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Analysis of dynamic 
networks based on the Ising 
model for the case of study 
of co‑authorship of scientific 
articles
V. Andrea Hurtado‑Marín1, J. Dario Agudelo‑Giraldo2*, Sebastian Robledo3,4 & 
Elisabeth Restrepo‑Parra1

Two computational methods based on the Ising model were implemented for studying temporal 
dynamic in co-authorship networks: an interpretative for real networks and another for simulation via 
Monte Carlo. The objective of simulation networks is to evaluate if the Ising model describes in similar 
way the dynamic of the network and of the magnetic system, so that it can be found a generalized 
explanation to the behaviours observed in real networks. The scientific papers used for building the 
real networks were acquired from WoS core collection. The variables for each record took into account 
bibliographic references. The search equation for each network considered specific topics trying to 
obtain an advanced temporal evolution in terms of the addition of new nodes; that means 3 steps, 
a time to reach the interest of the scientific community, a gradual increase until reaching a peak 
and finally, a decreasing trend by losing of novelty. It is possible to conclude that both methods are 
consistent with each other, showing that the Ising model can predict behaviours such as the number 
and size of communities (or domains) according to the temporal distribution of new nodes.

The modeling of social phenomena with physical bases has allowed an affirmative answer to whether there are 
or not laws that govern them1. The concept has gained strength in recent years thanks to two crucial facts: on 
the one hand, the access to large databases, turning society into a huge sample for research2; and on the other, to 
advances in the study and characterization of complex networks3. In principle, it has been assumed that social 
groups are systems composed of interacting agents capable of taking a stance in the face of an external distur-
bance, in a similar way to a many-body system in statistical physics4–6. Different types of algorithms have been 
proposed to detect communities in the framework of physics, Potts model in7 and label propagation algorithm 
(LPA)8,9 are some examples. In particular, algorithms under Ising model also has been widely implemented6,10,11.

One of the most significant current discussions in social networks is understanding their dynamics through 
the time. For instance in12, it has been shown that the addition of the social dynamics decreases the network influ-
ence on the decision of their members, and in13 is highlighted the importance of considering the collaboration 
dynamic among academics to understand the evolution of a research topic. Therefore, the metrics of temporal 
evolution are the crucial mechanisms behind it. Trying to solve this problem, in this work is proposed the Ising 
model for detecting evolution patterns in social communities.

Under the precept that by their nature, there are different types of networks, and that they diverge in a large 
number of behaviors14, this research proposes to study co-authorship of scientific articles around specific topics 
or areas. A co-authorship network is made up of scientists with close social contacts whose interactions represent 
collaborations or cooperation15–17. Although in recent studies, these contacts have evidenced the formation of 
the scientific communities, most of the works developed lack dynamic analysis6,15,18–21, or explicitly despite the 
variability of weight in each link1,22–24. For this reason, one of the objectives of our study has been to look for 
predictable patterns or behaviors that can arise from these dynamic interactions. Specifically, the formation of 
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scientific communities is analyzed taking into account the appearance and the redistribution of new nodes and 
the weight of the links.

The studies required a comparative analysis between the physical description of real networks and spins 
simulations. The objective of this work was to observe if the Ising model describes the temporal dynamic of real 
networks and from this give a generalized explanation of the behaviors observed by mean of simulation. The real 
networks procedure consisted of applied an improved version of the algorithm presented by Son et al. for flow 
networks6. According to a recent classification presented by El-Moussaqui et al. for identification of communities 
in complex networks25, this method has a divisive and hierarchical approach, reason by which is denominated 
here as DHM. For the magnetic simulations, the Ising model with mean field discrimination was implemented 
using the Monte Carlo method (MCM). The correspondence between the two methods is analyzed by observables 
such as internal energy and the number and size of communities (or domains).

Some other works have taken advantage of different models and computational tools for improving the 
analysis of collaborative networks. For instance, in26 is used a bipartite graph approach blended to joint in the 
structure as researchers attitudes and interests as the community’s recognition. In27 for exanimating disambiguat-
ing names in references based upon the topological and the hierarchical descriptions, in28 an analysis of patterns 
that relate ranking, first and last authors, specific roles, and others characteristics, indicate that must take into 
account the distinct types of scientific contributions, and in29 coauthors characteristics are obtained applying 
learning models with training.

Methodology
As mentioned above, two developments were necessary to add to the analysis process: an experimental one, 
obtained from real co-authorship networks with the authors as nodes, and the other by simulation under equiva-
lent interaction situations, but between spin moments. The procedure for each of them is described below:

A. Ising model applied to the interpretation of co‑authorship networks via DHM.  In the con-
struction of the network, each node represents an author and each link a scientific collaboration. The scientific 
papers were obtained from the Core Collection of Web of Science (WoS), one of the most relevant bibliographic 
databases widely used in academia30,31. Core collection consists of ten sub-datasets (eight citation indexes and 
two chemical indexes), with information from over 18,000 high impact journals, over 180,000 conference pro-
ceedings, and over 80,000 books32. Four co-authorship networks were built with the records of specific queries by 
topic and title, and limiting the document just to scientific articles. The research topics and title were: econophys-
ics, magnetoresistance—nanoparticles, Monte Carlo—thin films, and Monte Carlo—core shell nanoparticles.

These four networks were selected from a large number of searches, three of them based upon our expertise in 
condensed matter physics. The condition of selection was an advanced temporal evolution in terms of the addi-
tion of new nodes. That means the presence of 3 steps: a time to reach the interest of the scientific community, a 
gradual increase until reaching a peak, and finally, a decreasing trend by losing of novelty. Temporal evolutions 
can be fitted with an extreme value distribution presented by Eq. (1) (as is present in the “Results and discussion” 
section). In this distribution, No is a number that varies according to the total number of nodes (or spins), tp is 
the time for which the function has a maximum and β is a scale parameter. It should be clarified at this point 
that dynamic networks can present different types of distribution for the entry of new nodes. For this reason, it 
was ensured that both the analysis of the real networks and the Monte Carlo simulation were characterized by 
the shape of distribution of new nodes.

The variables for each record were: ID (assigned by WoS), DOI (digital object identifier), authors, year of 
publication and bibliographic references. For the articles present within the bibliographic references with DOI, 
Crossref was used to obtain the information of their authors and their year of publication. A minimum standard 
was set to label authors with the initials of the first name and the first surname (all written in capital letters), thus 
reducing the typographic differences between journals. The software for the construction and identification of 
communities of the co-authorship networks was compiled in R.

The networks built are dynamic (changing over time). For this reason, the year variable was transformed 
into time steps (ts). For each of the steps, a static network was built, taking into account the nodes and links 
that emerged in earlier times. Additionally, in the present work, the weight of the links was weighted based on 
the number of documents written by pairs. To identify the scientific communities, the procedure proposed in6 
was used, which was applied to each of the connected components of the static network. Initially, the two most 
influential nodes within the network that generate a community structure are identified, denoted as s and t. 
Node s is the highest degree and node t is the next highest degree node with which this structure is generated. 
The algorithm to identify the communities is based on the existing analogy between a flow network and a fer-
romagnetic random field Ising model33 whose Hamiltonian is given by:

where each node i represents a spin σi in the magnetic system, Jij is the exchange constant between the spins and 
Bi is the field on the spin σi. The exchange constant Jij between two spins σi and σj is equal to the weight of the 
link. The weight is obtained by the number of interactions between two authors; that is to say, the number of 
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scientific documents that were published together. For this reason, only ferromagnetic couplings (Jij ≥ 0) were 
considered. The steps for each component are: (i) build a flow network33, (ii) calculating the maximum flow34 
and (iii) identify the community structure. A flow network contains the same nodes and links as the original 
network plus two additional nodes called source and sink denoted as s and t. In the algorithm proposed by Son 
et al. in6, all the possibilities of pair of nodes s and t were tested. But the authors propose that these nodes could 
be identified from the nodes of higher degree, to reduce the computational cost.

The magnetic field distribution used is given by Eq. (3), for two nodes s and t; this is equivalent to imposing 
the boundary condition σs =  + 1 and σt =  − 1, which induces frustration in the system. In the flow network the 
weights in the links are given by cij = 2Jij

6 (also denominated as capacity). The infinite value of the local field 
applied to the spins σs and σt, within the computational simulations, was calculated as Bs =

n
∑

i,j=1

cij and 

Bt = −
n
∑

i,j=1

cij , respectively.

To identify the communities, the criterion established by the maximum flow—minimum cut theorem is used. 
The algorithm consists of subdividing the sample continuously until the division does not have a community 
structure. Each iterative subdivision always leads to identifying two sets Cs and Ct, with the two most influen-
tial nodes. To generate a subdivision, it must be satisfied that ln (Dst )

ln (n) > 1 , where Dst is the product between the 
number of nodes that belong to sets Cs and Ct, and n is the number of internal nodes by subdivision. At the end 
iterative subdivisions, when ln (Dst )

ln (n) < 1 , the set of n nodes correspond to a community. These point in the same 
direction of s. More information on this procedure can be found at6,33. The communities should have more than 
2 nodes. Nodes that do not belong to a community have a spin randomly assigned. The local field value for each 
community is assigned according to Bs and Bt.

B. Ising model simulated via MCM.  The computational program for the magnetic modeling via Monte 
Carlo was thought from preliminary results obtained for the co-authorship networks. The spins were randomly 
located within a box of length L = 16 muc, where muc are magnetic cell units (relative to positions in a cubic 
crystalline system). The minimum distance between moments was set at 1 muc. The addition of new moments 
to the system obeyed a location probability given by P = exp (0.5 (1 − rij)), whereby comparing it with a random 
number, the positions closest to that of the last spin added were privileged.

Additionally, each simulation was divided into time steps to introduce new spins to the system, according to 
the distribution presented in Eq. (1), with No = 2458 (maximum number of spins) and β = 6. This is in accordance 
with the fact that new authors (nodes) appear in the co-authorship networks over time (dynamic network). At 
each time, the system was simulated under a canonical assembly (NVT) at 60 K. In the preliminary results, the 
temperature did not show a significant influence. The time variable ranged from 1 to 40 steps. The final-time 
density was established at 0.6 spins per cell.

The Metropolis algorithm was implemented to generate the state fluctuations. Periodic boundary conditions 
were not taken into account. The number of Monte Carlo steps was set at 100,000 with a cutoff for calculating 
observables at 50,000 per time step. FORTRAN95 was the software used to compile the code.

The Hamiltonian used in the realization of this model is defined by Eq. (4), where Jij was established 
at ± 10 meV. A value of rcut = 1.5 muc was selected because, in physics publications, the number of authors in 
each article is approximately 4 on average. Therefore, choosing a larger cut-off radius would involve other types 
of networks in which the interactions are more numerous. Interactions with neighbors that are less than 1.25 muc 
apart were considered ferromagnetic (Jij > 0), while at further distances, the interactions were antiferromagnetic 
(Jij < 0). The mean field per site (Bmean,i) was used to identify domain boundaries. In particular, if − 1 < Bmean,i < 1, 
σi is considered a frustrated spin, without domain. This phenomenon is also observed in co-authorship networks 
in which there are authors who do not belong to a defined scientific community.

Results and discussion
Table 1 presents information on the search equation for each network. The first four columns are information on 
the date of the query, the real time period, the number of articles found and the number of references. The next 
three columns correspond to information extracted from each network: the transformation of the period into 
the number of time steps, the total number of nodes (Nn) and the total number of links (Nl).

Figure 1 shows the temporal evolution of the number of new nodes and links for each network. As can be 
inferred, a new research topic takes time to reach the interest of the scientific community; later, there is an 
exponential increase in the number of new authors until reaching a peak time (tp) and, finally, the topic loses 
its appeal or novelty, showing a decreasing trend. Each of the curves is shown an adjustment to the distribution 
established by Eq. (1). This figure shows that networks first reach a maximum in new nodes than in new links. 
These results were also observed in the simulated behavior. Figure 2 presents the temporal distribution of new 
spins and new interactions for tp = 27. As mentioned previously, the shape of the distribution is fixed with the 
same one with which the co-authorship networks were adjusted (Eq. (1)). The fact that the links come from a 
collective behavior causes any transition phase in them or in their observable derivatives to present this delay. 
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In Fig. 3, the energy (U) is presented as a function of time for the different networks. The values are normal-
ized to the minimum value. U decreases with time due to the entry of new nodes whose interactions mostly 
contribute with negative interactions (Eq. (2)). The inflection point was obtained by fitting the exponential curve 
of Eq. (5), but decreasing. The fit is represented by a blue line on the graph. It is expected by the correspondence 
between energy and links, that these curves present a time at the inflection point, called tc, close to the tp of the 
links. The values for tc, along with the peak times of nodes and links, are presented in Table 2. In the language of 
physics, this behavior is associates with the percolation threshold of the system35. Below the percolation threshold, 

Table 1.   Search information for each network. WoS source.

Search equation Date of query Real time period Number of papers Number of references Time steps Nn Nl

TITLE: (econophysics) 29/02/2020 1930–2019 102 1751 66 2282 5242

TITLE: (magnetoresistance) AND TITLE: (nanoparticles) 29/02/2020 1953–2019 68 1463 54 4514 20,955

TITLE: (monte carlo) AND TITLE: (thin films) 29/02/2020 1930–2019 211 3840 73 8221 31,726

TOPIC: (monte carlo) AND TITLE: (core shell nanoparticles) 11/03/2020 1950–2019 58 1351 57 3528 15,534

Figure 1.   Number of new nodes and new links as a function of time for the different co-authorship networks.

Figure 2.   Temporal distribution of the insertion of new spins and the appearance of interactions for 
simulations with tp = 27 in Monte Carlo method.
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the probability of finding a connected path between two separated spins in the system is very low; because of this 
reason, there cannot be any long-range magnetic ordering. Above the percolation threshold, the probability of 
finding connected paths increase, so exchange interaction broadcast further. In the language of networks, this 
inflection point means a transition from a state in which the system presents a fluctuating topology in terms of 
the distribution of nodes in the communities to a state with well-defined communities.

  
To complement, Fig. 4 presents the energy as a function of time for different tp in the spin distribution. The 

values are normalized to the minimum value. As in co-authorship networks, U decreases over time. This means 
that the number of interactions is mainly ferromagnetic, since there are a greater number of spins (nodes) in the 
domains (communities), than in the borders where antiferromagnetic interactions occur. tc was found by fitting 
the curves to Eq. (6) and setting the second derivative equal to zero.

Since increasing tp decreases the density of nodes and links in the first-time steps, it can be specified that the 
change of state given by tc requires a minimum density. In the inset, in Fig. 4, it can be seen that a linear relation-
ship can represent these two variables.
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Figure 3.   Normalized energy as a function of time for the co-authorship networks. The blue line is an 
adjustment to get the inflection point.

Table 2.   Summary of characteristic times in co-authorship networks. The difference between the times tc of 
energy and tc of the number of communities show that they are not the product of the same state transition.

Search equation Nodes tp links tp Energy tc Number of communities, tc
TITLE: (econophysics) 56.9 ± 0.2 57.8 ± 0.3 56.2 ± 0.1 55.7 ± 0.2

TITLE: (magnetoresistance) AND TITLE: (nanoparticles) 43 ± 0.3 44.5 ± 0,3 43.4 ± 0,2 40.9 ± 0.2

TITLE: (monte carlo) AND TITLE: (thin films) 59.2 ± 0.3 61.6 ± 0.5 61.3 ± 0.2 55.3 ± 0.2

TOPIC: (monte carlo) AND TITLE: (core shell nanoparticles) 47.5 ± 0.2 49 ± 0.2 47.9 ± 0.2 45.2 ± 0.2
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Figure 4.   Normalized energy as a function of time for different values of tp. Inset: tc as a function of tp.

Figure 5.   Images of (a) giant component of the core Shell nanoparticles network, showing the communities 
that have more than 4 nodes and (b) magnetic domains that have more than 10 spins, for a distribution of 
simulated atoms with tp = 27. The histograms inserted in (a) and (b) represent the size distribution of the 
communities and domains, respectively.
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Figure 5 presents descriptive images of the final samples and their communities (or domains), particularly in 
a) for the giant component of the core shell nanoparticles network with communities of more than 4 nodes, and 
b) for the distribution of simulated atoms for tp = 27, there the domains that have more than 10 spins are shown. 
The internal histograms show the distribution of sizes, Sc and Sd for communities and domains, respectively.

It is remarkable to say that, at difference of other methods where a community is assigned to all nodes, even 
if it is not coherent, spin models are characterized because allows to determine the nodes that do not belong to 
a community. In the simulations, the boundaries of magnetic domains are formed from frustrated spins, which 
can be identified if mean field per site is low.

Figure 6 shows the number of communities (Nc) as a function of time for the different networks. In the inter-
nal insets of each figure, the temporal evolution of the average community size ( Sc  ) in the number of nodes is 
presented. It was assumed that the formation of communities begins in the time in which at least 3 are observed. 
Given this condition of presence Sc  begins to decline. This is likely because as nodes are added to the system, links 
are formed that favor the segmentation of the study. Then Sc  increases by adding new nodes with the publication 
of new articles; however, over time the dominant effect is the formation of new communities of small sizes, as 
can be seen in the histogram in Fig. 5a. This previous analysis allows us to interpret the temporal curves of the 
number of communities. The adjustment was made to each of the trends using Eq. (5). In these curves, it can be 
observed that at first, there are no communities due to the publication of articles with only two authors at this 
time. Subsequently, there is a slow growth given the small number of new nodes. Then, the number of community 
experiences accelerated growth as a result of a higher rate of new nodes and collaborations. However, from the 
time step tc, at the inflection point, the growth rate is reduced. For each of the networks, the value for tc is below 
the values of tp for the new nodes and links (Table 2). In other words, the inflection point occurs before the system 
presents the largest number of new nodes and links. Additionally, the tc taken from energy is also above that of 
the domains. Finally, in the last steps of time, Nc tends to stabilize due to the few authors that transit between 
communities in these times. In principle, the distribution established for the entry of new nodes could play a 
crucial role in predetermining the inflection point. This is very important, if that inflection point is known in 
real time, subsequent events can be predicted, including when the maximum number of new nodes will occur 
per year and an estimate of that number.

The simulations also made it possible to analyze these trends in detail. Figure 7a presents the number of 
domains as a function of time for different tp in the ns distributions. Very similar trends are observed between 
one method and another, networks and simulation. In the first step the number of domains is zero due to the 
low number of spins and the competition dominated by temperature on a very low interaction energy in the 
system. As time passes, domains begin to form at high rates, more stable due to the increase in FM links, mainly. 
This process ends in an approximately constant value for Nd since, in the last steps, very few spins enter, actually 
affecting the system. Also, in Fig. 7a, the increase in tp shows an increase in time at the inflection point. The 

Figure 6.   Number of communities as a function of time for the co-authorship networks. The inserted figures 
correspond to the temporal evolution of the average size of the community, respectively.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5721  | https://doi.org/10.1038/s41598-021-85041-8

www.nature.com/scientificreports/

relationship can be approximated to linearity, as seen in the inset figure. These times show to be lower than those 
observed for tc in the energy and in tp both for the nodes and the links, which agrees satisfactorily with the previ-
ous analysis of the co-authorship networks. For this reason, it cannot be considered that it is the same transition.

For the curves of the average domain size ( Sd  ) as a function of ts, in Fig. 7b), 4 stages can be analyzed. The first 
corresponds to the first-time steps where great instability is observed. This is due to the fact that the temperature 
prevents the formation of stable domains due to the low density of links. In terms of co-authorship, this indicates 
that various working groups are being formed, but strong links have not yet been formed to last over time. Note 
how the error bars show the great randomness of the links. In the second stage, the average domain size tends 
to stagger. In particular, at tp = 31 in two steps. These stable sections were also observed in the co-authorship 
analysis (see Fig. 6). Apparently, they can occur anywhere on the curve during community size growth. In the 
third stage, the average domain size increases as time passes; in the middle of this stage it is observed in the 
graph of the number of domains that Nd tends towards stability, approximately. This fact is a sign that the new 
spins that are added to existing domains. In the last stage Sd  tends to stability. Again, the speed with which the 
system goes through these 4 stages is higher for distributions with shorter peak times, the result of higher initial 
densities at lower times.

Conclusions
A methodology based on Ising-type magnetic models was implemented that made it possible to describe the 
behavior of dynamic and weighted co-authorship networks. The temporal distribution of new nodes was iden-
tified as a key pattern in networks. The results of real co-authorship networks and computational simulations 
showed a high correspondence. Observables such as internal energy and the number and size of communities 
or domains, verified the effectiveness of the modeling implemented in both methods. The inflection point of 
energy as a function of time showed a change of state which requires a minimum density of links. The inflection 
point of the number of communities showed a shorter time than the transition in energy and the peak times of 
the distribution of nodes and links. Given these results, it can be highlighted that co-authorship network systems 
can be predicted following the time trend established by a magnetic exchange interaction model.

The study provides others considerable contributions: First, this goes beyond of the most popular methods for 
community detection in co-authorship networks36, applying a methodology to identify them. Second, this exam-
ines the changing features of several social academic networks through time. Here we go beyond the traditional 
analysis of static networks37. It is essential to highlight this because social connections influence the emergence 
and fall of an academic theme38. Thus, for new researchers, it is not only important to identify a topic, but also 
its current academic social community. Finally, we propose a new method to find the tipping point in social 
networks taken from the field of magnetism. This contributes to understand the research topic’s momentum 
improving the researcher’s decisions about the time and energy spent in the process.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request. OriginPro 8, RStudio and Gephi were used for image processing39–41.

Received: 3 October 2020; Accepted: 8 February 2021

Figure 7.   (a) Number of domains as a function of time for different values of tp in Monte Carlo simulations. 
Inset: tc as a function of tp, obtained from these trends. (b) Average domain size as a function of time for 
different values of tp.
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