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Dynamical systems theory suggests that studying the complexity of biological signals

could lead to a single gait metric that reliably predicts risk of running-related injury (RRI).

The purposes of this pilot study were to examine center of mass (COM) acceleration

complexity at baseline, prior to RRI, and the change between timepoints between

collegiate runners who developed RRI during a competitive season and those who

remained uninjured, and to determine if complexity at these timepoints was associated

with increased odds of RRI. Twenty-two collegiate runners from the same cross-country

team wore a waist-mounted triaxial accelerometer (100Hz) during easy-intensity runs

throughout the competitive season. RRIs requiring medical attention were reported via

an online survey. Control entropy was used to estimate the complexity of the resultant

COM acceleration recorded during each run. Associations between complexity and

RRI were assessed using a frequency-matching strategy where uninjured participants

were paired with injured participants using complexity from the most time-proximal run

prior to RRI. Seven runners sustained an RRI. No significant differences were observed

between injured and uninjured groups for baseline complexity (p = 0.364, d = 0.405),

pre-injury complexity (p = 0.258, d = 0.581), or change from baseline to pre-injury

(p= 0.101, d= 0.963). There were no statistically significant associations found between

complexity and RRI risk. Although no significant associations were found, the median

effect from the models indicated that an increase in baseline complexity, pre-injury

complexity, and change in complexity from baseline each corresponded to an increased

odds of sustaining an RRI [baseline: odds ratio (OR) = 1.560, 95% CI = 0.587–4.143,

p = 0.372; pre-injury: OR = 1.926, 95% CI: 0.689–5.382, p = 0.211; change from

baseline: OR = 1.119; 95% CI: 0.839–1.491, p = 0.445). Despite non-significance and

wide confidence intervals that included both positive and negative associations, the

point estimates for >98% of the 10,000 frequency-case–control-matched model fits

indicated that matching strategy did not influence the directionality of the association

estimates between complexity and RRI risk (i.e., odds ratio >1.0). This pilot study
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demonstrates initial feasibility that additional research may support COM acceleration

complexity as a useful single-metric monitoring system for RRI risk during real-world

training. Follow-up work should assess longitudinal associations between gait complexity

and running-related injury in larger cohorts.

Keywords: running injury, control entropy, gait complexity, collegiate running, wearable technology in sports,

accelerometry

INTRODUCTION

Human running is a complex movement that arises from
the interaction and coordination of multiple codependent
subsystems, including the respiratory, cardiovascular,
nervous, and musculoskeletal systems. This coordination
and codependence between systems makes human movement
a complex dynamical systems (Glazier et al., 2003). Biological
signals produced by a dynamical system are theorized to contain
information about the adaptability of the system, and therefore
its overall health (Golberger, 1996; Lipsitz, 2002). As the health
of the system declines, these biological signals will become
increasingly predictable and less complex over time as the system
becomes less able to adapt to physiological stressors (Hamill
et al., 1999).We refer the reader to references (Glazier et al., 2003;
Gruber et al., 2011; van Emmerik et al., 2016) for an overview of
the conceptual framework for dynamical systems theory.

Research into the mechanisms of running-related injuries
(RRI) has led to inconsistent results, potentially because
traditional analyses may be inadequate to provide insight into
the complex interaction between systems that control gait.
Traditional analyses focus on the association of individual
system components or environmental factors to RRI, such as
individual gait variables or training characteristics. However, the
development of the actual tissue damage or physiological state
that characterizes any specific RRI likely depends on multiple
internal (anatomical, mechanical, physiological) and external
(environmental, training) factors (Davids et al., 2003; Bertelsen
et al., 2017). Indeed, two runners who develop an RRI may do
so for different reasons. A dynamical systems approach offers
an elegant solution to these individual determinants of RRI—
regardless of the specific risk factor leading to RRI within an
individual, all factors contribute in some way to deteriorations in
the overall health of the dynamical system and therefore should
alter the complexity of biological signals generated by the system
(i.e., the runner). A dynamical systems approach to RRI examines
the longitudinal changes in whole-body system dynamics that
can indicate abrupt changes in system health or behavior of the
interacting subsystems (Beek et al., 1995; van Emmerik et al.,
2016), and these approaches have been used previously to identify
pathological gait (Wagenaar and van Emmerik, 1994). As such,
examining changes in the biological signals produced by the
system—such as the acceleration of the body’s center of mass—
may lead to amethod that can identify critical changes in running
gait prior to RRI onset.

Quantifying changes in a biological signal that may indicate
impending RRI requires a metric that is sensitive to complex,

non-linear fluctuations. Statistical entropy is a category of
non-linear dynamical systems techniques that is sensitive enough
to quantify differences in physiological signal complexity (i.e.,
degree of regularity) between groups and physiological states.
The sensitivity of statistical entropy has been observed by
analyzing single variables that represent the motion of the whole
body, such as center of mass and center of pressure, which
could be considered to minimize the signal information from
the system. Although measuring a single metric to summarize
the health of a system could involve sacrificing information,
statistical entropy overcomes this information loss by analyzing
the behavior of a signal that represents the multiple subsystems
producing or contributing to the behavior of the signal that
potentially describe the system’s overall health. For example,
researchers have used permutation entropy to differentiate gait
between people with and without cerebral palsy (Zanin et al.,
2018), multiscale entropy to differentiate center of pressure
between those with and without adolescent idiopathic scoliosis
(Gruber et al., 2011), and sample entropy to differentiate heart
rate dynamics between healthy infants and infants who were
later clinically diagnosed with neonatal sepsis (Lake et al.,
2002). Control entropy was developed to quantify complexity
of a non-stationary time series (Bollt et al., 2009), which
is appropriate for studying running in non-steady state or
uncontrolled environments. For example, it has been used to
determine that center of mass acceleration complexity during
running is greater in trained runners than in untrained runners
(Parshad et al., 2012) and decreases prior to the onset of fatigue
during an exhaustive run (McGregor et al., 2009). Given that
greater complexity may be a characteristic of healthy systems
that possess a higher adaptive capacity (Costa et al., 2002), a
decrease in complexity could potentially serve as warning of
a detrimental change in a biological signal before the change
physically manifests. However, much of the dynamical systems
work comparing groups of different health status has been cross-
sectional. Therefore, longitudinal studies are needed to test the
utility of dynamical system measures for serving as an indicator
for a change in health status or injury risk.

To develop RRI prevention strategies or to intervene before
an RRI is sustained, a sensitive and reliable measure must
be established that can assess the dynamics of a runner’s gait
without prior knowledge of any one potential gait or training-
related risk factor. Given that center of mass motion during
running is a single metric that represents the motion of the
whole body, tracking the complexity of this variable alone may
eliminate the need to identify a specific risk factor a priori.
The recent availability and development of low-cost wearable
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TABLE 1 | Subject demographics.

Uninjured Injured

Age, years 19.79 ± 1.35 18.71 ± 0.95

Height, cm 177.07 ± 9.06 173.81 ± 11.06

Mass, kg 63.37 ± 7.73 59.49 ± 9.36

Sex Male 11; female 4 Male 3; female 4

Follow-up, weeks 10.0 ± 1.9 3.3 ± 3.8

Recorded runs, # 251 32

Values are group mean ± 1 standard deviation. Follow-up period was the number

of weeks between baseline and the run recorded before a running related injury was

sustained in the injured group (i.e., ‘pre-injury’). In the uninjured group, the follow-up

period was the number of weeks between the baseline run and the last recorded. The

number of recorded runs was the number of runs completed with the accelerometer

across participants within each group, during the respective follow-up periods.

technology allows center of mass acceleration to be conveniently
and frequently measured outside of the lab.

While there are strong theoretical grounds to examine center
of mass acceleration complexity as a potential indicator of
impending RRI, research to date has not yet assessed the viability
of its use in a longitudinal setting. Therefore, we aimed to test
the feasibility of using center of mass acceleration complexity
as a predictor of RRI in a real-world, longitudinal setting. The
purposes of this proof of concept study were (a) to compare
center of mass (COM) acceleration complexity at baseline, the
run before a reported RRI, and the change in complexity between
these timepoints between collegiate runners who developed an
RRI during a competitive season and those who remained
uninjured, and (b) to determine if complexity at these timepoints
or its change during a competitive season was associated with
an increased odds of sustaining an RRI. Collegiate runners were
enrolled so that the differences in COM acceleration complexity
between prospectively injured and uninjured runners could be
associated with RRI risk rather than changes in running skill
(Parshad et al., 2012), which should beminimal during the season
in this sample. We hypothesized that (a) COM acceleration
complexity would be lower at baseline in collegiate runners who
developed an RRI compared with teammates who remained
uninjured and (b) COM acceleration complexity measured
during training runs would decrease prior to the onset of RRI
and remain unchanged in controls.

MATERIALS AND METHODS

Participants
Thirty collegiate cross-country male and female runners
participated in the study (Table 1). Given evidence that running
skill affects COM acceleration complexity (Parshad et al., 2012),
the study design included highly skilled, well-trained collegiate
runners to minimize the potential for changes in complexity that
reflect skill acquisition, as opposed to changes in the health of
the system (i.e., RRI). All participants gave written informed
consent to participate. The protocols of this study were approved
by the University of Memphis Institutional Review Board, and
data sharing and analysis protocols were approved by the Indiana

FIGURE 1 | The triaxial accelerometer (GT3+, ActiGraph Corp, Pensacola,

FL, USA; 100Hz) was positioned securely around the waist, centered over the

sacrum. Participants wore the device for all “easy” continuous runs each week

of the competitive season. The group baseline run is pictured in the figure.

University Institutional Review Board.Written support to recruit
and enroll participants from the testing site’s University cross-
country/track and field team was provided by the head coach.

Protocol
All participants were given a triaxial accelerometer (GTX3+,
ActiGraph Corp, Pensacola, FL, USA) at the beginning of
their competitive collegiate cross-country season (i.e., early
September). The accelerometers were initialized to collect
acceleration data continuously at 100Hz (output unit = g;
range ± 6 g). Participants were instructed to wear the
accelerometer over the posterior aspect of the proximal sacrum,
secured using an adjustable elastic belt (Figure 1). The belt
was tightened so the accelerometer would not bounce or rotate
from its position over the pelvis. On the first day of follow-
up, all participants completed a baseline run, which was an
easy run on a known cross-country loop that included multiple
surface types (pavement, grass, packed dirt, and wood chips).
As prescribed by the coaches, the participants ran at an easy
intensity, but the duration of the baseline run varied among
participants because each trained at similar, but not identical,
weekly running distances.

After the baseline run, participants were instructed to wear
the accelerometer during all continuous easy training runs and
weekend long runs throughout the fall cross-country season. An
example of a typical week of training is presented in Table 2.
Coaches instructed the runners to complete easy-intensity runs,
including one long run, on ∼3 to 4 days per week during the
season. These runs were performed on a familiar course at the
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TABLE 2 | Example of a typical training week prescribed by the team head coach.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

a.m. Easy run [or cross

training]

Easy run [or cross training] Rest day Race or easy run or

cross train or rest

Long run

p.m. Workout +

plyometrics

Cross training +

strength [or easy run]

Workout +

plyometrics

Cross training + strength [or

easy run]

Participants were free to select the mode of cross-training, which typically included swimming, cycling, elliptical, or similar. Participants were instructed to complete only one “easy run”

on Tuesdays and Thursdays. That is, an easy run would be performed either in the morning or in the afternoon, but not both. The accelerometer was worn during all easy and long runs

throughout the fall cross-country season (approximately three to four runs per week for 14 weeks). Most participants completed a race on Saturdays and may have taken 1 day per

week off from training; therefore, accelerometer wear compliance was calculated using three runs per week as the prescribed training.

athlete’s preferred light/easy and relatively constant aerobic pace,
ranging between 30 and 60min. A longer easy run was included
as one of the three to four easy-intensity runs prescribed per
week. This long run was performed at a similar effort but for a
longer duration (typically 65–110min). The accelerometer was
not worn during interval running sessions (i.e., workouts) given
the large changes in running speeds performed during these
sessions and was not worn during races to minimize participant
burden in this proof-of-concept study.

All participants followed the same training program
prescribed by the same coach with respect to the following:
timing and days of training sessions; the type of run for each
training session (e.g., interval, tempo, easy run, long run, etc.);
the intensity of a given training session (i.e., workouts were high
relative intensity, continuous runs were low relative intensity);
training routes and/or terrains; in-season racing schedule;
and similar recovery strategies (e.g., massage, foam rolling,
ice baths, etc.). Thus, the absolute time and or distance for a
given run or week of running was different among runners,
but a similar relative training intensity was prescribed across
all participants.

For the duration of the cross-country season, each participant
was instructed to report musculoskeletal pain or discomfort to
the athletic training staff. Participants reported the date of the
pain occurrence or injury, location, and severity of the pain or
discomfort on a 0–10 scale using a mobile survey app developed
for the study. Participants were allocated to the injured group
if (a) they sought medical treatment from the athletic training
staff (Davis et al., 2016) and reported experiencing a pain level
≥4 or (b) the athletic trainer gave a specific diagnosis. The
most recently observed run recorded by the accelerometer (at
least 1 day prior to the onset of injury) was designated as the
“pre-injury” timepoint in the analysis. If a participant reported
an RRI before a second run was recorded or on the same day
as the second recorded run, then only the baseline run would

be included in the analysis. That is, for these participants, the

same value would be used for baseline and pre-injury complexity
because the most recent estimate of their complexity would be
the baseline run.

Eight out of the initial 30 participants were removed from the

analysis after the study was completed: one participant lost the
accelerometer, and seven participants had complaints of pain or
fatigue that could not be related to a specific cause or was not
reported in the survey. The final sample used for analysis (n= 22)

included 15 uninjured controls and seven participants who met
the above criteria for allocation into the injured group.

Data Analyses
The raw, three-dimensional COM acceleration signal recorded
over the duration of the study period was downloaded from
each accelerometer for analysis. The resultant (vector magnitude)
of the acceleration signal was calculated using the Euclidean
norm and was used for all subsequent analyses. For each
recorded run, a custom activity recognition algorithm developed
in MATLAB version R2020a (The MathWorks Inc, Natick,
MA, USA) was used to identify and extract periods of non-
running data from the running time-series data (Davis IV et al.,
2019). For example, if a participant briefly stopped (e.g., tie a
shoe) or walked during his/her run, this non-running time was
isolated and removed from the time series. Data identified as
“running” with this algorithm had to last 30 s or more for it to
remain in the time series. All periods identified as running were
appended together and treated as a single continuous run. The
total duration of the analyzed time series from each individual
running session was between 17,900 and 665,500 data points
(i.e., 2.98–110.92 min).

Control Entropy Calculation
A custom MATLAB program incorporating the Physionet
Toolbox (Goldberger et al., 2000) was used to perform the control
entropy analysis on the unfiltered, resultant COM acceleration
signal of the extracted runs. Detailed methods of the control
entropy technique are described elsewhere (e.g., Bollt et al.,
2009; McGregor et al., 2009; Busa and van Emmerik, 2016). The
method is presented graphically in Figure 2. In brief, the control
entropy procedure involves calculating the sample entropy of the
center of mass acceleration signal within discrete overlapping
(i.e., sliding) windows of length N, where N = 750 data points
(7.5 s). Sample entropy assesses the probability that two similar
vectors of m data points will remain similar with the addition of
a consecutive data point, m + 1 (Costa and Goldberger, 2015).
Window length N = 750 was selected because it may be an
optimal window size to reveal time-dependent fluctuations in the
biological signal without loss of signal variability from excessive
smoothing (Costa et al., 2003; Bollt et al., 2009; Zhou et al.,
2017). The SampleEntropy(m,r, N) function from the Physionet
toolbox was used to calculate this probability by determining the
number of similar vectors of length m and of length m + 1 that
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FIGURE 2 | Graphical representation of the vector matching procedure and sample entropy calculation [adapted from Costa et al. (2005)]. (A) Shows a portion of a

simulated time series extracted from a simulated time series, with data points x1, …, xN. The first overlapping window of length N is represented by the gray-shaded

region and is isolated in (B). (B) Shows the first template sequence (�, ◦, 1), which consists of data points x1, x2, and x3 and is represented by the yellow symbols.

The horizontal dashed lines represent the similarity threshold r around each data point of the template sequence. Two data points will match if the absolute difference

between them is ≤r. Blue-filled symbols are data points that fall within the similarity threshold r and match the sequence of data points for m and m+1 vector lengths

(Continued)
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FIGURE 2 | of the template (i.e., for m = 2, vector length m is represented by �, ◦ and vector length m+1 is represented by �, ◦, 1). The gray-filled symbols are data

points that are within the similarity threshold r but do not match the vector sequence (�, ◦ or �, ◦, 1). The numbers of m and m+1 matches are counted [one match

for each vector length for the sequence shown in (B)], then the template sequence is shifted by one data point to data points x2, x3, and x4, as shown in (C). The

template sequence in (C) (◦, 1, ⋄) has one match for vector length m (◦, 1) and zero matches for vector length m+1 (◦, 1, ⋄). As shown in (D), the process is

repeated within the window length N for each successive template sequence until the first data point of the template sequence is xN−m. The sample entropy (SE) for

each window length N is calculated as the negative natural logarithm of the ratio of three component matches to two component matches. For the equation in (D), the

numerator is the sum of the three component matches (n
′m+1
i ) for each template sequence within window, and the denominator is the sum of the two-component

matches (n
′m
i ) for each template sequence within window. (E) Shows the result of this procedure, which is a time series of sample entropy values for each window of

length N across the entire time series, which was a single running bout for the present study. The mean complexity for each run was quantified by calculating the

average of these sample entropy values across the duration of the run, represented graphically by the horizontal dashed line (Costa et al., 2002, 2003, 2005; Bollt

et al., 2009; Costa and Goldberger, 2015).

repeat within the windowed time series of length N. The vectors
are recognized as similar and repeating if the corresponding
sequence data points in each vector fall within tolerance r, where
r is a percentage of the standard deviation of the time series
(r = 0.15 for this study). Next, the sum of repeating vectors of
lengthm+ 1 is divided by the sum of repeating vectors of length
m. The negative natural log of this ratio is the sample entropy.
The calculation is performed as follows:

SE (m, r,N) = −ln

∑N−m
i=1 n

′m+1
i

∑N−m
i=1 n

′m
i

, 1 ≤ i ≤ N −m

where n
′m
i is the number of vectormatches for vectors with length

m and n
′m+1
i is the number of vector matches for vectors with

length m+1 (Costa et al., 2005). The procedure results in a time
series of sample entropy values for each overlapping window of
750 data points. Lower sample entropy values occur when the
ratio between m + 1 vector matches and m vector matches is
closer to 1, which represents a time series that is more repeatable.
Greater sample entropy values occur when the ratio of m +

1 vector matches and m vector matches is closer to 0, which
represents a time series that is more random (Lake et al., 2002).
In this study, parameters of m = 2, r = 0.15, and N = 750 were
used (Costa et al., 2005; Zhou et al., 2017). The average of these
sample entropy values is the complexity of the signal for a given
single running bout.

Statistical Analysis
Accelerometer wear compliance was calculated for each
participant as the number of runs recorded relative to the
estimated minimum number of scheduled easy-intensity runs
between the baseline run and the last recorded run (i.e., three
easy-intensity runs per week, equating to an estimated minimum
total of 522 scheduled runs across all analyzed participants and
weeks between baseline and the last recorded or pre-injury
run). The last recorded run for the injured group was the
last run recorded prior to the reported RRI. The number of
weeks between the baseline run and the last recorded run was
rounded to half-week increments, and the number of estimated
scheduled runs was rounded to the nearest whole number prior
to compliance calculation. Compliance was calculated for each
participant, then the mean and standard deviation was calculated
for each group.

For each injured participant, two control entropy values
were considered for analysis: the mean control entropy of the

participant’s first recorded run (“baseline complexity”) and the
mean control entropy of the run recorded by the accelerometer
at least 1 day prior to the date of reported RRI (“pre-injury
complexity”). Two participants reported an RRI on the same
day as their second run recorded, and so the baseline run
was used for baseline and pre-injury complexity. A frequency-
matching technique was used to randomly select runs from two
uninjured participants that corresponded with the pre-injury run
of each injured participant. That is, two uninjured runners were
randomly selected to provide a baseline complexity and a “date-
matched” pre-injury complexity value for comparison to each
injured runner’s pre-injury complexity value. The runs selected
from the uninjured participants were required to be recorded
by the accelerometer within ±7 days of the pre-injury date of
the injured participant. If no runs were recorded during this
window, the uninjured comparison participant was returned to
the pool of possible uninjured matches, and another match was
drawn. This process was repeated for all injured participants.
With this method, the pre-injury complexity values for each of
the seven injured participants were randomly matched to two
corresponding complexity values from uninjured participants,
taken at similar times during the cross-country season. This
frequency-matching strategy randomly selected 14 of the 15
uninjured runners to pair with pre-injury values in the injured
participants; the 15th uninjured runner provided an additional
pre-injury complexity value that was selected in a ±7-day
window on a randomly selected date between the first and last
dates of RRI observed in the injured group.

To ensure that the results from this frequency-matching
strategy were not contingent on one particular random sampling
of uninjured participants or dates, we replicated this frequency-
matching strategy 10,000 times, fitting statistical models to each

of these data replicates. In 22% of cases, no matching runs within
the randomly drawn ±7-day window were found for the final
15th uninjured participant. We conducted a sensitivity analysis

in which the participant with the failed match was excluded in
that replicate and an analysis in which any replicates with a failed
match were completely ignored. Effect estimates changed by
<5% in all models when comparing these two possible strategies,
indicating that this choice had very little influence on our results.
As such, in the cases of failed matches within replicates, we
excluded the uninjured participant whose match had failed for
that replicate only. We summarize the results of these replicates
for all models by reporting the median of the effect estimate for
each model (e.g., the odds ratio or the linear regression slope)
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FIGURE 3 | Individual mean complexity values for each recorded run across participants from the baseline run to the last recorded run. Each dot represents the mean

complexity value of a single recorded run from an individual participant. The injured group participants are represented in the column of plots on the left. All other plots

are the uninjured group participants. The last recorded run for the injured group was the last run recorded prior to the reported running-related injury (i.e., ‘pre-injury’).

Two participants in the injured group reported a running-related injury prior to recording a second run and so only one run is presented. Changes in complexity within

participants were small on a per-unit basis (mean ± 1 standard deviation change (i.e., pre-injury minus baseline) in run-to-run complexity within a given participant was

−0.0031 ± 0.0085 units. The between-participant standard deviation (0.0871 units) in run-to-run complexity magnitude was more than 60% larger than the

within-participant standard deviation (0.0529 units).

as well as the p-value and 95% confidence intervals calculated
from the model with the median effect estimate, across all 10,000
models fit for each research question. All statistical analyses were
conducted in MATLAB version R2020a.

Group differences in complexity at baseline and pre-injury
were estimated using a linear mixed-effect model fit to each
of the 10,000 frequency-case–control-matching replicates, with
a random intercept term for each participant to account for
the repeated-measure nature of the observations (Fitzmaurice

et al., 2011). The median effect estimates across these replicates
were used to summarize group differences at baseline and at
pre-injury. To compare simple group differences in complexity
at each timepoint, Cohen’s d effect size was also calculated for
baseline complexity, pre-injury complexity, and change from
baseline complexity, with thresholds of 0.2, 0.5, and 0.8 for small,
medium, and large sizes, respectively (Cohen, 1988). The effect
size results for each of the matching iterations are summarized in
the Supplemental Material.
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We used logistic regression to examine the association
between complexity and RRI risk at baseline and immediately
prior to injury for which the odds ratios were reported. Pre-
injury complexity was assessed both in absolute terms and
when expressed relative to change in baseline. We used linear
regression to examine differences in pre-injury complexity
between the injured and uninjured groups, after adjusting for
baseline complexity.

RESULTS

A total of 283 runs were recorded by the 22 participants included
in the analysis out of a minimum estimated 522 scheduled runs.
The mean ±1 standard deviation compliance of the injured
group was 67.9 ± 30.1% and was 55.9 ± 20.8% for the uninjured
control group (Table 1). The pre-injury run was recorded an
average of 4.6 ± 3.1 days prior to the onset of injury among
the injured runners. Two participants reported an RRI on the
same day as their second run was recorded, which was 2 and
5 days after the baseline run. The location of the reported
injuries included anterior leg, ankle, low-back/hip, and thigh,
and two participants reported foot injuries. The participants
who received a specific diagnosis (n = 5) self-reported the
following: medial tibial stress syndrome, foot muscle strain, hip
adductor strain, plantar fasciitis, and ankle instability and a
pain level of 7.4 ± 0.9. The two additional participants who
sought treatment by the athletic trainers reported experiencing
a pain level of 4 and 7 out of 10 but did not self-report a
specific diagnosis.

Complexity values for each run are presented in Figure 3.
Figure 4 compares mean baseline and pre-injury complexity
of the injured group with date-matched runs in the uninjured
group. The provided estimates for the uninjured group are
the median estimates across replicates for the pre-injury date
matching strategy, which mitigates the effects of any one
particular chance pairing of injured to uninjured control subjects.

At baseline, the uninjured group had an average complexity
value of 0.618 ± 0.103 units compared with 0.658 ± 0.085
units in the injured group. These differences were small in size
(d = 0.405) and not statistically significant (95% CI: −0.045 to
0.124, p = 0.364; Figure 4). At pre-injury, the uninjured group’s
complexity had decreased by 0.014 units, while the injured
group’s complexity had increased by 0.003 units. The effect size
for the group difference in pre-injury complexity was moderate
(d= 0.581), and the effect size for the group differences in change
from baseline complexity was large (d= 0.963). However, change
in entropy from baseline was not significantly different between
groups (injury-by-time interaction effect 0.017, 95% CI: −0.012
to 0.047, p= 0.258).

There were no statistically significant associations found
between control entropy and the risk of RRI. Although no
significant differences were found, the point estimates for
>98% of the 10,000 frequency-matched iterations indicated that
matching strategy did not influence the directionality of the
association estimates between complexity and RRI risk (i.e.,
odds ratio >1.0) (Figures 5–7). The median effect estimate

FIGURE 4 | Complexity at baseline of both groups is compared with the last

run prior to injury (pre-injury) in injured group. The pre-injury values for the

uninjured runners were the median of the corresponding date-matched run of

the uninjured control group obtained from the frequency matching procedure

(i.e., the medians of each estimate across the 10,000 random pairing

replicates). Error bars show ± one standard deviation of the group mean.

across models of baseline complexity indicated that each 0.1-unit
increase in baseline complexity corresponded to a 1.560-fold
increase in odds of sustaining an RRI (95% CI: 0.587 to 4.143,
p = 0.372). The median effect estimate across models of pre-
injury complexity indicated that each 0.1-unit increase in pre-
injury complexity corresponded to a 1.926-fold increase in odds
of sustaining an RRI (95% confidence interval 0.689 to 5.382,
p = 0.211; Figure 5). When considering change from baseline
complexity, the median effect estimate across models indicated
that each 0.01-unit increase at pre-injury corresponded to a
1.119-fold increase in odds of sustaining an RRI (0.839 to
1.491, p = 0.445; Figure 6). In the injured group, pre-injury
complexity was 0.022 units greater than in the controls, after
adjusting for baseline complexity (95% CI: −0.016 to 0.059,
p= 0.278; Figure 7).

DISCUSSION

The purposes of this proof-of-concept study were (a) to compare
COM acceleration complexity at baseline, the run before a
reported RRI (“pre-injury”), and the change in complexity
from baseline to pre-injury between collegiate runners who
developed an RRI during a competitive season and those who
remained uninjured and (b) to determine if complexity at
these timepoints or its change during a competitive season
was associated with increased odds of sustaining an RRI.
Contrary to our hypothesis, the difference between baseline
COM acceleration complexity in the injured group and the
complexity prior to the onset of RRI was not significant. Also,
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FIGURE 5 | Histogram showing distribution of odds ratios (Top) and p-values (Bottom) for the increase in injury odds per 0.1-unit increase in pre-injury complexity,

across 10,000 replicates of the frequency-matching procedure. “Pre-injury” complexity was the last observed complexity value prior to reported injury in the injured

group and the date-matched run of the control group resulting from the frequency-matching procedure. The vertical dashed line in the top panel indicates the null

hypothesis of no association (odds ratio = 1.0). 100% of the replicates resulted in an odds ratio > 1.0.

the injured and control groups had statistically similar baseline
and pre-injury complexity, with the injured group having slightly
larger complexity magnitudes than controls (Figure 4). Although
there were no statistically significant associations found between
complexity and risk of RRI, the near-consistent direction of
the matching replicates and the moderate to large effect size
results provides initial feasibility and support of our approach:
investigating COMacceleration complexity as a potentially useful
tool for monitoring RRI risk during running training may
be a promising avenue for future research. This support is
consistent with the purpose of pilot studies (Leon et al., 2011).
If a true association between COM acceleration complexity and
RRI exists, then significant associations will be revealed with
future research.

The near-consistent direction of the association estimates
demonstrate that the findings were irrespective of the participant
matching. This consistency was found across different measures
of a potential RRI–complexity relationship (baseline complexity,
pre-injury complexity, and change from baseline complexity).
The results of the matching replicates should be considered
collectively as one result, rather than focus on the statistical

outcome of each individual model result. For example, consider
an alternate scenario for the model replicate results in which
the median centered at an odds ratio of 1.0 (i.e., no risk of
RRI with respect to complexity). That is, the distribution of
matching replicates centered at an odds of 1.0 would indicate
no correspondence between complexity and injury risk. This
scenario would occur if the potential association between
complexity and RRI risk was random or depended on the
matching strategy between injured and uninjured participants.
However, we found that at least 98% of the normally distributed
model outcomes were above an odds ratio of 1.0 (Figures 5,
6) and indicated an increased, albeit non-significant, odds of
RRI with increased complexity. Additionally, the moderate to
large effect size results (Supplemental Material) indicate that
the difference in change from baseline complexity may have
clinical relevance, despite the non-significant p-value from the
model. Therefore, the non-significant p-values may be due to
either a large variance in the data or a small sample size. These
results indicate initial feasibility of the premise for measuring
COM acceleration complexity as a tool for monitoring RRI
risk although we could not establish evidence for or against
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FIGURE 6 | Histogram showing distribution of odds ratios (Top) and p-values (Bottom) for the increase in injury odds per 0.01-unit increase in change from baseline

complexity (calculated as pre-injury complexity minus baseline complexity), across 10,000 replicates of the frequency-matching procedure. “Pre-injury” complexity

was the last observed complexity value prior to reported injury in the injured group and the date-matched run of the control group resulting from the

frequency-matching procedure. The vertical dashed line in the top panel indicates the null hypothesis of no association (odds ratio = 1.0); 98.27% of the model

replicates resulted in an odds ratio > 1.0.

an association of complexity with RRI because no significant
associations were found.

Future research in the longitudinal monitoring of COM
complexity may lead to a warning system for impending RRI.
Given that the increased odds of sustaining an RRI with
increasing complexity were non-significant with our sample size,
we make this projection cautiously. The uncertainty exhibited by
large confidence intervals prevents establishing a clear direction
and magnitude of change in complexity that may be associated
with RRI development. Additional research with a larger sample
size, more frequent measurements, and a longer monitoring
period may reveal statistically significant findings regarding
COM acceleration complexity and RRI risk in future research.
Such an approach would address our uncertainty about whether
any potential relationship between complexity and RRI is a
function of baseline complexity (and thus relating to between-
subject differences) or a function of acute changes in complexity
(and thus related to within-subject changes).

The present study is one of the first to investigate longitudinal
changes in the complexity of a gait-related biological signal

in runners using a dynamical systems metric and attempt to
associate it with a change in impending RRI. Current dynamical
systems theories suggest that reduced complexity may represent
a less adaptive and unhealthy biological system that is susceptible
to injury (Hamill et al., 1999). Although the difference was
non-significant, the direction for which complexity changed
between baseline and pre-injury observed in the injured group
was contrary to this theory. If future studies show a significant
increase in complexity with RRI risk, rather than a decrease
in complexity, then support for optimal ranges of complexity
may be indicated, which has been proposed by others (Hamill
et al., 1999; Stergiou and Decker, 2011). That is, both too much
complexity and too little complexity may be harmful. We expect
that an increase in complexity indicating injurious complexity
above the theorized optimal threshold may only occur if the
participants are highly trained, as in the present study, given
that greater complexity is associated with greater running skill
(Parshad et al., 2012). Similarly, the small decreases in complexity
observed within the uninjured controls in future studies may
represent changes that remained within the optimal threshold,
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FIGURE 7 | Histogram showing the distribution of regression slopes (Top) and p-values (Bottom) for the increase in complexity in the injured group vs. the uninjured

group at pre-injury, after adjusting for baseline complexity, across 10,000 replicates of the frequency-matching procedure. “Pre-injury” complexity was the last

observed complexity value prior to reported injury in the injured group and the date-matched run of the control group resulting from the frequency matching

procedure. The vertical dashed line in the top panel indicates the null hypothesis of no association (injured group increase in complexity vs. uninjured group = 0.0).

That is, an effect >0.0 is positive, indicating greater complexity in the injured group. 99.37% of iterations had effect estimates for the injured group of >0.0.

given that these participants did not sustain an RRI. The contrast
between the non-significant observations from our longitudinal
pilot study with the results from cross-sectional dynamical
systems studies is worthy of examining with larger samples and
additional runner populations.

This study used control entropy as an estimate for gait
complexity. Several other entropy techniques and other non-
linear metrics have been used to monitor changes in human
dynamical systems. For example, various entropy techniques
have been used to detect altered movement patterns (Deffeyes
et al., 2009a), differentiate between healthy and unhealthy heart
rate dynamics (Lake et al., 2002; Costa et al., 2005), differentiate
between rested and fatigued mental states (Mu et al., 2017),
and detect improvements in skill (Kawazoe et al., 2009). In
the context of running, sample entropy has been used to
compare the effects of fatigue on trunk and tibial acceleration in
runners with medial tibial stress syndrome and healthy controls
(Schütte et al., 2018). Additionally, control entropy has been
previously demonstrated to detect differences in the complexity
of runners’ COM acceleration signal when there are differences
in skill or fatigue between runners (McGregor et al., 2009;

Parshad et al., 2012). Alternative methods, such as detrended
fluctuation analysis, have been used to associate changes in
the stride interval of running with acute and chronic fatigue
(Meardon et al., 2011; Fuller et al., 2017), to differentiate between
trained and untrained runners (Nakayama et al., 2010), and
to differentiate between retrospectively injured and uninjured
runners (Meardon et al., 2011). Although detrended fluctuation
analysis has many benefits, it may have a limited ability to
detect changes in a system’s peripheral sensory feedback (Gates
and Dingwell, 2007), which may be important for prospective
RRI development. Each method has benefits and drawbacks and
may have differing sensitivity to various aspects of gait such as
speed, incline, or terrain. Additionally, differences in complexity
between groupsmay be task dependent (Vaillancourt et al., 2004).
Selection of a non-linear method should be made carefully to
ensure it is appropriate for the specific signal characteristics
and the specific application. In this study, control entropy was
selected to detect changes in RRI risk because of the previously
demonstrated sensitivity of statistical entropy techniques for
detecting differences in physiological states or health status for
various physiological signals (e.g., Lake et al., 2002; Costa et al.,
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2005; Deffeyes et al., 2009a; Kawazoe et al., 2009; Gruber et al.,
2011; Mu et al., 2017; Zanin et al., 2018), for its success in
quantifying complexity of non-stationary acceleration signals of
runners (Bollt et al., 2009; McGregor et al., 2009; Parshad et al.,
2012), and for its noted robustness in comparing pathological and
healthy signals (Cirugeda-Roldán et al., 2012).

Limitations and Recommendations for
Future Research
The control entropy calculation was chosen due to the non-
stationary conditions that may arise within a free-living run.
However, a limitation of the control entropy method is that it
assesses complexity at a single timescale (Bollt et al., 2009; Busa
and van Emmerik, 2016). Quantifying complexity over multiple
timescalesmay be necessary to distinguish between randomnoise
and highly complex signals (Costa et al., 2002) as well as assess
fluctuations in the physiological processes that operate at varying
timescales (Turvey et al., 1982; Bernstein, 1996; Busa and van
Emmerik, 2016). Although multiscale entropy is an available
method to quantify complexity over multiple timescales, it may
be insufficient to assess non-stationary signals (Bollt et al., 2009),
such as COM acceleration measured during free-living running.
Incorporating multiple window lengths N has been suggested
to address this limitation (Bollt et al., 2009) and should be
assessed in future laboratory-based studies before implementing
in real-world settings.

Acceleration of the COM was the variable selected for this
study because it is a single variable that represents the motion of
the whole body. However, some systems may adapt to maintain
a constant COM acceleration pattern as a result of impending
pain or injury. This adaptation may be difficult to detect, which
could explain the non-significant results of the present study.
However, complexity and other non-linear dynamic methods
are sensitive measures for detecting changes in the behavior of
the interacting subsystems that control these adaptations, even
when the movement pattern is similar between clinical groups
(Deffeyes et al., 2009b; Gruber et al., 2011; Bisi and Stagni, 2016).
Therefore, we expect that any adaptations to maintain a specific
movement pattern in the presence of pain or injury would
manifest as an increase in regularity and potentially be detectible
with a complexity or another non-linear dynamic analysis.

The ability to detect differences between groups may have
been affected by the run we selected to compare to baseline.
Complexity during the run prior to RRI was assessed to identify
critical changes in running gait before the signs and symptoms
of an RRI became apparent. Comparing the run from the same
day as the reported RRI may have resulted in larger differences
in complexity between groups, increasing the likelihood of
detecting statistical significance.

The present study was more ecological than a lab-based
study because it was conducted in a free-living environment.
Using the control entropy calculation, rather than other entropy
calculations, helps to mitigate some factors that may affect
complexity magnitude in this highly ecological setting that is
representative of free-living runners. However, future studies
could benefit from studying more controlled environments (e.g.,

consistent terrain, running pace, duration, and running route)
to better understand daily, run-to-run, or within-run variations
in COM acceleration complexity. Differences or changes in
COM acceleration complexity have previously been observed
between treadmill and overground running (Lindsay et al.,
2014), at the onset of fatigue, and with changes in gait speed
(McGregor et al., 2009). Therefore, the influence of these typical
environmental attributes must be established to improve the
classification accuracy of the changes in complexity associated
with impending RRI.

Mean control entropy was calculated and compared across
easy runs and not during intense training sessions or races.
Although detecting changes in complexity across a competitive
season was the goal of the present study, more intense runs,
which have been shown to cause acute changes in complexity at
the onset of fatigue (McGregor et al., 2009), may be necessary
to better detect the changes in COM acceleration complexity
that indicate a change in RRI risk. Additionally, the pace of
the baseline and pre-injury runs could have differed between
runs. It is possible that the pace of the recorded runs increased
slightly as the season progressed, which may have influenced
COM acceleration complexity apart from changes in complexity
due to impending RRI. Differences in complexity were detected
previously between several walking and running speeds that
differed by 2 km/h (McGregor et al., 2009). However, the coaches
made it a priority that runners maintain an “easy” pace (i.e.,
based on perceived effort) for the recorded running sessions
throughout the season. Therefore, we expect changes in pace
during the season to be minimal.

Seeking medical treatment was used in current study and
others (Davis et al., 2016) to allocate participants into the injured
group. Other definitions of RRI have been used when medical
evaluation was not part of the study design. These methods
are based primarily on the number of missed or modified
running days in a given week due to pain (Yamato et al., 2015),
which was not available in the present study, while others use
similar details to assess RRI severity (Salzler et al., 2016). A new
consensus statement on sports injury surveillance suggests that
no one definition of injury may fit all circumstances (Bahr et al.,
2020). Given that complexity is sensitive to detecting differences
between groups of varying health status and between disease
severity levels, future development of COM complexity as an RRI
surveillance system could lead to a data-driven definition for RRI
that avoids self-report and subjective behavioral responses to pain
as part of the criteria. RRI severity or type may also influence
the degree of change in complexity magnitude between runs and
should be investigated in future studies.

Six out of the seven injured participants in the present study
reported the onset of their RRI within 3 weeks of the baseline run,
including two participants who sustained a run 2–5 days after the
baseline run. As such, only one run was included in the analysis
for these two participants. The lack of time between the baseline
run and the onset of an RRI may suggest that monitoring of
the would-be injured participants did not begin early enough to
capture a greater change in complexity. Recordingmore runs and
longer follow-up periods may improve the classification accuracy
of changes in complexity with the odds of sustaining an RRI.
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Accelerometer placement and compliance were self-
controlled by the participants, and study personnel were not
present prior to any running bouts or practice other than
the baseline run to ensure these procedures were followed
consistently. However, accelerometer wear compliance exceeded
the reported compliance of studies implementing a prescribed
training program including a follow-up period of 4–24 weeks
but was lower than shoe-related intervention studies with a 21–
24-week follow-up (Nielsen et al., 2019) and another collegiate
runner surveillance study with nine participants (Kiernan
et al., 2018). Participants were also instructed to position the
accelerometer securely, centered over the low back (which was
demonstrated by the investigators prior to the baseline run). Self-
placed accelerometers are a necessary part of any ecologically
valid study. Calculating the Euclidean norm of the accelerometer
data obviates the need to account for interindividual differences
in device orientation. Any effects on signal quality caused by
the degree of fixation was likely identified as “non-running” by
the run detection algorithm (Davis IV et al., 2019), and thus
removed from the analysis.

The low (i.e., 100Hz) sampling frequency of the research-
grade accelerometer used in this study is another limitation.
While some wireless, research-grade wearable devices have
greater sampling frequency capabilities, the accelerometer used
in this study was chosen for its access to the raw data and for
its data storage capacity (accelerometers were not returned to
the researchers until the end of the competitive season, ∼14
weeks after the baseline run). However, an underestimation
analysis conducted by our laboratory revealed that peak COM
acceleration recorded by the accelerometer used in this study
and a higher resolution (1,200Hz) differed by <1 g. This analysis
suggests that the 100Hz sampling frequency was sufficient to
assess COM acceleration complexity.

Future Directions
Investigating the use of wearables for out-of-lab assessments of
running mechanics has recently expanded to improve ecological
validity in RRI research. Despite the added value of quantifying
running mechanics and external loads experienced by runners
while training (Napier et al., 2020; Paquette et al., 2020; Ryan
et al., 2021), coaches and athletes have, for the most part,
exclusively relied on running distance to minimize RRI risk
due to convenience and simplicity. However, it is not typically
revealed to a runner that a training error has occurred until
after the signs and symptoms of an RRI manifest. The present
study is the demonstrated first step in providing a monitoring or
warning system to intervene before RRI onset. As the wearable
technology industry solves current barriers and limitations for
more advanced applications—including access to raw data,
data storage capacity, and computing power—advancements in
mathematical and statistical models to prospectively determine
onset of RRI, such as those proposed in the current study,
may become more feasible. The current study is in line with
these future applications of wearable technology for coaching,
rehabilitation, and prevention as it serves as a template for
monitoring runners in a free-living setting.

Conclusion
This pilot study establishes proof of concept and initial
feasibility for using COM acceleration complexity as a metric for
monitoring risk of RRI. The nearly consistent but non-significant
estimates that increase in COM acceleration complexity which
corresponded to increased odds of RRI risk in our pilot
sample is worthy of investigation in larger studies. However,
the true association between complexity and injury may be
positive, negative, or null. Additional basic science and clinical
investigations are required to reveal specific changes in gait
complexity that may be indicative of RRI risk. This work could
lead to coaching, rehabilitation, and recreational fitness strategies
using wearable technology to monitor training and prevent RRI
before its onset.
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