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Abstract
We present a method for the evaluation of fluorescence fluctuations on the basis of Mandel’s Q parameter, using sampling 
time-dependent factorial cumulants. By relating the Q parameter to the sampling time, we obtain the mean single molecule 
rate (mSMR), an easy to interpret expression that provides both brightness and diffusion information. The model is suit-
able for the widely used confocal setups with single photon excitation and a single detection channel. We present a way to 
correct the mSMR for afterpulsing, dead time and background noise. To account for photokinetic effects at short sampling 
times, we expand the model by a simple on/off isomerization term, which is similar to the well-known triplet model. The 
functionality of the mSMR is shown using Monte Carlo simulations. The correction mechanisms and the experimental 
applicability of the model are then demonstrated by DNA measurements of defined composition. By systematically analyz-
ing DNA mixtures, we can show that at large sampling times, the mSMR correctly describes the single molecule brightness 
rates and the diffusive properties of DNA molecules. At short sampling times, the photokinetic effects of isomerization are 
accurately described by the mSMR model. Since additionally the mSMR can easily be corrected for measurement artefacts 
such as detector dead time, afterpulsing and background noise, this is a valuable advantage over the standard method of 
fluorescence correlation spectroscopy.

Keywords  Fluorescence fluctuation spectroscopy · Cumulant analysis · Single molecule brightness · Nucleic acids · 
Diffusion

Introduction

Fluorescence fluctuation spectroscopy (FFS) is an important 
tool to study biomolecules in solution. It is based on the 
statistical analysis of fluorescence intensity fluctuations due 
to the diffusion of fluorescent particles through an excitation 
volume. The fluorescent or fluorescence-labeled particles 
are excited by a continuous or pulsed laser. A detector unit 
captures a fraction of the emitted photons over time. A vari-
ety of analytical methods are available for the evaluation 
of the fluorescence traces. Certainly the most widely used 
technique is fluorescence correlation spectroscopy (FCS), 
first described by Magde et al. [1, 2]. It was considerably 

improved by the introduction of confocal optics, which sig-
nificantly increased the signal-to-noise ratio up to the single 
molecule level [3]. Today there is a wide range of appli-
cations based on the fundamental concepts of FFS. These 
methods fall into one of two categories. The methods in the 
first category investigate fluctuations in the time domain. 
They include, among others, fluorescence correlation spec-
troscopy (FCS) and its variants such as higher order FCS 
(HOFCS) [4–6], fluorescence cross-correlation spectros-
copy (FCCS) [3, 7], and fluorescence life time spectroscopy 
(FLCS) [8, 9]. Methods that investigate fluctuations in the 
amplitude domain are in the second category. They include, 
among others, the photon counting histogram (PCH) [10], 
the fluorescence-intensity distribution analysis (FIDA) [11] 
and the related fluorescence cumulant analysis (FCA) [12]. 
Both FIDA and FCA have been extended to larger sampling 
times, now dubbed fluorescence intensity multi distribution 
analysis (FIMDA) [13] and time integrated fluorescence 
cumulant analysis (TIFCA) [14]. Finally, Scales and Swain 
developed the correlated photon counting histogram (cPCH) 
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for an excitation with two excitation sources and two detec-
tion channels and showed that the two categories of FFS 
methods based on fluctuations in the time domain and on 
fluctuations in the amplitude domain, respectively, can be 
unified in one theory [15].

In this paper, we derive a sampling time-dependent model 
for the analysis of the single molecule brightness based on 
Mandel’s Q parameter. We start with the first two factorial 
cumulants as used in FIMDA and TIFCA to calculate the  
Q parameter for increasing sampling times. We normalize  
the Q parameter to the sampling time and obtain the mean  
single molecule rate (mSMR) that provides both brightness and 
diffusion information. The mSMR is suitable for single photon 
excitation with single channel detection, widely used today in 
fluorescence correlation spectroscopy. We evaluate this model  
using Monte Carlo simulations. Then we apply the model to 
real measured data. Since in real experiments detector arte-
facts occur in setups with a single laser source and a single 
detection channel, the measurement data are corrected for the 
most frequent effects, afterpulsing, detector dead time and 
background noise. We show that this correction is sufficient for  
an accurate representation of the data. Finally, we introduce  
an on/off isomerization term to account for the influence of 
photokinetic effects at short sampling times in DNA meas-
urements. The simple on/off isomerization term is similar to 
a triplet term used in other FFS studies. For the measure-
ments under real conditions, we use DNA mixtures of known 
composition and show that the results of the mSMR analysis 
provide accurate results that are consistent with the literature. 
Especially with short sampling times, mSMR is well suited 
for the analysis of photokinetic effects. The primary aim of 
this paper is to introduce the mSMR model and show its appli-
cability. Further experimental analyses are beyond the scope 
of this paper and will be addressed in future publications.

Theory

We start with the general definition of Mandel’s Q parameter 
[10, 16],

where ⟨… ⟩ is a time average and denotes the moments of 
the photon counts k. The Q parameter is a measure of the 
deviation of a photon number from a Poisson distribution for 
which Q = 0 [16]. Q parameters greater than zero are called 
superpoissonian and Q parameters less than zero are called 
subpoissonian. The relevance of Mandel’s Q parameter for 
correlation analyses of diffusing molecules has already been 
reported in other studies [17, 18]. We can express the first 

(1)Q =
⟨Δk2⟩ − ⟨k⟩

⟨k⟩ =
⟨k2⟩ − ⟨k⟩2 − ⟨k⟩

⟨k⟩

and second ordinary moments of the photon counts k in 
terms of intensity cumulants [19, 20] and get:

with the intensity cumulants �1 = ⟨k⟩ and �
2
= ⟨k2⟩−

⟨k⟩2 − ⟨k⟩ . For short sampling times compared to the char-
acteristic diffusion time �D of the molecules through the 
observation volume, the first two intensity cumulants are 
given by [17]:

with � being the single molecule brightness and N being the 
average number of molecules in the observation volume. The 
coefficient �r is generally defined as [10]

In case of r = 2 and by approximating the normalized 
point spread function PSF by a Gaussian beam profile

�2 becomes

Now we abandon the limitation to short sampling times 
and consider the case of arbitrarily large sampling times 
for the Q parameter.

The sampling time-dependent first intensity cumulant 
�1(T) can be defined as follows [12, 14]:

with �0 =
�

T
 being the count rate of a single molecule. The 

sampling time-dependent second intensity cumulant �2(T) is  
given by [12, 14]

The dimensionless binning function Γdiff describes the 
dependence of the second intensity cumulant on the data 
sampling time and is defined as [14]

(2)Q =
�2

�1
,

(3)�1 = � N,

(4)�2 = �2 �
2 N,

(5)�r =
∫
V
(PSF(�))r d�

∫
V
PSF(�) d�

.

(6)PSF(�) = exp

(
−2

(x2 + y2)

r2
0

− 2
z2

z0

)
,

(7)�2 =
1

2
√
2
.

(8)Q(T) =
�2(T)

�1(T)

(9)�1(T) = � N = �0 T N

(10)�2(T) = �2 �
2
0
T2 N Γdiff(T).
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For a three-dimensional Gaussian PSF, the correlation 
function is

with r2 = z2
0
∕r2

0
 being the ratio of the axial z0 and lateral r0 

expansion of the Gaussian PSF Eq. 6. Solving Eq. 11 for 
g3DG yields [13, 15]:

with the dimensionless sampling time � = T∕�D and 
� = r−2 = r2

0
∕z2

0
 . Inserting Eqs. 9, 10 and 13 into Eq. 8 yields 

the Q parameter as a function of the sampling time T.

An expression is obtained which for given geometric 
parameters r depends solely on the rate of the single mol-
ecule brightness �0 and the mean diffusion time �D . Figure 1 
shows on the left side the curves of Eq. 14. By dividing 
Eq. 14 by the sampling time T, we obtain the mean single 
molecule rate (mSMR):

(11)Γdiff(T) =
2

T2 ∫
T

0

(T − �) g(�) d�.

(12)g3DG(�) =

[(
1 +

�

�D

)√
1 +

�

r2�D

]−1
,

(13)Γdiff,3DG(T) =

⎧
⎪⎨⎪⎩

8

𝛼2

�
𝛼

2
−
√
1 + 𝛼 + 1

�
for r = 1,

4

𝛼2𝛽

�
𝛽(1+𝛼)√

1−𝛽
artanh

�√
1 − 𝛽

(
√
1+𝛼 𝛽−1)

(𝛽+
√
1+𝛼 𝛽−1)

�
−
√
1 + 𝛼 𝛽 + 1

�
for r > 1.

(14)Q3DG(T) = �2 �0 T Γdiff,3DG(T)

With the mSMR the influence of the diffusion time �D 
becomes immediately apparent from the graphs in subplot 
B and D. In these plots, the curve progression is strongly 
reminiscent of the curve progression in fluorescence correla-
tion spectroscopy analyses. But instead of the mean particle 
count, the mean rate of the single molecule brightness rate 
is now determined via the amplitude of the curve.

Measurement Artefacts

In fluorescence fluctuation spectroscopy, several interfering 
factors occur. We will address the most common artefacts 
afterpulsing, detector dead time and background noise and 
present correction terms for the mSMR.

Afterpulsing and Detector Dead Time

Photon counting devices are not perfect and are themselves 
sources of error. Afterpulsing and detector dead time are the 

(15)�3DG(T) =
Q(T)

T
= �2 �0 Γdiff,3DG

Fig. 1   Comparison of Eqs. 14 
and 15. The left side of the 
subplots shows Mandel’s Q 
parameter Q(T) and the right 
side displays the mSMR �(T) . 
A  and B Varying diffusion 
coefficient D. The rate of the 
single molecule brightness is 
constant at �0 = 100kCps . C 
and D Varying single molecule 
brightness rates �0 . The diffu-
sion coefficient is constant at 
D = 40�m2∕s . The geometric 
parameter is r = 10 in all graphs
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most common artefacts in FFS experiments that use single-
photon avalanche diodes. Afterpulsing affects all modern 
photon counting devices. Whenever a signal is triggered at 
the detector, there is a certain probability that another spuri-
ous photoelectron event is triggered. The probability of an 
afterpulsing event is detector-specific and decreases rapidly 
over time [18]. Typical probabilities for the occurrence of 
afterpulsing are in the range of 1% and have a nanosecond to 
microsecond delay to the true signal [21]. It is important to 
note that an afterpulsing event can cause further afterpulsing 
events, which are referred to as second or third order after-
pulsing. Afterpulsing increases Mandel’s Q parameter [22] 
and should therefore be considered in an analysis based on 
Mandel’s Q parameter. The second artefact is detector dead 
time. After triggering an electron avalanche, the detector 
needs a short periode of time to return to its original base 
state. This time is called the detector dead time. During the 
dead time no further photon events can be detected. The 
detector is therefore blind for a short time. Typical detector 
dead times are in the nanosecond range. Dead time reduces 
Mandel’s Q parameter, which means that the measured value 
of the Q parameter is smaller than the true value [22]. To 
keep the influence of detector dead time as low as possible, 
the detector should generally not be operated at too high 
count rates. To account for afterpulsing and detector dead 
time, the photocounting moments from the experiment ⟨kn⟩m 
can be corrected. To facilitate further analyses, it is conveni-
ent to correct the measured moments directly. The first two 
moments ⟨k⟩ and ⟨k2⟩ corrected for first order afterpulsing 
and detector dead time is given by [23]:

where PA is the afterpulsing probability of the detector and 
� is the dimensionless dead time given by � =

tdead

T
 with the 

detector-specific dead time tdead . The above equations are 
only valid for the case that ⟨k⟩𝛿 ≪ 1 . If this condition is not 
met, the correction of the first two moments of a fluores-
cence trace is erroneous.

Background Noise

In addition to detector artifacts, the background noise of the 
measurements has also an effect on the mSMR data. Back-
ground noise typically lowers the mSMR data and causes an 
underestimation ot the single molecule brightness rate. This 
effect is also known in fluorescence correlation spectros-
copy, where a decrease in the S/N ratio affects the average 

(16)⟨k⟩ = ⟨k⟩m(1 − PA − �) + �⟨k2⟩m,

(17)
⟨k2⟩ = ⟨k2⟩m(1 − 2PA − 3�) + 2�⟨k3⟩m + (� − PA)⟨k⟩m,

number of particles ⟨N⟩ in the detection volume. To com-
pensate for this effect a correction term �2 is commonly 
used [24, 25].

with the background noise ⟨b⟩ . We can adapt this term for 
the rate of the single molecule brightness as follows:

The term is suitable to correct �0 from the experiment. 
The background noise is determined for the correction via a 
blank measurement. However, sometimes it is more practical 
to correct the mSMR curves directly. For this we can apply the 
background correction to the sampling time-dependent model.

Photokinetic Effects

While diffusive processes occur at comparatively large sam-
pling times, there are further photokinetic effects that occur 
at very short sampling times. Frequently observed phenom-
ena are the occurrence of triplet states, rotational diffusion 
and for some dyes isomerization effects, which influence the 
emission characteristics of the particles under study [26]. 
Since we use very small laser powers in this study, triplet 
effects can be neglected. We also work with time resolu-
tions of �s . In contrast, rotational diffusion takes place in 
nanoseconds and cannot be resolved in our setting. On the 
other hand, the influence of isomerization is not negligible 
for labeled DNA polymers. Commonly used fluorescence 
dyes for RNA/DNA labeling (e.g. RiboGreen or PicoGreen) 
belong to the group of cyanine dyes. These are known to 
exhibit cis/trans isomerization, which leads to blinking 
upon fluorescence excitation [27]. In the simplest case, 
isomerization is a two-state system that switches back and 
forth between a bright and a dark state. Assuming that the 
isomerization takes place on much shorter time scales than 
the diffusion process, the diffusion process can be regarded 
as stationary relative to isomerization. That allows consid-
eration this process independently. The isomerization term 
for a simple on/off system has the same shape as the term 
for triplet effects and is given by [28]:

(18)�2 =

�
1 +

⟨b⟩
⟨k⟩ − ⟨b⟩

�2

,

(19)

�0,corr =
⟨k⟩ − ⟨b⟩
⟨N⟩corr =

⟨k⟩ − ⟨b⟩
⟨N⟩ �2

=

�
1 −

⟨b⟩
⟨k⟩

�−1

�0.

(20)�corr(T) = �2�0Γdiff

�
1 −

⟨b⟩
⟨k⟩

�−1
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F is the fraction of fluorophores in a dark state and �F is 
the sum of the switching rates kon and koff . For the mSMR the 
additional term is handled in the same way as the diffusion 
term [13]. Thus, inserting Eq. 21 into Eq. 11 and integrating 
over the sampling time yields

This results in the entire expression for Q(T):

and for the sampling time-dependent mSMR �(T):

A simple isomerization model for fluorescence correla-
tion spectroscopy analysis has been used to study the blink-
ing of GFP [26] and the cis-trans isomerization of the fluo-
rescent cyanine dye Cy5 [29]. In reality, M fluorophores bind 
to a DNA polymer. This is a finite birth and death process 
with M + 1 states from completely dark to all fluorophores 
are emitting. For fluorescence correlation spectroscopy anal-
ysis such a system can be modeled by a system of coupled 
differencial equations [28]. However, such a system can no 
longer be represented analytically and consists of a linear 
superposition of exponential functions with the eigenvalues 
as decay constants.

In practice, the simplified model of a binary on/off 
isomerization is a sufficiently good description of the experi-
mental data. Therefore, we will use the simplified, though 
physically inaccurate, assumption of a binary on/off isomeri-
zation in our modeling.

Materials and Methods

Monte Carlo Simulation

In order to investigate the models without noise sources 
(detector artefacts, isomerization effects), the diffusion of 
particles is modeled in a Monte Carlo simulation. The simu-
lation volume is defined with 12× the axial and longitudinal 
extension z0 and r0 of the detection volume. The minimum 
step size � is determined by the fastest simulated species 

(21)giso(t) = 1 +
F

1 − F
exp

−
t

�F .

(22)

Γiso(T) =
2

T2 ∫
T

0

(T − �) gtrip(�) d�

= 1 +
2

T2

F �F T − (1 − exp
−

T

�F )F �2
F
)

(1 − F)
.

(23)Q(T) = �2 �0 T Γdiff(T) Γiso(T),

(24)�(T) = �2 �0 Γdiff(T) Γiso(T).

(25)giso(t) =

M∑
i=0

bi exp (�i t)

and is limited to a maximum of 20nm to ensure the validity 
of a Wiener process to describe a random walk of diffusing 
species. Using the Einstein-Smolouchowski relationship, the 
time slice Δt for the simulation of a 3D diffusion is given by

The random direction of motion of each particle is equally 
distributed in the 6 spatial directions. A Gaussian profile is 
used as molecular detection efficiency profile (see Eq. 6). 
The normalized Gaussian profile is multiplied by a factor 
�0 which summarizes all optical properties of the simulated 
particles (e.g. quantum efficiency, cross section, excitation 
intensity), thus giving us:

The number of photons emitted by each particle at loca-
tion � is modeled by a Poisson distribution

The Poisson distribution returns the probability to detect 
k photons from a simulated particle at position � with a 
corresponding local photon count �(�) . At the beginning 
of each time slice the position of all simulated particles is 
updated by a random motion in x, y or z direction, whereas 
the step size of each particle depends on its diffusion coef-
ficient. After updating the position of all particles, Eq. 28 is 
used to calculate the total number of emitted photons for all 
particles. The successive calculation of the total number of 
photons of all simulated particles for each time slice yields 
the fluorescence trace. The simulation can easily be extended 
to include additional noise factors such as Poissonian noise. 
The simulated fluorescence trace is analyzed using Eq. 32 
for increasing sampling times without correcting for detector 
artefacts. The fitting of the data is done via Eq. 15.

Instrumentation

The measuring system used is a home-built confocal plate 
reader. A schematic representation of the system used is 
shown in Fig. 2. A fiber-coupled laser (488nm, Laser2000, 
France) serves as a photon source.

The laser beam is directed via a dichroic mirror (LP500) 
into a microscope objective (Neofluar, 63x/0.75, LD, Zeiss, 
Germany) and focused on the sample in a microtiter plate 
with transparent bottom. A part of the emitted fluores-
cence photons is collected by the objective and can now 
pass the dichroic mirror due to the Stokes shift. An emis-
sion filter (535/50) filters out any remaining residual exci-
tation light. An optical fiber (50�m , Thorlabs, Germany) 
serves as a pinhole and transmits the measurement signal 

(26)Δt =
�2

6D
.

(27)�(�) = �0 PSF(�).

(28)Poi(�(�), k) =
(�(�))k

k!
e−�(�).
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to a single-photon avalanche diode (PDM, Micro Photon 
Devices, Italy) with a dead time of 70ns and an afterpulsing 
probability of < 1% (according to the manufacturer’s speci-
fications). The TTL signal from the diode is processed by 
a time tagger card (Time Tagger 20, Swabian Instruments, 
Germany) and sent to the computer where data processing 
takes place. The reading of the wells is automated. Via an 
xy-table (Jüke, Germany) the wells of the plate are scanned 
successively. An autofocus routine automatically finds the 
sharpest measuring plane by moving the objective lens step 
by step in z-direction via a voice coil (PI, Germany). Meas-
urement data are managed and hardware is controled by a 
software developed by the authors of this study. The objec-
tive lens used in the setup is a long-distance air lens instead 
of an oil or water immersion lens. We have shown the feasi-
bility of using a long-distance lens for FFS experiments in 
other study [30]. The main advantage is that the setup is less 
costly and easier to automate.

Data Processing

The measurement data as well as the data generated by the 
Monte Carlo simulations have to be processed to derive the 
sampling time-dependent moments. To calculate the mSMR 
from a given fluorescence trace over a total observation time 
Tobs , we proceed as follows. The minimum sampling time of 
the fluorescence traces of the FFS measurement is given by 
the measurement setup and the specifications during data 
acquisition. We divide the fluorescence trace of n entries into 
all possible equidistant sampling intervals with T = ti − ti−1 
with i = 1, 2, 3,… ,N  , also referred to as sampling time. 
We accomplish this by finding all integer divisors N for the 

length n of the original fluorescence trace. We then perform 
a rebinning of the fluorescence trace, where the number of 
combined bins corresponds to the sampling time. A quick 
way of binning an array is via matrix multiplication. We 
illustrate this with the example of a fourfold binning. We 
start with a fluorescence trace with n entries and an original 
binning time of 1 ×10−6s

By a reshape, the n × 1 matrix of the fluorescence trace 
is converted into a n∕4 × 4 matrix. For clearity, we keep the 
original indexing of the entries.

We multiply the matrix with a 4 × 1 matrix containing 
only ones values. The result is the binned n∕4 × 1 matrix 
with a sampling time of 4 ×10−6s.

The rebinning is repeated for all integer divisors of n. For 
each rebinned fluorescence trace, we calculate the associated 
first and second moments of the photon counts and finally 
get the sampling time-dependent Q parameter, which we 
normalize to the corresponding sampling time T:

(29)Fn×1 =

⎡⎢⎢⎣

a1
⋮

an

⎤⎥⎥⎦

(30)Fn

4
×4 =

⎡⎢⎢⎣

a1 a2 a3 a4
⋮ ⋮ ⋮ ⋮

an−3 an−2 an−1 an

⎤⎥⎥⎦

(31)Fn

4
×1 = Fn

4
×4 ×

�
1 1 1 1

�⊺
=

⎡⎢⎢⎣

b1
⋮

bn∕4

⎤⎥⎥⎦

Fig. 2   Laboratory setup of the 
confocal plate reader for the 
measurements in our study. The 
wells of a microtiter plate are 
scanned in sequence via an xy 
stage, with a z-adjustor moving 
the objective lens to the optimal 
focal point for the measurement. 
The excitation beam is coupled 
into the system via a fiber. The 
fluorescence photons emitted 
from the sample are focused 
via a tube lens onto the detec-
tion fiber, where the incident 
photons are detected by a SPAD 
and subsequently processed by a 
time tagger card
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To account for the effects of afterpulsing and detector 
dead time, the two measured moments ⟨k⟩m and ⟨k2⟩m are 
corrected via Eqs. 16 and 17 before they are inserted into 
the above equation. Subsequently, �(T) is fitted with Eq. 15 
using a least square non-linear fitting routine to derive the 
physical parameters.

Sample Preparation and Data Acquisition

Double stranded DNA fragments of defined length 
(Nolimits DNA fragments, Thermofisher, USA) are 
used in the measurements. The dsDNA fragments (50bp, 
100bp, 200bp, 300bp, 500bp, 700bp, 1000bp) and DNA 
library solutions are prepared in 25% DMSO and 75% 
water (vol/vol) and adjusted to the following concentra-
tions: 0, 5, 10, 25, 50, 100, 150 and 200pg/�l . A 0.6x 
solution of the cyanine dye RiboGreen (997�l TE-buffer 
and 3 �l RG stock solution) is used for labelling the DNA 
molecules. Equal volumes of DNA solution and 0.6x dye 
solution are mixed and equilibrated for 2h. RiboGreen 
stains all types of nucleic acids and has been shown in 
pre-tests to be very bright and to yield accurate results 
[30].

For the measurements, 40�l of the samples are trans-
ferred into a 384 well microtiter plate ( �Clear, non-binding, 
Greiner BioOne, Germany). The algorithm controling the 

(32)�(T) =
Q(T)

T
=

⟨k2⟩m(T) − ⟨k⟩2
m
(T) − ⟨k⟩m(T)

T⟨k⟩m(T) .
measurement setup automatically finds the bottom side of 
the microtiter plate and performs the measurement accord-
ing to the given parameters. For each well, five measure-
ments are recorded at different locations. The measurement 
time for each point is 10s. The laser power is set to 2.5�W 
or 10�W  (see captions below for details). The fluorescence 
traces are processed as described in section “Data Process-
ing” and fitted with the model that includes the isomeriza-
tion term (Eq. 24). The fit parameters of the five measure-
ments in each well are averaged.

Results and Discussion

Simulations

The mSMR model is checked for plausibility using Monte 
Carlo simulation. This allows us to vary parameters that 
are difficult to change experimentally, such as the single 
molecule brightness rate or the geometric dimensions of 
the detection volume. In addition, disturbing experimental 
factors such as detector afterpulsing or dead time can be 
neglected in the simulation. All simulations are run five 
times for a measurement time of 10s. The lateral expansion 
of the confocal volume is r0 = 0.4�m . Figure 3 shows the 
results of the simulations. The data points are the average 
of the five individual simulation runs. The data are fitted 
with Eq. 15. Subplot A shows the curves of the mSMR �(T) 
for different single molecule brightness rates ( �0 = 40kCps , 

Fig. 3   mSMR from simulated 
fluorescence traces. The general 
parameters are: �xy = 0.4um , 
simulation time t = 10s . A 
Varying rate of single mol-
ecule brightness �0 , with 
constant geometric parameter 
r = 1 , diffusion coefficient 
D = 50�m2∕s and particle 
number nsim = 20 . B Varying 
diffusion coefficients D, with 
constant geometric parameter 
r = 1 , single molecule bright-
ness rate �0 = 100kCps and 
particle number nsim = 20 . 
C Varying particle numbers 
nsim = 20 , with constant 
geometric parameter r = 1 , dif-
fusion coefficient D = 50�m2∕s 
and single molecule brightness 
rate �0 = 100kCps . D Varying 
geometric parameter r, with 
constant diffusion coefficient 
D = 50�m2∕s , single molecule 
brightness rate �0 = 100kCps 
and particle number nsim = 20
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60kCps, 80kCps, 100kCps). The diffusion coefficients and 
the mean particle number are constant ( D = 50�m2∕s and 
nsim = 20 ). The geometric parameter is r = 1. We see that 
the amplitude of the curves increases with increasing rates 
for the single molecule brightness. From the fits, we get the 
single molecule brightness rates with the corresponding 
standard diviations: �0 = 40.5 ± 0.6 , 60.3 ± 1.4 , 79.2 ± 1.8 
and 98.4 ± 2.6kCps . These results are in perfect agreement 
with the initial simulation parameters for �0 . Subplot B 
shows the curves of �(T) for varying diffusion coefficients 
( D = 50, 100, 200, 400�m2∕s ). The rate of the single mol-
ecule brightness and the particle number are kept constant 
( �0 = 100kCps and N = 20 ). The geometric parameter is 
r = 1 . For decreasing diffusion coefficients, the curves shift 
towards larger sampling times. From the fits of the data we 
obtain the mean diffusion time �D that the particles need on 
average to pass through the detection volume. From the dif-
fusion time, the diffusion coefficient is calculated using the 
following relationship:

The following diffusion coefficients and their standard 
deviations are derived from the fit of the simulated data: 
D = 53 ± 3 , 102 ± 5 , 204 ± 6 and 407 ± 16�2∕s . Once again 
the results are in good agreement with the initial param-
eters of the simulation. Subplot C shows the results of 
the simulation for varying numbers of particles ( N = 20 , 
40, 60 and 100) at a constant single molecule brightness 
rate ( �0 = 100kCps ) and constant diffusion coefficient 
( D = 50�m2∕s ). The geometric parameter is r = 1 . As 
expected, the mSMR curves show no significant deviations 
from each other, since the single molecule brightness rate is 
the same in all simulations. Subplot D finally shows the data 
for varying geometric parameters. The axial expansion was 
gradually increased ( z0 = 0.4 , 0.8, 2.0 and 4.0�m ) while the 
lateral expansion was kept constant ( r0 = 0.4�m ) resulting 
in r = 1 , 2, 5 and 10. The other simulation parameters were 
held constant ( N = 20 , �0 = 100kCps and D = 50�m2∕s ). 
As expected, the variation of the geometric parameter r 
shows no influence on the amplitude of the curves and thus 
on �0 . The sigmoidal decline of the data at larger sampling 
times, however, is influenced by the axial expansion. But 
the influence is very small. Between the curves of r = 1 and 
r = 2 there is still a clear difference. But the curves of r = 5 
and r = 10 practically coincide. Thus, for large r, the sensi-
tivity of the model to variations in r is very weak. For the fit 
of data from real measurements, we recommend not to leave 
the geometric parameter r freely adjustable, but to determine 
it via a precise calibration using a fluorescent dye of known 
concentration (e.g. Alexa 488), and considering r fixed for 
further experimental evaluations.

(33)D =
r2
0

4�D
.

By systematically varying the molecular parameters in 
the Monte Carlo simulations, we demonstrated that the 
mSMR model can reliably reproduce the initial simulation 
parameters and behaves according to the theoretical expecta-
tions. However, the model is very insensitive to variations 
of the geometric parameter r. We recommend to determine 
the geometric parameter by calibration measurements for the 
confocal setup and to include it as a fixed parameter in the 
non-linear fit of the model to the data points.

Experiments

After checking the model with simulated data, we now test 
our model against data from real measurements. We do this 
with measurements on double-stranded DNA mixtures of 
known composition.

Measurements Artefacts

In the analysis of real measurements, detector artefacts play 
an important role, especially for short sampling times. We 
focus on afterpulsing and detector dead time, the two most 
important artefacts, and demonstrate their effects in the eval-
uation of a 100bp DNA mixture. Additionally, we take into 
account the influence of background noise on the mSMR 
model. The measurements were conducted with an excita-
tion power of 10�W  to make the effects more prominent. 
In later measurements we will work with somewhat lower 
excitation powers. Figure 4 shows the stepwise correction 
of the detector artefacts in the mSMR. We start in Subplot 
A with the raw mSMRs of a dilution series. It can be seen 
that the amplitudes of the mSMR curves differ, although 
the molecules studied are the same for all concentration 
steps. This difference is caused by background noise. In 
addition, it is noticeable that at short sampling times the 
data series of high concentration show a slightly deviat-
ing course from the other data series. This effect is caused 
by detector dead time. At higher laser powers and higher 
concentrations, this effect starts to dominate and prevents, 
without correction, a meaningful evaluation. We start with 
correcting �(T) for detector dead time using Eq. 17 with a 
dead time of tdead = 70ns . Subplot B shows the detector dead 
time corrected results. The characteristic deviations at small 
sampling times between the data series have disappeared. 
Instead, there is now a slight exponential increase of �(T) 
at short sampling times in all data sets. This overestimation 
of the amplitude is caused by afterpulsing. We now correct 
the data sets for afterpulsing by applying Eq. 17 with an 
afterpulsing probability of PA = 0.006 . In subplot C we see 
that the exponential character of the mSMR curves disap-
peared at short sampling times. The corrected data can be 
accurately fitted with Eq. 24, which takes a binary on/off 
isomerization into account. The remaining deviations in the 
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amplitudes are caused by background noise, which has a 
much stronger influence on the curves at low concentrations 
than at high concentrations. We correct for this effect using 
Eq. 20. We determined the amount of background noise 
with a blank measurement. Subplot D finally shows the �(T) 
curves completely corrected for afterpulsing, detector dead 
time and background noise. The data points are now in good 
alignment for all concentration steps. We perform these cor-
rection steps for all collected data sets in this study.

DNA Mixtures

In the following, we study the mSMR model with DNA solu-
tions of defined fragment lengths. Dilution series are prepared 
and evaluated for each fragment length. The studied concen-
trations are 5, 10, 25, 50, 100, 150, 200 pg/�l . The laser power 
used is set to 2.5�W to minimize detector artefacts and to keep 
photobleaching as low as possible. We correct all data sets for 
measurement artifacts. A summary of the results is shown in 
Fig. 5. Subplot A shows the averaged �(T) curves over all 
studied concentration steps. The increase in amplitude and 
the shift of the data series towards larger sampling times with 
increasing fragment lengths is obvious. All data series can 
be reliably fitted with Eq. 24 with isomerization term. Sub-
plot B displays the averaged single molecule brightness rates 
of each dilution series. With increasing fragment length also 
�0 increases. The increase in brightness is to be expected as 
more marker molecules can bind to larger DNA fragments and 

contribute to the overall brightness of the molecule. The data 
points can be fitted with a polynomial of second order. The 
deviation from an ideal straight line is presumably due to size 
effects of the DNA molecules when traversing the detection 
volume. However, despite the low excitation powers, increas-
ing photon bleaching effects for larger molecules cannot ruled 
out either [30]. Subplot C shows the average diffusion times 
of the dilution series. With increasing fragment size, the diffu-
sion time also increases. The diffusion coefficients of the DNA 
fragment solutions are determined from the mean diffusion 
time using Eq. 33 with a lateral expansion of r0 = 0.40�m 
from a calibration measurement. The diffusion coefficients are 
shown in Subplot D in a double-logarithmic representation. 
The data points can be described by a power law. The fit yields 
an exponent of B = −0.73 ± 0.03 (standard error) , which is 
in almost perfect agreement with previously reported values 
in literature ( B = −0.72 [31]). This indicates that the meas-
urements are in line with the expectations from the literature.

We will look a little closer at the data set and focus on 
isomerization effects at short sampling times. For this, we 
use the averaged mSMR curves from Fig. 5, subplot A. 
Since the measurements were taken at only 2.5�W  exci-
taion power, we initially assume that triplet states can be 
neglected and we can focus entirely on isomerization. We 
divide the mSMR curves by the diffusive fraction Γdiff of the 
fitted model, thereby isolating the fraction of isomerization 
Γdiff of the model at short sampling times. Figure 6, subplot 
A shows the results of this procedure.

Fig. 4   Stepwise correction of 
the mSMR using the exam-
ple of a 100bp DNA dilution 
series labeled with RiboGreen 
at 10�W excitation power. A 
Uncorrected data from the 
measurement. B Data corrected 
for detector dead time. C Data 
corrected for detector dead 
time and afterpulsing. Fit of the 
data points with Eq. 24. D Data 
corrected for detector dead time 
and afterpulsing with additional 
correction for the background 
noise of the measurement 
using Eq. 19. Fit of the data via 
Eq. 24
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We focus on sampling times from microseconds to mil-
liseconds. The amplitudes of the isomerization fraction 
decrease significantly for longer fragment lengths and 
are practically negligible for 1000bp DNA fragments. 
We are reasonably accurate in fitting the isomerization 
fractions to the isomerization model Eq. 22, as indicated 
by the continuous graphs plotted. The isomerization frac-
tions obtained from the fit are shown with their associ-
ated standard deviations in subplot B. The course of the 
data points is reminiscent of an exponential decay that 

asymptotically approaches a threshold. In the isomeriza-
tion model, F describes the fraction of molecules that are 
in a dark state and cannot emit photons. This therefore 
means that for large DNA fragments, fewer molecules 
are in a dark state, which immediatelly makes sense since 
more dye molecules bind to them, reducing the probabil-
ity of a completely dark state for the molecule. Although 
we employ a simplified on/off isomerization model, we 
can still accurately describe the mSMR curves at short 
sampling times.

Fig. 5   Summary of the results 
from the analysis of DNA 
solutions consisting of defined 
fragment lengths with con-
centration steps of 5, 10, 25, 
50, 100, 150, 200pg �l . The 
excitation power is 2.5�W . A 
Averaged mSMR curves of the 
DNA dilution series. B Aver-
aged corrected �0 with standard 
deviations of the DNA dilution 
series. The data points are fitted 
with a polynomial of second 
order ( f (x) = a x2 + b x + c ). C 
Averaged diffusion times � with 
standard deviations of the DNA 
dilution series. D Averaged 
diffusion coefficients D with 
standard deviations of the DNA 
dilution series in a double loga-
rithmic presentation. The data 
points are fitted using a power 
law ( f (x) = A × xB)

Fig. 6   Photokinetic effects in 
the mSMR curves of DNA 
measurements. A Division of 
the mSMR curves by the dif-
fusive part Γdiff of the mSMR 
model. B The mean proportions 
F with standard deviations from 
the isomerization term for the 
DNA mixtures
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Conclusion

In this paper we presented the evaluation of fluorescence 
fluctuation experiments based on Mandel’s Q parameter 
for increasing sampling times, making use of the concept 
of factorial cumulants for larger sampling times, as used 
in FIMDA and TIFCA. By relating the Q parameter to the 
sampling time, we obtain the mean single molecule rate 
(mSMR), from which the characteristic diffusion properties 
of the sample under study can be directly interpreted visu-
ally, analogous to fluorescence correlation spectroscopy. The 
concept of the mSMR can be extended to include other pho-
tokinetic effects such as triplet state and isomerization. Our 
model is suitable for single photon excitation and a single 
detection channel. First, we demonstrated the functionality 
of the mSMR model by analyzing Monte Carlo-simulated 
fluorescence traces. The simulation allows to vary the input 
parameters systematically, and we could show that the model 
can reproduce the changes in these parameters. In a second 
step, real measurements were evaluated. Since real meas-
urements include artefacts, especially afterpulsing, detector 
dead time and background noise, we presented correction 
mechanisms to account for these effects. Using the example 
of measurements on a dilution series of 100bp DNA solu-
tion, we demonstrated the individual disturbances introduced 
by the measurement artefacts and corrected them one by 
one. This enabled us to bring the measurement results of the 
DNA dilution series into perfect alignment. We then evalu-
ated systematic measurements of DNA dilution series with 
increasing defined fragment lengths. The mSMR showed 
that the single molecule brightness rate increases for larger 
DNA fragments. This is in line with our expectations, as 
more dye molecules can bind to larger fragments. We also 
derived diffusion coefficients for the individual DNA mix-
tures from the mean diffusion times: The results are in line 
with data reported in the literature. The more detailed study 
of the isomerization in the DNA measurements showed that 
the mSMR can describe the measurement data very accu-
rately, especially at short sampling times. We could observe 
how the fraction of labeled DNA molecules in a complete 
dark state decreases for large DNA fragments. This decrease 
seems to follow an exponential decay. This observation is 
plausible since RiboGreen is a cyanine dye and shows cis/
trans isomerization. This means that it alternates between a 
bright fluorescent and a dark state. Since longer fragments 
have more dye molecules bound, the probability for a com-
plete dark state of the dyed molecule decreases accordingly.

In further studies, we plan to go into more detail about the 
photokinetic effects in mSMR and plan to directly compare 
fluorescence correlation spectroscopy and mSMR. Initial 
observations suggest that mSMR may have an advantage 
here. Interesting future applications for the mSMR could 

be the analysis of in vivo hybridization experiments, e.g., 
the binding of two or more fluorescently labeled probes to 
a complementary target sequence could be studied in real 
time by mSMR, which should allow sequence-specific 
detection of nucleic acids directly in a biological system. 
Another application could be the temporal study of protein 
agglomeration in the cell membrane. Fluorescently labeled 
proteins diffusing into or along the cellular membrane could 
be observed by changes in diffusion times or single molecule 
brightness rate during agglomeration. In the latter case, we 
need to consider diffusion in 2D for the mSMR and need to 
adapt the model accordingly.

We believe that mSMR represents a substantial enrich-
ment of fluorescence fluctuation methods. The mSMR can 
be calculated very quickly and evaluated analogously to the 
FCS. In addition, the ability to correct detector artifacts is 
a valuable advantage over the standard method of fluores-
cence correlation spectroscopy. We are convinced that our 
method can be an alternative to fluorescence correlation 
spectroscopy.
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