);
(rev: tgcaaccatgcacttgaatgtg). The primer pair to detect
the U6 gene promoter was: (for: ggcctatttcccatgattcc);
(rev: atttgcgtgtcatccttgc).

Immunofluorescence analyses

Cells were grown on glass coverslips or 4 Chamber
Polystyrene Vessel Tissue Culture Treated Glass Slides
(BD Falcon, Franklin Lakes, USA), and 24 h after
seeding they were either treated with the indicated drugs
or transfected with TAp63g- or NIR-expression plasmid.
Cells were fixed with paraformaldehyde (4% in PBS),
permeabilized on ice with 0.2% Triton-X/PBS, blocked
with 1 mg/ml BSA (Merck, Darmstadt, Germany) for
15min at 37�C and then incubated with the primary
antibody (a-NIR 1 : 100; a-p63 1 : 300) for 45min. After
several washings with PBS and 0.03% Triton-X/PBS
the cells were incubated with the secondary antibody
(TRITC-conjugated anti-mouse 1 : 100; Alexa488-
conjugated anti-rabbit 1 : 7000) for 30min. DNA was
stained with 0.2mg/ml DAPI (40,6-diamidin-20-phenylin-
doldihydrochlorid, Sigma, USA) in methanol to visualize
the nuclei. Intracellular localization was studied with a
Leica DM IRB/E fluorescence microscope equipped with
an Axio Cam color camera (Zeiss) and was analyzed with
the Axio Vision 3.0 software.

RESULTS

NIR is a novel interaction partner of transcription
factor TAp63

Our initial objective was to identify new protein interac-
tions involved in transcriptional regulation by the p53
protein family. Since this family recruits to promoters,
and is regulated by HATs, low-stringency in silico
analyses for novel proteins harboring putative INHAT
(inhibitor of HAT) domains were performed. This
resulted in the cloning of NIR (Novel INHAT
Repressor), and subsequent work showed that NIR can
indeed associate with, and regulate, p53 (30). Here, we
asked whether NIR would also be to regulate p63, a tran-
scription factor with the highest homology to p53 in its
central DNA-binding domain (63%) and important
for the development of stratified epithelia as well as for
epithelial stem cell maintenance.

First, in vitro synthesized, 35S-labeled full-length NIR or
NIR (147–609) consisting of the central portion of the
protein lacking both INHAT domains, were employed in
GST pull-down assays with either GST alone, p53 or
TAp63g (the major transactivating form of p63 containing
the N-terminal transactivation domain, central DNA-
binding domain and C-terminal oligomerization
domain). We observed that both NIR and NIR
(147–609) bound to either transcription factor but not
GST alone (Figure 1A). Next, we sought to map the
binding of NIR to TAp63g. For this purpose, full-length
35S-labeled NIR was used in GST pull-down assays with
either GST alone or one of the TAp63g fragments
depicted in Figure 1B. The assay revealed that NIR
binds to two domains on TAp63g; the transactivation
domain and the oligomerization domain. However, NIR
failed to bind to the �Np63 isoform in this assay, suggest-
ing that robust binding of NIR and TAp63g requires the
transactivation domain. NIR also failed to associate with
the core DNA binding domain and, as expected, with GST
alone. To confirm the interaction between NIR and
TAp63 in vivo, co-immunoprecipitations were carried
out. Of note in this context, endogenous NIR is predomi-
nantly localized in the nucleoli, and mostly in the outer
granular region where ribosome subunit assembly takes
place. A small portion of NIR can be visualized in
dot-like structures in the nucleoplasm. In contrast,
TAp63g is exclusively localized in the nucleoplasm
(Figure 1C). This subcellular distribution, combined with
the fact that stable expression of TAp63g provoked high
levels of apoptotic death in our cell system, led us to
expect that endogenous NIR (90 kDa; detected as a
single band by polyclonal anti-NIR antibody 2910)
would be difficult to co-immunoprecipitate with trans-
fected TAp63g. We therefore generated H1299 cultures
in which an HA-tagged TAp63g was conditionally
expressed (see below). In this system, endogenous NIR
could be co-precipitated with TAp63g, whereas
NIR failed to come down in the absence of TAp63g
(Figure 1D). Combined, these findings show that NIR
and TAp63g can physically associate.
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Nucleoplasmic NIR acts as a repressor of TAp63

NIR has been documented to act as a repressor of
coactivator-stimulated transactivation (30). We therefore
wished to test whether ectopic NIR would influence
transcriptional activation by ectopic TAp63g of the
best-studied and most responsive endogenous p63 target,
the gene for the p21Cip1 (CDKN1A) inhibitor of

cyclin-dependent kinases (p21 hereafter). Transient
transfections of NIR had documented that ectopic NIR,
in contrast to the endogenous protein which is mostly
present in the nucleoli (see above), is primarily localized
in the nucleoplasm, as is TAp63g (Figure 2A). In accord
with its function as a transactivator of the p21 gene,
transfected TAp63g stimulated the transcription of the

NIR

NIR (147-609)

A

25        134                                          633  749 

INHAT1                             INHAT2
NIR (749 aa)

649-662
NLS

C

NIR: green; TAp63 : red

D

NIR (90 kDa)

NIR
Crude
extracts

IP
TAp63 (51 kDa)

TAp63 - +

B
TA PR DBD OD

TAp63 (448 aa)

1             69          130                                 323     357   390
84    117 

2                       93

2                                                               337

100                                             337

044001

NIR

T
T+D

D

D+O

O

IN
P

U
T

G
S

T

FL         T  T+D        D     D+O        O

GST

FL

338                               440

NIR

IN  GST  p53 TAp63

M  GST  p53 TAp63

75 kDa

25 kDalo
ad

p
u

ll-
d

o
w

n

INPUT        GST  TAp63 Np63

Figure 1. NIR associates with TAp63g and p53. (A) GST pull-down assay. (Upper panels) Equal load of GST-p53 (p53) and
GST-TAp63g(TAp63g); M, marker. (Lower panels) In vitro translated 35S-labeled full-length NIR or NIR (147–609) central portion is retained
by GST- TAp63g (TAp63g) and by GST-p53 (p53) but not GST alone (IN, Input). The scheme shows NIR with the N- and C-terminal INHAT
domains and the nuclear localization signal (NLS). (B) 35S-labeled full-length NIR binds to the transactivation domain (TA) and the oligomerization
domain (OD) of TAp63g in GST pull-down assays. PR, proline-rich domain; DBD, DNA binding domain. Radiolabeled NIR fails to bind efficiently
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endogenous p21 gene �5-fold in RT-qPCR assays
(Figure 2B). Simultaneous transfection of NIR, while
not measurably affecting TAp63� expression, blocked
the transactivation of p21 almost completely, as predicted
if NIR acted as a repressor of TAp63g-mediated
transactivation.
In a further set of experiments, we asked whether con-

ditions can be found under which endogenous NIR would
leave the nucleoli to localize to the nucleoplasm,
and whether this would affect TAp63g-regulated gene
expression. For this purpose, human H1299 lung
adenocarcinoma, human HCT116 colon adenocarcinoma,
human immortal HaCaT keratinocytes and human
diploid fibroblasts were either left untreated or were
treated for 6 h with one of several stressors (Table 1).
NIR was mostly nucleolar in all (100%) interphase (i.e.
non-mitotic) cells when mock-treated (NIR localization in
mitotic cells: see below). Among the stressors employed,
only the nucleolar stressor and inhibitor of rRNA synthe-
sis actinomcyin D (ActD) induced translocation of NIR
from the nucleoli to the nucleoplasm in all interphase cells

(100%), at a dose (0.5–1.0 mg/ml) well below the
one needed to cause global transcription inhibition
(>5–10 mg/ml) (Figure 2C). Nucleoplasmic localization
of a subset of nucleolar proteins upon Act D treatment
has been reported before (35); these, however, are not
known to interact with TAp63. Some increase in
nucleoplasmic NIR was also observed following ultravio-
let (UV) irradiation (100 J/m2) and exposure to myco-
phenolic acid (25mg/ml) in all four cell types. As ActD
induced NIR translocation most consistently, this
compound was used in the further studies.

To test whether endogenous NIR, upon translocation
from the nucleoli to the nucleoplasm, can regulate
nucleoplasmic TAp63g, and since TAp63g overproduced
in transient transfections was a powerful inducer of cell
death, we established doxycyline (doxy)-inducible cell lines
on the basis of vector pRTS1 (36). The advantage of
this system, which employs a trans-repressor active in
the absence of doxy and a transactivator active in its
presence, was that transgene expression was very tightly
controlled, with absolutely no detectable expression in
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was stimulated. Co-expression of TAp63g and ectopic NIR (in addition to the endogenous) resulted in the inhibition of p21 expression. p21 transcript
levels were determined by RT-qPCR. Error bars denote standard deviations derived from at least three experiments. (C) Fluorescence microscopy
documenting the presence of NIR in the nucleoli in mock-treated human diploid fibroblasts (HDF) and H1299 cells. Treatment of the cultures with
1.0 mg/ml ActD for 6 h triggered NIR translocation to the nucleoplasm in both cell types.
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doxy-free medium versus expression that could be finely
tuned in the presence of defined doses of the drug. In these
cells, doxy induced the production of TAp63g with a
HA-tag at the N-terminus, which in turn stimulated the
expression of endogenous p21, indicative of HA-TAp63g
being functional as a transcription factor (Figure 3A). The
levels of endogenous NIR remained unchanged.

In the following series of experiments, we examined
the effect on TAp63g-induced p21 expression of a low
dose of ActD (0.5 mg/ml) previously determined to
suffice to translocate nucleolar NIR to the nucleoplasm
(see Figure 3C and Table 1). Notably, transactivation of
p21 by TAp63g was completely inhibited in the presence
of nucleoplasmic NIR (P< 0.0001; Figure 3B). In contrast

to ActD, the drug ADR, used at a dose known to cause
significant DNA damage (0.3 mM) but unable to trigger
NIR translocation (Table 1), inhibited p21 transactivation
significantly (P< 0.001) but much weaker. To exclude that
the effect of ActD on TAp63g-induced p21 expression was
the result of a general toxicity or impairment of gene tran-
scription, gapdh expression was monitored in parallel. No
inhibitory effect of ActD was discernible (Figure 3C).
Combined, these data thus suggest that endogenous
nucleoplasmic NIR can act as an inhibitor of TAp63g.

NIR knockdown can activate TAp63

Cells tolerate neither permanent NIR knockdown nor
overproduction (data not shown). To test whether tempo-
rary knockdown of NIR would affect transactivation
of p21 by TAp63g, we resorted to NIR knockdown by
transient siRNA transfection. However, as shown in
Figure 1C, normally only a small portion of endogenous
NIR co-localizes with TAp63g in the nucleoplasm of a
cell. Therefore, a first study was designed to determine,
with two sets of PCR primer pairs and in HaCaT cells
that harbor endogenous TAp63g as well as in H1299
cells with doxycycline-inducible TAp63g, whether
TAp63g and NIR can be detected at the p21 gene
promoter region that contains the p63 (and p53) recogni-
tion motif. The ChIPs were performed with monoclonal
antibody 4A4 to precipitate TAp63g and polyclonal
antibody 2910 (30) to precipitate NIR. Clearly, 4A4 and
2910 precipitated the p21 promoter fragment in HaCaT
cells, while irrelevant antibodies or an antibody directed
against p53 failed to do so (HaCaT cells express mutant
p53 defective for specific DNA binding; Figure 4A, PP1).
Furthermore, 4A4 and 2910 also precipitated the p21
promoter in H1299 cells doxycycline-treated and
transfected to express TAp63g and exogenous NIR
(Figure 4A, PP2). This suggests that TAp63g and NIR
are associated with the p21 promoter in cells that naturally
or forcibly produce these proteins. The U6 gene promoter
that is not responsive to the p53 protein family was not
precipitated by any of the antibodies, excluding that NIR
is co-precipitating promoters simply by associating with
histones.
Since only small amounts of NIR were normally present

in the nucleoplasm, we reasoned that this NIR might be
able to effectively inhibit only low levels of TAp63g.
Knockdown of NIR might then activate p21 expression
in the presence of the now de-repressed low levels of
TAp63g. HaCaT cells with endogenous TAp63g and
NIR, however, proved not to be useful for these studies,
probably because they also produce high levels of
�Np63a and mutant p53 known to act dominant-
negatively toward TAp63g. For the following experiments
we therefore returned to the doxy-inducible system
described above. This allowed us to induce only �1/10th
of the steady-state levels of TAp63g induced by 1.0 mg/ml
doxy in H1299 cells by adding only 50 ng/ml doxy to the
culture medium (Figure 4B). This level was not sufficient
to detectably stimulate p21 expression. However, and
notably, in this low-level expression system, simultaneous
knockdown of NIR (by 60–70 %) through NIR siRNAs,

Table 1. Subcellular localization of NIR after a 6 -h exposure to

various stressors

Stressor Cell line Nucleoli Nucleoplasm

None H1299 ++++ –
HCT116 ++++ –
HaCaT ++++ –
HDF ++++ –

Actinomycin D H1299 – ++++

(1 mg/ml) HCT116 – ++++

HaCaT – ++++

HDF – ++++

Adriamycin (0.34 mM) H1299 ++++ –
HCT116 ++++ –
HaCaT ++++ –
HDF ++++ –

Cycloheximide (10 mg/ml) H1299 ++++ –
HCT116 ++++ –
HaCaT ++++ –
HDF ++++ –

5-Fluorouracil (0.375mM) H1299 ++ ++

HCT116 ++ ++

HaCaT ++++ –
HDF ++++ –

H2O2 (0.4mM) H1299 ++ ++

HCT116 nd nd
HaCaT ++++ –
HDF ++ ++

MG132 (10 mM) H1299 ++++ –
HCT116 ++++ –
HaCaT ++++ –
HDF ++ ++

MMS (0.1mg/ml) H1299 ++++ –
HCT116 ++++ –
HaCaT ++++ –
HDF ++ ++

Mycophenolic acid (25 mg/ml) H1299 ++ ++

HCT116 ++ ++

HaCaT ++ ++

HDF ++++ –
UV (100 J/m2) H1299 ++ ++

HCT116 – ++++

HaCaT ++ ++

HDF ++ ++

–: less than 10% of total NIR stain, in the majority of cells (>90%), by
visual inspection.
++: approximately half of total NIR stain, in the majority of cells
(>90%), by visual inspection.
++++: more than 90% of total NIR stain, in the majority of cells
(>90%), by visual inspection.
nd: not determined.
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but not transfection with irrelevant siRNA, led to stimu-
lation of p21 expression by TAp63g (Figure 4C). These
findings suggest that the low levels of nucleoplasmic
NIR normally present in cells can inhibit p21
transactivation by TAp63g. Combined, our observations
show that NIR binds to TAp63 and acts as a repressor of
TAp63-mediated transactivation.

NIR is controlled by the cell cycle

Inspection of immunofluorescence images revealed that in
non-synchronous cell cultures, NIR is most prominently
expressed in cells undergoing mitosis. In mitotic meta-
phase cells, the majority of the overproduced NIR was
present in the vicinity of the condensed chromatin,
within structures probably identical with the
perichromosomal region first described by Gautier and
colleagues (37). In contrast, NIR was predominantly
present in the nucleoli in non-mitotic cells (Figure 5A;
see also Figure 1C). To examine whether NIR transcript
and protein expression are varying in the different phases

of cell cycle, we synchronized human diploid fibroblasts
(HDFs) by serum starvation/mimosine blocking and
the subsequent induction of proliferation by feeding of
the cultures with full medium. Figure 5B summarizes a
typical result of an analysis of NIR expression in
synchronously proliferating HDF at different time points
during cell cycle progression. Flow cytometry revealed
that cells that were arrested in G1 phase enter S-phase
at �6 h after release from G1 arrest and approach
G2/M phase at the 12–18 h time points. In accord with
the immunofluorescence results obtained with non-
synchronous cultures, NIR transcript levels in HDF,
quantified by RT-qPCR, were lowest in G1 phase cells
and gradually increased as the cultures approached G2/
M. Concomitantly, but with some delay, NIR protein
levels were lowest during S-phase and increased towards
G2/M. In contrast, the levels of the gapdh transcript and
b-actin protein controls remained stable throughout the
time course. Thus, NIR transcript and protein levels are
controlled by the cell cycle in HDF.
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Figure 3. Endogenous NIR translocated to the nucleoplasm upon ActD treatment was able to inhibit TAp63g-induced gene expression. (A)
TAp63g- and p53-deficient H1299 cells were stably bulk-transfected with either vector alone or pRTS-TAp63g. The HA-tagged
TAp63g-transgene was tightly controlled by doxycycline (doxy): in the absence of drug, no transgene expression was detectable whereas in the
presence of 1.0 mg/ml doxy for at least 8 h, maximal transgene expression became visible in western blots with anti-HA antibody (1 : 1000).
Furthermore, a p21 signal detected by anti-p21 antibody (1 : 1000) was found only in the presence of TAp63g. The levels of NIR always
remained constant; NIR was detected with the polyclonal antibody 2910. (B) RT-qPCR quantitation of p21 transcript levels in cultures with or
without TAp63g, and in the presence or absence of stress. ActD (0.5mg/ml) strongly inhibited TAp63g-induced transactivation while ADR (0.34 mM)
inhibited only weakly. (C) RT-qPCR quantitation of gapdh transcript levels. ActD had no significant effects. Error bars show standard deviations
derived from at least three experiments.
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Since both TAp63 (Figure 3A) and p53 (30) can
transactivate p21, and p21 as inhibitor of cyclin-dependent
kinases can arrest the cell cycle at the G1/S boundary, we
next asked whether activation of p53 in wild-type p53
proficient human MCF7 breast carcinoma cells and
HDF would affect p21 and NIR transcript levels. As
expected, non-stress-induced stabilization and activation
of p53 by the compound nutlin-3 that disrupts the associ-
ation of p53 with its major inhibitor MDM2, led to
the transactivation of p21 in both MCF7 and HDF

(Figure 5C). Simultaneously, and in agreement with the
results on the synchronized cultures, significantly less NIR
transcript was observed when p21 transcript levels were
high, while gapdh transcript levels remained constant.
Finally, we sought to determine whether expression
of p21 alone, in H1299 cells that lack p53 as well
as TAp63, would suffice to reduce NIR expression.
Figure 5D shows that in H1299 cultures transfected
either with a plasmid producing EGFP as control or
p21, the levels of p21 transcript rose significantly in the
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Figure 4. NIR occupies the p21 gene promoter, and its knockdown relieves repression in the presence of TAp63g. (A) ChIP of the p21 promoter
containing the TAp63g -binding site and of the U6 promoter as a control. The p21 promoter fragment was amplified with two different primer pairs,
PP1 and PP2 (‘Materials and methods’ section). PP1: Primer pair 1 was used to analyze cultures of HaCaT cells expressing endogenous TAp63g and
NIR (both present at low levels in the nucleoplasm). ChIP assays were performed either with irrelevant mouse IgG (mIgG), anti-p63 antibody 4A4,
anti-p53 antibody DO-1 (HaCaT cells produce mutant p53 incapable of specific DNA binding), irrelevant rabbit IgG (rIgG), or the rabbit polyclonal
anti-NIR antibody 2910. PP2: Primer pair 2 was employed to analyze cultures of H1299 cells with doxycycline-inducible TAp63g and exogenous
NIR. (B) Western blot showing that H1299 cells with doxycycline-inducible TAp63g could be stimulated by defined low levels of doxy (50 ng/ml) to
produce low quantities of TAp63g (compare with b-actin levels). TAp63g was detected with anti-HA antibody at 1 : 1000; b-actin by a monoclonal
antibody from Sigma (1 : 3000). (C) Effect of NIR knockdown on p21 transcript level the presence of TAp63�. Control H1299 cultures and
H1299-pRTS-TAp63g cultures with TAp63� expressed at low levels [see (B)] were RNAi-fected with control siRNA or NIR siRNA; NIR knockdown
and TAp63� expression were monitored by RT-PCR. p21 transcript levels were determined by RT-qPCR. Error bars denote standard deviations of
the means of at least three experiments.
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p21-transfected cultures as expected while simultaneously,
the NIR transcript levels fell off. Combined, these data
thus indicate that the expression of the inhibitor of
TAp63 and p53, NIR, at the transcript and protein level
is lowest during G1/S phase of cell cycle and suggest, since
both TAp63 and p53 can induce a G1/S arrest by
transactivating p21, that TAp63/p53 and NIR may be
interconnected through a feedback loop in cycling cells
(Figure 6).

Since it was known that p53 can repress genes by
sequence-specific DNA binding (1), we also tested
whether TAp63/p53 might regulate the NIR gene
directly. Computer-aided and visual inspection of the
genomic NIR sequences had revealed three putative
TAp63/p53 recognition motifs; one positioned at –10 252
relative to the transcription start site; one at 10 090 in
intron 12; and one at 10 847 in intron 13. The most
distal motif seems to be almost perfect, with no spacers
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Figure 5. NIR expression is controlled by the cell cycle. (A) Fluorescence microscope image of H1299 cells after staining of DNA with DAPI and of
NIR with polyclonal anti-NIR antibody 2910 (1 : 100) plus Alexa488-conjugated anti-rabbit secondary antibody (1 : 7000). NIR shows highest
expression levels in mitotic cells (here: mitotic metaphase) and is primarily found in the vicinity of the chromatin; in non-mitotic cells, it is expressed
at lower levels and mostly localized in the nucleoli. (B) Synchronized human diploid fibroblasts move through the cell cycle after release from G1
arrest for 24 h. Upper diagram shows flow cytometry profiles of cultures that had been DNA-stained with propidium iodide. The NIR transcript
levels relative to the levels of gapdh were determined by reverse transcription quantitative PCR (RT-qPCR). Error bars denote SD from three
RT-qPCRs. For western blot analysis of NIR protein expression, 15 mg of total protein were subjected to SDS-PAGE and were incubated with
anti-NIR antibody 2910 (1 : 1000) and anti-b-actin antibody (1 : 10 000). (C) G1/S-phase cell cycle arrest induced by activation of transcription factor
p53 and the subsequent transactivation of the p21 gene results in the reduction of NIR transcript levels. Human wild-type p53 proficient MCF7
breast carcinoma cells and human diploid fibroblasts (HDFs) were either mock-treated (–; mock) or treated with 10 mM of the small interfering
molecule-activator of p53, nutlin-3, for 48 h (MCF7) to 72 h (HDF). Western immunoblotting was performed on 15 mg of total protein run on an
SDS-PAGE and incubated with anti-p53 antibody DO-1 (1 : 2000) and anti-b-actin antibody (1 : 10 000). The expression of the p53 target gene p21
and of NIR relative to gapdh was measured by RT-qPCR. The error bars denote standard deviations from three experiments. (D) Expression of p21
alone recapitulates the effect of p53-expression. p53-deficient H1299 cells were either transfected with an irrelevant plasmid (mock) or with plasmid
producing p21. Again, the expression of the p21 and NIR transcripts relative to gapdh was determined by RT-qPCR, and the error bars denote
standard deviations from three experiments.

3168 Nucleic Acids Research, 2010, Vol. 38, No. 10



between the half-sites and a total of only four devia-
tions from consensus at non-conserved positions.
The remaining two motifs have either a spacer or several
mutations at non-conserved sites. However, none of these
sites proved functional—neither activation nor repression
was observed—in the context of a luciferase reporter assay
(data not shown). Furthermore, a computer-selected, bona
fide NIR gene regulatory region (position –130 to 5000)
also failed to confer TAp63/p53-responsiveness. Together,
these findings suggest that NIR may not be directly
regulated by TAp63 and p53.

DISCUSSION

The transcription of genes packaged within a complex
consisting of histone proteins is regulated by specific
chemical modifications to the N-termini of these
proteins. Among the numerous modifying enzymes
identified to date, p300 of the metazoan-specific p300/
CBP family of HATs is perhaps the most extensively
studied (19–21). It functions as a global transcriptional
co-activator through the acetylation of all four core
histones plus the recruitment of other transcription
factors (21). p300 itself is recruited to gene promoters by
physical association with DNA-binding proteins such as
the p53/p63/p73 family of tumor suppressors/develop-
mental regulators (22–27), and can use these—in
addition to neighboring histones—as substrates for
acetylation (22,27). At least two further concepts of
chromatin regulation through acetyl groups have been
realized: deacetylation by HDACs and ‘substrate
masking’ by the binding to substrates of INHATs
(31,38). INHATs, such as the Set/TAF1b oncoprotein
(31) and pp32 (32), seem to be part of larger protein
complexes that include HDACs (34). We have recently
identified NIR, a novel INHAT that functions
independently of HDACs, that can be recruited to pro-
moters by p53 and that can repress neighboring genes (30).
Our current studies have indicated that the p53-relative
TAp63 may bind to NIR at least as well as p53, and
since p63 is an important regulator in embryonic develop-
ment, we here examined the effects of NIR on TAp63.

p63 can occur in at least six isoforms (11). All share the
DNA-binding domain but may carry different C-termini

(a, b and g) as the result of alternative splicing, and
in addition, can vary at their N-termini as the result of
alternative promoter usage in having either a major
transactivation domain (TAp63) or a deletion of the TA
and only a minor transactivation domain in their
C-terminus (�Np63). We observed that robust binding
of NIR requires the TA domain, suggesting that the
TAp63 isoforms of p63 are subject to regulation by this
INHAT. NIR was associated with the p63- responsive p21
promoter in vivo and acted as a negative regulator of
transactivation by TAp63. Knockdown of NIR by
RNAi technology relieved p21 gene repression in the
presence of TAp63. Thus, NIR is a negative regulator of
TAp63. However, in proliferating tumor cells that were
not in the mitosis phase of cell cycle, as well as in
proliferating and arrested human diploid fibroblasts, the
majority of cellular NIR was sequestered at or within the
nucleoli; only a small portion co-localized with TAp63 in
the nucleoplasm. Accordingly, nucleoplasmic NIR was
able to inhibit only small quantities of nucleoplasmic
TAp63g (Figure 5), whereas the larger levels of nucleo-
plasmic NIR induced upon actinomycin D-provoked
nucleolus-nucleoplasma translocation of NIR was very
well able to repress the p21 gene transcription induced
by higher TAp63g levels (Figure 4). Thus, in cells not
experiencing nucleolar stress, NIR might act as a buffer
toward the low levels of active TAp63 (and p53), while in
cells with nucleolar stress, NIR which is usually expressed
to high total levels in most cell types (30), might act as a
powerful repressor of TAp63/p53. However, why would
repression of TAp63, and in particular of the stress-
responsive p53, in the face of nucleolar stress be favorable?
NIR might help limit the cellular response to stress in
cases of reversible nucleolar damage. However, NIR
could also function to specifically inhibit target genes
such as p21 that are known to suppress apoptosis
(39,40), and thereby support an apoptotic response if
necessary.
Numerous studies have identified p63 as acting mainly

during embryonic development—in the commitment of
ectodermal cells to the epidermal lineage; the maintenance
of epidermal stem cells; and the development of stratified
epithelia (4,41,42). Although not yet fully understood,
proper function of p63 in these processes appears to
depend upon a subtle balance between the �Np63- and
TAp63-isoforms (16), with �Np63 being the dominant
isoform at both the transcript and protein level (2).
Although �Np63 can act as a transcriptional activator
of certain genes, it is thought to mainly function as a
repressor, through the occupation of promoters regulated
by p53 and p63 (43,44). By contrast, the precise function
of TAp63 is less clear. While �Np63 is strongly expressed
during stratification and differentiation of epithelia,
TAp63 is weaker expressed and seems to play a minor
role in late differentiation (16). However, other work has
identified TAp63 as being expressed earlier than �Np63,
at a time point immediately upstream of the commitment
to stratification, and has suggested that TAp63 may con-
stitute the ‘switch’ for stratification, with �Np63 counter-
acting this function and thereby allowing cell
differentiation (17). In this context, NIR might thus act

NIR

p53, TAp63 p21

G1/S
phase
arrest

Figure 6. Scheme outlining the potential interactions between NIR,
p53/TAp63 and the cell cycle.
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as a buffer of TAp63 activity and might help prevent the
differentiation block observed with overactive TAp63.
Alternatively or in addition, NIR might buffer TAp63
activity during the late stages of epidermal differentiation.
One should also consider a role of NIR in tumor devel-
opment or progression since not only p53 but also p63 has
been implicated in cancers, and notably, it is not only the
inhibitory �Np63 isoform that has been observed to be
overproduced in many tumor types. A subpopulation of
lymphoid cells and most malignant lymphomas
over-express exclusively TAp63 (45,46). Ongoing work
will examine whether NIR is of importance here.
The nucleolus is a dynamic structure that is regulated by

the cell cycle, and with it many nucleolar proteins. In par-
ticular components of the rRNA processing machinery,
such as the multifunctional chaperone nucleophosmin
(NPM; B23), leave the nucleolus organizer region during
mitotic prophase and metaphase. Some of these factors
are redistributed to become attached to the surface of
the condensed chromatin, the perichromosomal region
(PR), in a way reminiscent of the distribution of NIR in
Figure 6A (37). The PR has been suggested to function as
a chromosome-protecting insulator, and NIR in this layer
might shield the chromatin from the action of HATs.
There are several notable similarities between NIR and
NPM. For example, both proteins are lowly expressed
during G0/G1 phase of cell cycle and are more strongly
produced in response to mitogenic stimuli (Figure 6 and
ref. 47). We also observed that NIR like NPM is generally
produced to higher levels in highly proliferating, trans-
formed cells compared to non-transformed cells (data
not shown). Finally, both NIR and NPM can bind to,
and functionally inhibit, p53 (30,48,49). Future studies
will address whether NIR and NPM can interact
directly, and whether NIR might share other functions
of NPM such as the regulation of tumor suppressor
p14ARF.
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