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Abstract: A large amount of information needs to be identified and produced during the process of
promoting projects of interest. Thermal infrared (TIR) images are extensively used because they can
provide information that cannot be extracted from visible images. In particular, TIR oblique images
facilitate the acquisition of information of a building’s facade that is challenging to obtain from a nadir
image. When a TIR oblique image and the 3D information acquired from conventional visible nadir
imagery are combined, a great synergy for identifying surface information can be created. However,
it is an onerous task to match common points in the images. In this study, a robust matching method
of image pairs combined with different wavelengths and geometries (i.e., visible nadir-looking vs.
TIR oblique, and visible oblique vs. TIR nadir-looking) is proposed. Three main processes of phase
congruency, histogram matching, and Image Matching by Affine Simulation (IMAS) were adjusted
to accommodate the radiometric and geometric differences of matched image pairs. The method
was applied to Unmanned Aerial Vehicle (UAV) images of building and non-building areas. The
results were compared with frequently used matching techniques, such as scale-invariant feature
transform (SIFT), speeded-up robust features (SURF), synthetic aperture radar–SIFT (SAR–SIFT), and
Affine SIFT (ASIFT). The method outperforms other matching methods in root mean square error
(RMSE) and matching performance (matched and not matched). The proposed method is believed to
be a reliable solution for pinpointing surface information through image matching with different
geometries obtained via TIR and visible sensors.

Keywords: thermal infrared (TIR) oblique image; geometry; wavelength; phase congruency; his-
togram matching; Image Matching by Affine Simulation (IMAS); Unmanned Aerial Vehicle (UAV)

1. Introduction

Thermal infrared (TIR) images are acquired in the approximate range of 9 to 14 µm of
the electromagnetic spectrum and applied to various fields, such as 3D building modeling
and management [1,2], diagnostics related to fire [3] and heat loss [4], disaster management
(e.g., an earthquake [5] or volcano [6]), a military field that detects abnormalities [7], and
the monitoring of safety facilities (e.g., a nuclear power plant) [8]. In this spectral range,
it is possible to obtain information even at night, unlike with visible images. TIR images
have been widely adopted because they allow for the continuous monitoring of problems
that current cities are facing, which can occur at any time of the day [9,10]. However, TIR
images have a much lower resolution compared to visible images. Due to this limitation,
it is usually difficult to pinpoint the area we are interested in with TIR imagery alone. To
overcome this hurdle, a convergent analysis approach combining both TIR and visible
images, including high-accuracy location information, could be essential. During the
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course of image convergence, image matching between visible and TIR images needs to
take place to identify the corresponding points of interest (POIs).

Scale-invariant feature transform (SIFT) [11] and speeded-up robust features (SURF) [12]
are the most representative image matching methods. SIFT first constructs a Gaussian
scale space and extracts feature points, interpreting features using the gradient histogram
technique. SURF derives feature points based on the Hessian matrix and introduces an
integrated graph technique to enhance efficiency. Verykokou and Ioannidis [13] utilized
the SURF detector to perform matching on oblique images acquired with a visible sensor.
Jiang and Jiang [14] applied SIFT detector to execute matching for visible sensor-based
oblique images. SIFT and SURF were initially proposed to find matching points in visible
images, but they have also been applied to find matching pairs in visible and TIR images.

Ricaurte et al. [15] studied the performance of feature point detection and description
between long-wave infrared and a visible dataset obtained from a cross-spectral stereo
rig. The resolutions of the visible and long-wave infrared images were 658 × 492 and
640 × 480, respectively. They evaluated the performance of algorithms under two major
domains: based on image derivatives (SIFT and SURF), and based on image intensities
(Oriented FAST and Rotated BRIEF (ORB) [16], Binary Robust Invariant Scalable Keypoints
(BRISK) [17], Binary Robust Independent Elementary Features (BRIEF) [18], and Fast Retina
Keypoint (FREAK) [19]). They concluded that SIFT performs the best in most evaluation
categories, such as rotation, scale, blur, and noise.

Aguilera et al. [20] considered the feature point descriptor rather than detection and
matching as the key element when finding correspondences from visible and long-wave
infrared spectrum images with SIFT and its modification. They proposed the use of an
edge-oriented histogram (EOH) descriptor considering the non-linear relationship between
pixel intensities. The results showed better matching accuracy compared to SIFT and
SURF alone and realized the importance of using histograms of contour orientations in the
neighborhood of the given key points. All of these studies attempted to match visible and
TIR images in the spatial domain.

Recently, applying phase congruency (PC) based on a frequency domain for matching
visible and TIR images has been studied. Mouats et al. [21] adopted PC as a feature detector
and generated edge maps of visible and TIR images. Descriptors are computed based
on the EOH descriptor and combined with the Log-Gabor coefficients calculated in the
previous step. This involved setting up a multispectral stereo rig composed of a visible
and TIR sensor mounted on a car’s roof and capturing multi-modal image pairs. The
resolutions of the visible and TIR images were 658 × 492 and 640 × 480, respectively. The
feature correspondence results in their research indicated that intensity-based algorithms
(SIFT, SURF, ORB, and BRISK) provided poor correspondence in the multispectral scenario.

Liu et al. [22] utilized PC as a feature detector for visible image and long-wave
infrared image matching. They applied the maximum and minimum moments of PC to
the original image and Gaussian-smoothed images for corner detection, respectively, and
then combined two images to create enhanced moments of PC. They extracted overlapping
subregions using Log-Gabor filters to generate descriptors. The image size they used was
639 × 431 pixels for both visible and long-wave infrared images. The experimental results
show that the accuracy rate is 50% higher than those of traditional approaches, such as the
EOH descriptor, the phase congruency edge-oriented histogram descriptor (PCEHD), and
the Log-Gabor histogram descriptor (LGHD) algorithms.

These efforts have been conducted in the spatial and frequency domain for matching
visible and TIR images. However, the studies mentioned above were obtained from
the same geometry and focused on the city’s ground image, including many objects.
Methods for image matching with different geometries based on visible sensors have
since been designed, such as principal component analysis–SIFT (PCA–SIFT) [23], affine
SIFT (ASIFT) [24], iterative SIFT (ISIFT) and iterative SURF (ISURF) [25], MSER–SIFT
(MMSIFT) [26], Matching On Demand with view Synthesis (MODS) [27], and the mixture-
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feature Gaussian mixture model (MGMM) [28]. Amanda et al. [29] utilized an ASIFT
detector to match images with different geometries based on a visible sensor.

Most recently, Image Matching by Affine Simulation (IMAS) was developed by
Rodríguez et al. [30] as a method of developing ASIFT, and it was utilized to match different
geometry images obtained from an Unmanned Aerial Vehicle (UAV) by Jang et al. [31]. The
pivotal contents of IMAS are primarily composed of three characteristics. First, it is the near-
optimal α◦-covering of the feature detector. The α◦-covering is based on the transition tilt
theory and creates an image through simulation to consider images of assorted angles. At
this time, stereographic projection, which is a map projection based on a quaternion angle,
is applied. The second major characteristic of IMAS is the creation of hyper-descriptors in
the feature descriptor. The hyper-descriptor produces a cluster based on a myriad of feature
points extracted from images of various angles through the near-optimal α◦-covering and
then creates a descriptor for the cluster. These hyper-descriptors can improve the operation
speed of the image matching process. The last part of the IMAS is a contrario model of
the feature descriptor process. This model is a parameter tuning method and is applied to
increase matching pairs. In conclusion, IMAS has the potency of robust extracted feature
points for different geometry images.

In the intensive literature review, it was difficult to find any study that attempted
to match images between different geometries and different spectral characteristics, for
example, visible nadir-looking vs. TIR oblique and visible oblique vs. TIR nadir-looking
imagery. We determined that, compared to the rapid increase in the effectiveness of TIR
images, there are relatively few studies that attempt to fuse them with visible images.
Additionally, there are no appropriate datasets available for matching. Accordingly, we
carefully designed for data acquisition processes to fit our objectives using UAV imagery of
building and non-building areas. A new image matching method is proposed for oblique
and nadir-looking images acquired through the UAV’s visible and TIR sensors. In this
work, we propose our phase congruency with the histogram–IMAS (PCH–IMAS) method.

The remainder of this study is organized as follows. Section 2 describes the image
matching method proposed in this study, and Section 3 illustrates the optimal selection
of experimental location and data acquisition processes through UAVs for maximizing
research purposes. Section 4 shows the matching experimental results (including related
interpretations), and Section 5 expresses the conclusion.

2. Methodology

Figure 1 is a flowchart showing the research approach. The major steps, from inputting
the test images to evaluating the inliers’ accuracy, are shown in Figure 1a. Visible nadir-
looking vs. TIR oblique and visible oblique vs. TIR nadir-looking image sets were the inputs
for building and non-building data types, respectively. A total of 5 matching methods were
applied for these 4 image sets, including the method proposed in this study. Afterward,
the inlier was finally obtained through outlier removal, and an inlier accuracy assessment
was performed.

Figure 1b is a detailed description of the matching method proposed in this study.
It represents the ‘proposed’ part (highlighted in the red square box) of Figure 1a. Only
the visible images corresponding to the TIR image region were selected and used in the
subsequent experiments. Moreover, after converting the RGB of the visible image to
grayscale, a proposed matching method was conducted.

Our principal concept consists of three parts. First, the combined images are generated
from visible and TIR images. A combined image means it is an edge-enhanced image
that has been created by incorporating edges extracted from the original visible and TIR
imagery. The edges in the combined images are created with the maximum moment of
the PC in the frequency domain, considering the non-linear relation of pixel intensities
between the visible and TIR images in the spatial domain. Second, the histogram of the
combined visible image is adjusted based on the histogram of the combined TIR image,
considering the pixel values in the TIR images that contain invariant characteristics relative
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to the sun’s illumination of objects. Third, IMAS is joined to improve the geometric barrier
between the nadir and obliqueness of visible and TIR imagery. A detailed explanation of
each step is presented in the subsequent sections.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 22 
 

 

 
(a) 

 
(b) 

Figure 1. Research flow: (a) macroscopic frame of method; (b) detailed flow chart of the proposed (red square box in (a)) 
method in this study. 

Our principal concept consists of three parts. First, the combined images are gener-
ated from visible and TIR images. A combined image means it is an edge-enhanced image 
that has been created by incorporating edges extracted from the original visible and TIR 
imagery. The edges in the combined images are created with the maximum moment of 
the PC in the frequency domain, considering the non-linear relation of pixel intensities 

Figure 1. Research flow: (a) macroscopic frame of method; (b) detailed flow chart of the proposed (red square box in (a))
method in this study.



Sensors 2021, 21, 4587 5 of 20

2.1. Generation of the Combined Image Based on Edge Information in the Frequency Domain

The combined images are devised to solve the non-linear relationship between pixel
intensities for visible and TIR images. The combined image is an edge-enhanced image that
has been created by combining edges extracted from the original image with the maximum
moment of the PC in the frequency domain into the original image in the spatial domain.
The pixel values of the extracted edges are 255, which converts the corresponding pixel
values of the original images through the combined process. This process can reduce the
probability that two images with different wavelengths will be recognized differently for
the same object.

PC is a feature extraction method using only phase information in the frequency do-
main. Oppenheim and Lim [32] proposed the basic concept of PC. They claimed that phase
information is more crucial than amplitude information where image analysis is concerned.
Morrone and Owens [33] proposed mathematical procedures of PC through Fourier series
expansion at the signal location. The Log-Gabor filter is currently embraced by Kovesi [34]
to extract the image features, being robust to changes in the image’s orientation and scale.
Kovesi [35] finally completed the formula for PC, as shown in Equation (1).

PCn(x, y) =
∑n W(x, y)

⌊
An(x, y)

[
cos
(
φn(x, y)− φ(x, y)

)
−
∣∣sin

(
φn(x, y)− φ(x, y)

)∣∣]− T c;
∑n An(x, y) + ε

(1)

where W(x, y) is a weighting factor for the frequency spread, An represents the
amplitude of the n-th Fourier component, and φn(x, y) is the local phase of the Fourier
component at the location. The value of φ(x, y), maximizing this equation, is the amplitude
weighted mean local phase angle of all Fourier coefficients at the considered point. T is
counted as a noise threshold from the statistics of the Log-Gabor filter in the image. Only
values exceeding the calculated T can be finally meaningful values. Furthermore, a small
constant ε is used to avoid division by zero. ε is set to 0.0001 in PC.

In this study, the maximum moment of PC was elicited by the covariance matrix
(Equations (2) and (3)). This is calculated to produce a highly localized operator, which is
used to identify edges in invariant positions compared with surrounding pixels.

Covx(θ) = PC(θ) cos(θ) (2)

Covy(θ) = PC(θ) sin(θ) (3)

where PC(θ) is the phase congruency value determined at the orientation, θ. In this study,
the maximum moment of PC was computed through Equations (4)–(7).

Maximum moment of PC =
1
2

(
a + c +

√
b2 + (a− c)2

)
(4)

a = ∑ Covx(θ)2 (5)

b = 2 ∑ Covx(θ)Covy(θ) (6)

c = ∑ Covy(θ)2 (7)

The maximum moment of PC obtained through the above processes implies edges
in the image. Furthermore, from a preceding test, a good matching result could not be
expected solely by the maximum moment of PC without considering the features based
on the pixel values of the original image. Thus, in this study, the maximum moment of
PC was combined with the original image. We elected to use the method concerning all
pixel values in the original image and the PC’s features. Figure 2 illustrates the process
of generating a combined image. Figure 2a shows the original visible image, Figure 2b
indicates the maximum moment of PC extracted from the original image, and Figure 2c
displays the combination of both. Figure 2d–f shows the same results for TIR images.
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Finally, the combined image that was created through the maximum moment of PC
contains the information of similar features, even with different wavelengths. Thus, they
are accepted as the same instruction in the image recognition process. The combined image
is an acceptable solution for the limitation of matching between the visible and TIR images.

2.2. Histogram Matching

Histogram matching is used to consider the pixel values of TIR images that include
invariant characteristics relative to the sun’s illumination of objects. The advantages and
disadvantages of TIR and visible sensors are complementary. For example, the TIR sensor
can get information in a nocturnal environment, but a visible sensor can provide much
better information in a well-lit environment. This is due to the fact that the passive TIR
sensor is entirely reliant on the object’s thermal radiation [36]. Additionally, TIR images
contain texture information, which is essential for distinguishing objects and recognizing
surroundings [36]. We consider pixel values in TIR images as absolute values representing
the unique physical properties of the objects in images. In this study, histogram matching
adjusted the combined visible image, similar to the combined TIR image histogram distri-
bution. Therefore, performing the match with the adjusted combined visible image and
the combined TIR image increases the probability of matching through the derivation of
robust feature points that are not affected by wavelength changes.

Histogram matching, also called a color transfer, is widely employed in image pro-
cessing [37], such as image contrast control and stitching [38–40]. In this study, histogram
matching was applied to modify the contrast or brightness of the images with wavelength
differences [41,42]. Figure 3a–c shows examples of the histogram of the combined visible
image in Figure 3d, the combined TIR image in Figure 3e, and the adjusted combined
visible image in Figure 3f, respectively.
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Eventually, the combined visible image’s histogram pattern was regulated similarly to
the combined TIR image. The radiometric difference between the visible and TIR images
diminished significantly through the series of processes described above, and only the
geometric disparity in the images remained.

2.3. Image Matching Technique Based on Affine Transformation

In the final part of our method, IMAS was used to improve the matching limitation
between visible and TIR images with different geometries. This matching method is
based on affine transformation and was proposed by Rodríguez et al. [30]. The affine
transformation includes both linear and similarity transformations. In other words, it
preserves isotropic scaling and parallelism. Additionally, IMAS can carry shear and
reflection as well as rotation, translation, and scaling. IMAS has a high potential for
sturdy matching for different geometry images. The crucial part of IMAS is the near-
optimal α◦-coverings, which aim to shape an image analogous to that acquired from
diversified angles. For this task, α◦-coverings are similar to lines of latitude and longitude
in stereographic projections.

The α◦-covering is expressed as shown in Equation (8) and Figure 4.

α◦ − covering = ∪B(S, r) (8)

where B is a disk, which indicates the white circles and ellipses separated by red borders
in Figure 4. S is the center of the covered area, which is the position of the blue dots in
Figure 4. r is the radius of the disk. Thus, α◦-covering is the union of disks created based
on each blue dot.
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Furthermore, the case of S can be shown in more detail, as shown in Equation (9).

S =

{
[TtR∅|t ≤

1
cos(γ◦)

}
(9)

where Tt and R∅ are calculated by the transition tilt theory. Tt is the latitude that determines
the levels for the locations of disks 1, 2, and 3 marked in Figure 4. R∅ is the longitude that
indicates a change in the position of a disk with the same latitude. Lastly, γ

◦
is the angle. If

t = 1, arccos (1) = 0, which indicates the image viewed from nadir by disk 1. On the other
hand, r of Equation (8) is expressed in detail, as shown in Equation (10).

r =
(

log
1

cos(α◦)

)
(10)

where α◦ is the angle, which calculates the size of the disk and determines the area where
a single image can be covered. Finally, the α◦-covering is generated, as shown in Figure 4,
through the process mentioned above. In this study, we applied a 56◦-covering. As a result,
we have created nadir-looking images of disk 1 and oblique images of disks 2 and 3 with
the α◦-covering in polar coordinates, as shown in Figure 4. At this time, we input the actual
image acquired in this study in disk 1, and disks 2 and 3 are the images calculated through
the α◦-covering.

The α◦-covering can simulate images acquired from various angles by changing the
geometry of the camera. In Figure 4, the blue dots indicate the positions according to the
latitude and longitude of the camera. For example, if the image is acquired from disk
1, located in the covering center, we can obtain the nadir-looking image. Disks 2 and 3,
located around disk 1, produce oblique images. Therefore, coverings were made at 22.5◦

intervals in disk 2, and a total of 16 oblique images were created. In addition, coverings
were made at 11.25◦ intervals in disk 3, and a total of 32 oblique images were produced in
this study.
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2.4. Outlier Removal

The random sample consensus (RANSAC), proposed by Fischler and Bolles [43], was
implemented to remove outliers included in the matching result. The goal of this step
can be achieved by repeating the following two steps. First, a sub-dataset is randomly
selected from the original dataset. Then, the model and model parameters for the picked
sub-dataset are determined. Second, the system verifies how well the previously computed
model parameters correlate with all the data. If the data do not fit the given model, they are
segregated as an outlier. Additionally, if they match the given model, they are considered
as an inlier. The set of valid data attained from the fitting model is labeled a consensus
set. The RANSAC algorithm reiterates the two steps above until enough consensus sets
are obtained.

3. Optimal Selection of Experimental Environment

The first criterion considered in this study for selecting logical locations is to include
both urban and rural characteristics. In addition, the location to be selected must be
within the UAV operating permit radius. When we acquired images through visible and
TIR sensors, we needed an area where various objects with different shapes expressed
according to wavelengths were mixed. It is a better condition if not only in form but also
in a place where several subjects with different textures exist together. The angle of the
sensors is adjusted to get different geometry images, but it is more reasonable if there are
factors around the area that cause changes in topography, such as a mountain.

On the other hand, as mentioned in the introduction, there were no appropriate
datasets available for our research purpose. Therefore, we carefully designed the data
acquisition processes. The primary considerations were the universality of UAV operation,
weather conditions, the angle of the sensor for oblique image acquisition, and flight altitude.
Finally, we selected the optimal location and acquired suitable datasets. These processes
are described in detail in the subsection below.

3.1. Considerations for an Optimal Research Location

Buho-ri was selected as the optimal environment for this research. Buho-ri is located
in Gyeongsan-si, Gyeongsangbuk-do, South Korea, and covers about 3.01 km2, composed
of townhouses and agricultural fields. The shape of roofs varies greatly and includes
squares and polygons. The arrangement of roads and buildings is irregular, as is common
in unplanned towns. Buho-ri has a variety of objects, such as furrows, bushes, and twigs,
that can express various textures in the images. Additionally, the area features mountains
in the northwest, causing changes in topography. In this study, images of a total of about
0.06 km2 were acquired in the areas in which the houses and fields are concentrated. The
red square in Figure 5 indicates the image acquisition area.

3.2. Data Acquisition Processes for Maximizing Research Purpose

The data acquisition that maximizes our research purposes was designed based on
the following details. We obtained four kinds of images (visible nadir-looking, visible
oblique, TIR nadir-looking, and TIR oblique) on 26 November 2020. On the day of the
image acquisition, the temperature reported was from 4.9 to 13.3 ◦C, and the wind speed
was 6.5 km/h. Additionally, there was no rain or snow in the area, but a slight haze
occurred. TIR nadir-looking and oblique images were acquired from noon to 2 p.m., and
visible nadir-looking and oblique images were gained until 5 p.m., consecutively.

Figure 6 shows the amassed images classified into building and non-building areas
for the matching experiments. The red boundary of the Google Maps in Figure 6 is Buho-ri,
and the white square is the image acquisition district. Additionally, the blue and green
dots are the building and non-building zones, respectively.
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3.2.1. Acquisition of Nadir- and Oblique-Looking Visible Images

The acquisition of visible images is divided into two parts (nadir-looking and oblique).
Table 1 shows the details related to image acquirement. The nadir-looking images were
obtained at an angle of 90◦ facing the ground. The oblique images were gained by tilting
the camera gimbal by 30◦ from the plumb line. As a result, we obtained a total of 60 nadir-
looking images and a total of 85 oblique images of the study area.
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Table 1. Specification of the visible image sensor.

Setup Overview Detail

Equipment UAV
(MAVIC 2 Enterprise Dual)

Overlap 70%
Average flight height 70 m

Ground Sample Distance (GSD) 2.17 cm (Nadir-looking)
2.48 cm (Oblique)

Oblique angle 30◦

3.2.2. Acquisition of Nadir- and Oblique-Looking TIR Images

Table 2 is a detailed description of the acquisition of TIR images. The Zenmuse
XT camera’s spectral range is from 7.5 to 13.5 µM, and the temperature ranges from
−25 to 135 ◦C. The TIR images, which observe the object’s temperature properties, were
characterized by the pixel values for gas pipes and water pipes made of steel appearing
closer to 255 than the surrounding pixels. These properties differ from pixels in the
visible image, containing only information about the object’s shape depending on the sun’s
illumination. Nadir-looking and oblique images were acquired in the same way as the
visible images. We obtained a total of 91 nadir-looking images and 108 oblique images.

Table 2. Specification of the TIR image sensor.

Setup Overview Detail

Equipment UAV
(Inspire 1 + Zenmuse XT camera)

Overlap 70%
Average flight height 70 m

GSD 8.5 cm (Nadir-looking)
10.2 cm (Oblique)

Oblique angle 30◦

4. Experimental Results and Discussion

The five matching methods mentioned above were applied for images with differ-
ent wavelengths and geometries, and the results were compared. Reasonable matching
methods (SIFT, SURF, synthetic aperture radar–SIFT (SAR–SIFT), and ASIFT) have been
judiciously selected to compare the performance and accuracy of the proposed method.
These four methods provide reliable source codes that are necessary for the quantitative
comparison of matching results. SIFT and SURF were administered based on OpenCV,
to allow for efficient handling. SAR–SIFT was made and is shared by multiple users via
GitHub. Moreover, ASIFT can be downloaded by following the hyperlink in the author’s
paper, which is highly trustworthy.

In addition, the usability of the matching method is important in comparing the perfor-
mance and accuracy of the proposed method. SIFT and SURF are the most representative
methods of matching between visible and TIR images. We chose SIFT and SURF as the
generalized framework of the matching method and applied them. SAR–SIFT was used for
image matching with different wavelengths and different geometries [44]. This is the most
relevant category that we wanted to investigate in this study. Lastly, ASIFT is a commonly
used method for matching different geometries. Recently, it has also been tested for distinct
wavelengths [45]. We hypothesized that ASIFT could be used not only for UAV image
matching with substantial geometric differences but also for visible and TIR images.

The root mean square error (RMSE), a widely used indicator for evaluating image
matching accuracy, was calculated for accuracy assessment [46–49]. We estimated 2D-affine
transform coefficients based on 25 feature points that were chosen by manual selection
for every image. It is assumed that the 2D-affine transform coefficient estimated through
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manual selection is the true value of the transform gained as a result of matching the image.
Then, the 2D-affine transform coefficients were counted based on the inlier feature points
obtained through the five matching methods applied in this study. Finally, we measured the
distance between the transform coefficient based on the true value determined previously
and the transform coefficient based on the inlier feature points. The measurement unit is a
pixel, and the smaller the measured value, the higher the accuracy.

The verification of the proposed algorithm has been under various environments, such
as a city, where many buildings are placed, and rural areas with relatively few buildings
and many fields. Therefore, matching experiments were performed for four different image
cases, as shown in Table 3. Finally, we selected the most effective matching method through
an accuracy assessment of the matching results.

Table 3. Category of experimental images.

No. Type Case

1 Building Visible nadir-looking vs. TIR oblique
2 Visible oblique vs. TIR nadir-looking

3 Non-building Visible nadir-looking vs. TIR oblique
4 Visible oblique vs. TIR nadir-looking

This experiment’s hardware specifications were Intel(R) Core(TM) i5-8500 CPU @
3.00 GHz, and 32 GB RAM, and they were the same for all methods. The software environ-
ments and languages were diverse for each matching method, as shown in Table 4.

Table 4. The software environments of matching methods.

Method Operating System (64 bit) Language Implementation

SIFT Windows 10 Pro MATLAB R2019b OpenCV
SURF Windows 10 Pro MATLAB R2019b OpenCV

SAR–SIFT Windows 10 Pro MATLAB R2019b Downloaded from GitHub and modified
ASIFT Linux Ubuntu C/C++ Downloaded from the path contained in the paper

Proposed Windows 10 Pro MATLAB R2019b Generates code for all sections except IMAS
Linux Ubuntu C/C++ Downloaded from the path contained in the paper

4.1. Comparison of Matching Results

Figures 7 and 8 are arrangements of the results according to the five matching methods
(SIFT, SURF, SAR–SIFT, ASIFT, and the proposed method) for building and non-building
types. The sizes of the images were recorded together. First, Figures 7a–e and 8a–e show vis-
ible nadir-looking and TIR oblique results. SIFT, SURF, SAR–SIFT, and ASIFT did not match
regardless of the presence or absence of buildings, as shown in Figures 7a–d and 8a–d.
However, as shown in Figures 7e and 8e, the proposed method’s results accomplished
excellent matching in both building and non-building types.

On the other hand, Figures 7f–j and 8f–j show the matching results between the visible
oblique and the TIR nadir-looking images, which have the opposite geometry compared
to the previous one. As presented in Figures 7j and 8j, the proposed method was the only
one successful.

Table 5 indicates the number of inliers of the matching results presented in Figures 7 and 8.
When SIFT, SURF, SAR–SIFT, and ASIFT were applied, they made no match. Therefore,
there was no inlier derived through the four matching techniques. Only the number of
inliers following using the matching method proposed in this study was meaningful.
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Figure 7. Matching results of building type images: visible nadir-looking (630 × 627) vs. TIR oblique (640 × 512) case:
(a) SIFT, (b) SURF, (c) SAR–SIFT, (d) ASIFT, and (e) proposed method; visible oblique (731×433) vs. TIR nadir-looking
(635×436) case: (f) SIFT, (g) SURF, (h) SAR–SIFT, (i) ASIFT, and (j) the proposed method.
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Figure 8. Matching results of non-building type images: visible nadir-looking (659 × 629) vs. TIR oblique (545×437) case:
(a) SIFT, (b) SURF, (c) SAR–SIFT, (d) ASIFT, and (e) proposed method; visible oblique (669×460) vs. TIR nadir-looking
(605×494) case: (f) SIFT, (g) SURF, (h) SAR–SIFT, (i) ASIFT, and (j) the proposed method.

Table 5. The number of inliers according to the results of matching methods.

No. Type Case Method Number of Inliers

1

Building

Visible nadir-looking vs. TIR oblique

SIFT Non-existent
SURF Non-existent

SAR–SIFT Non-existent
ASIFT Non-existent

Proposed 24

2 Visible oblique vs. TIR nadir-looking

SIFT Non-existent
SURF Non-existent

SAR–SIFT Non-existent
ASIFT Non-existent

Proposed 32

3

Non-building

Visible nadir-looking vs. TIR oblique

SIFT Non-existent
SURF Non-existent

SAR–SIFT Non-existent
ASIFT Non-existent

Proposed 17

4 Visible oblique vs. TIR nadir-looking

SIFT Non-existent
SURF Non-existent

SAR–SIFT Non-existent
ASIFT Non-existent

Proposed 22

As shown in Table 5, when comparing the building type with the non-building type,
the number of inliers of the building type increased by approximately 7–10. Building-type
images had many points where differences in pixel values were evident from various
objects. Thus, they were inclined to extract a more significant number of feature points.
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However, non-building images consisted of fields similar to the bare ground environment.
Most of these terrains had the same pixel value distribution, and they were less likely to
be extracted as a feature point. Therefore, the multiplicity of objects in the two images
occasioned a gap between the number of inliers.

4.2. Grasping the Characteristics of Extracted Feature Points

The matching method proposed in this study became the only solution for image
matching in all cases. We aimed to understand the conditions under which the proposed
method extracts robust features. Therefore, we confirmed the location characteristics of
feature points in certain circumstances. Through this, when UAV images acquired from
various settings are secured, it is possible to select images that can be matched preferentially.
Additionally, we can evaluate and choose an image acquisition area and surroundings that
can improve matching accuracy based on the characteristics of the feature.

Figures 9 and 10 are feature points of building and non-building types, respectively.
First, Figure 9 is a building-type image with diversiform housing. In general, building
images in nadir view have many edges or corners; a large amount of these factors can
be revealed as feature points. However, the proportion of feature points presented from
the oblique image was bigger on the ground than in the building’s edge or corner. We
hypothesized that ground features were robust to changes in geometry and wavelengths
and less sensitive to affinity. We handled each factor by grouping feature points into areas
A, B, and C, according to the level of description and the distribution location of the points.

Figure 9a shows the feature points for the building type acquired from the visible
nadir-looking vs. TIR oblique case. The bulk of the feature points was extracted from the
ground part, not from the building. These feature points appeared where the brightness
value of the pixel changes. For example, the points of area A were elicited from where it
changes from the bush to the bare ground. Additionally, a pixel that changes from garden
stone to bare ground was drawn as a point. The features gained from the roof of the
warehouse located southeast of area A have quite different characteristics. The warehouse
was built with prefabricated panels, particularly the roof panel made up of four groove
pre-coated steel sheets. Feature points were expressed from the groove of the roof panel,
which were perceived as straight stripes in the image processing through PC. In area B, the
central part of Figure 9a, the three points emerging from the white straight line represent
the road’s border. The white straight line on the road is the point where the pixel value
varies greatly.

Another attribute of area B is the absence of buildings. Area B’s region contrasts with
the pixels between the trees and the bare ground, so it was predicted that many feature
points would be picked. However, as a result of the matching experiment, feature points
were not derived. We analyzed the cause of this result because the building’s shadow was
included depending on the change in geometry at image acquisition. Pixel values in areas
where shadows appear are generally darkened close to black. In other words, matching is
complex because notable pixels are not distinguished. Shadows are an inevitable element
when obtaining oblique images. It comes into view in sundry directions and forms within
the saved image, closely related to the angle of the sensor, the position of the sun, and the
time of image acquisition. The improvement of the matching potential would be achieved
when setting the UAV’s flight path in detail, such as adjusting the acquisition angle by
pre-computing the direction in which the shadow appears.

Figure 9b shows the feature points for the building type, visible oblique vs. TIR
nadir-looking case. The case of Figure 9b shows the opposite geometry to Figure 9a. In
area A, the mechanism in which each feature point appeared from the ground and roof
panel’s groove is similar to Figure 9a. These flows reconfirm that bare ground should exist
that is hardy against geometric changes for extracting feature points. Additionally, pixels
with differences in brightness compared to surrounding pixels were elicited as feature
points, whereas the location of points in area C appeared somewhat differently. Feature
points were presented from the roof’s corners and border of the window and fence on
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the building’s facade. The properties of these points do not occur in Figure 9a and are
dependent on the style and configuration of the buildings and roofs. Therefore, there was
a setback in the generalization of typical characteristics of points between images with
different geometries and wavelengths.
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Finally, we formulated an all-embracing solution that can enhance the matching accu-
racy of images with different geometries and wavelengths containing buildings through
the feature points in Figure 9. First, matching is beneficial when the bare ground is placed
between buildings. Matching is better if there is an object such as a bush or garden stone
with apparent pixel distinction on the ground. Second, the presence of linear objects
that are effortless to extract through the maximum value of PC raises the probability of
success in matching. Therefore, when acquiring a UAV image, the research area should
be prudently set up to incorporate many-sided road markings in an urban area. Third,
shadows that inevitably occur when obtaining oblique images should be minimized. For
this, the direction of the shadow according to the sun’s location and the building’s height
must be computed before image acquisition. Additionally, it is crucial to set the sensor’s
angle and the UAV’s flight path minutely. The three abovementioned cores can provide
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insight into image matching acquired by UAVs with different geometries and wavelengths
containing buildings.
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Figure 10 is a feature point of a non-building type consisting of fields analogous to
a rural environment. In such a situation, points in which differences in pixels appear are
scarce, making it more challenging to extract feature points. Additionally, our research area
has mountains northwest of the village. Therefore, although there are no objects, such as a
building, remarkably affected by geometry, the form was displayed differently due to the
altitude change’s repercussion. We divided the feature points into two groups, areas A and
B, depending on the placement of the points, to elucidate the characteristics of the features.

Figure 10a shows the feature points for the non-building type of visible nadir-looking
vs. TIR oblique case. The feature points’ characteristics were identified by dividing them
into two areas, area A on the left with a large field and area B on the right with the house.
Area A is tangled with unharvested cabbage, agricultural vinyl, grass, twigs, and dry
bushes in roomy farmland. Additionally, this area has furrows, so the bumpy texture
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is expressed in the image. Feature points were derived from places with a significant
difference in pixel values, such as between cabbage and furrows or between dry bushes
and furrows. The area was expected to have many points due to its wide furrows. However,
the results of extracting the bumpy part of the furrows from the visible and TIR images
through the maximum moment of PC were unconnected. The TIR image showed an
almost crooked form of striations, and the visible image had no salient features. Therefore,
although there were many furrows, the number of points calculated was barely enough to
count. Meanwhile, area B, on the right side of the image, has fences and fields adjacent to
the house and a waterway to the north. Feature points were elicited from the straight part
of the fence, the waterway boundary, and from pixels that change from field to bare ground.

Figure 10b presents the feature points for the non-building type of visible oblique vs.
TIR nadir-looking case. This case has the opposite geometry of Figure 10a. In area A, where
furrows exist, points were extracted where the pixel values change in the same way as the
mechanism mentioned earlier. Area B’s points were expressed from the straight part of the
fence and the pixels that change from grass to bare ground, similar to Figure 10a.

Finally, we achieved a profitable solution that can enhance the matching accuracy of
images with different geometries and wavelengths under non-building conditions through
the feature points in Figure 10. First, the presence of areas such as uneven furrows helps the
matching process. We already conducted and identified that images obtained from different
wavelengths are somewhat challenging to recognize as the same features, despite having
bumpy areas. Therefore, matching with distinct wavelengths and geometries may not be
possible if the image only holds the flush area. Second, a flat road made of cement is more
challenging to elicit feature points. We previously proved that no feature points appeared
from the cement-paved road crossing in the A and B regions, as shown in Figure 10. This
property correlates with the notion of bumpy and flush areas mentioned earlier. Third, it is
efficient to include well-defined terrain features found relatively easily in non-urban areas
when acquiring images by a UAV. In other words, fences, banks, and waterways around
the farm were processed as outstanding features. Utilizing these objects helps to improve
matching accuracy in rural conditions with fewer formalized shapes, such as crosswalks,
traffic lanes, and intersections, compared to urban areas. These three characteristics can
perceive image matching obtained by UAVs with different geometries and wavelengths in
rural areas.

4.3. Accuracy Evaluation

In this study, we aimed to determine the reliability of matching results by performing
an accuracy evaluation. As mentioned previously, the experts’ manual selection was per-
formed and assumed to be the ground truth. Then, the RMSE was calculated by applying
it to each matching result. Table 6 shows the RMSE of the matching results in pixels. The
accuracy of SIFT, SURF, SAR–SIFT, and ASIFT without matching is meaningless, but each
RMSE is presented for quantitative comparison with the proposed method. Furthermore,
we finally classified the performance of matching results as ‘matched’ and ‘not matched’,
according to the experimental results.

Through the accuracy evaluation, the proposed matching method demonstrated
superior performance in all types and cases. As shown in Table 6, SIFT, SURF, SAR–
SIFT, and ASIFT showed an accuracy of approximately 100 to 400 pixels, but our method
indicated about 20 pixels. We have applied projective transformation together with affine
transformation to evaluate the accuracy of the proposed method. As a result, the RMSE
based on projective transformation averaged about 19 pixels, which was similar to the
result obtained in affine transformation. These values may be determined at a lower
accuracy than the results among visible nadir images, which are typical matching types.
However, it has meaningful value because it overcomes limitations that have not been
solved by the popular matching method.

Eventually, we achieved a systematic approach in solving a complex problem, which
combined with different geometries and wavelengths and even demonstrated the prop-
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erties of extracted feature points. In this sense, the proposed method could be a good
candidate for a reliable solution.

Table 6. RMSEs of pixel distance based on matching results.

No. Type Case Method RMSE (Unit: Pixel) Performance

1

Building

Visible nadir-looking vs. TIR oblique

SIFT 360.46 Not matched
SURF 402.69 Not matched

SAR–SIFT 197.41 Not matched
ASIFT none Not matched

Proposed 22.56 Matched

2 Visible oblique vs. TIR nadir-looking

SIFT 264.80 Not matched
SURF 240.57 Not matched

SAR–SIFT 303.72 Not matched
ASIFT 334.56 Not matched

Proposed 21.73 Matched

3

Non-building

Visible nadir-looking vs. TIR oblique

SIFT 131.81 Not matched
SURF 325.98 Not matched

SAR–SIFT 219.61 Not matched
ASIFT none Not matched

Proposed 26.25 Matched

4 Visible oblique vs. TIR nadir-looking

SIFT 323.37 Not matched
SURF 288.68 Not matched

SAR–SIFT 121.70 Not matched
ASIFT none Not matched

Proposed 29.01 Matched

5. Conclusions

The main contribution of this study is matching visible and TIR images with different
geometries. Various image matching methods have been offered, but ultimate cases,
such as visible nadir-looking vs. TIR oblique and visible oblique vs. TIR nadir-looking,
had not yet been realized. To accomplish this, we proposed a new matching method
called phase congruency with histogram–IMAS (PCH–IMAS) and compared it with the
frequently used image matching methods SIFT, SURF, SAR–SIFT, and ASIFT. The method
proposed in this study showed peerless results in both building and non-building types
of all cases. Our method is an unrivaled solution that empowers robust feature point
extraction in extreme matching situations with different geometries and wavelengths
obtained by UAVs. Therefore, our proposed methods that extract maximum moments of
images through PC and adjust histograms using histogram matching to match images
of different wavelengths and applying IMAS to match distinct geometries is the best
combination and reasonable solution.

However, we were not satisfied with the success of matching and discreetly checking
the location characteristics of the extracted feature points. We presented three generalized
guidelines for building and non-building types to increase the possibility of matching.
These standards were understood as logical keys for matching images with different
geometries acquired from visible and TIR sensors. The matching accuracy of the proposed
method is about 20 pixels, which is highly valuable compared to other methods that are
not matched. Finally, the matching of unusually complex cases was successful and has
immense significance.

In present-day cities, information and events to pinpoint and monitor are the peaks of
day and night. TIR images can obtain information that cannot be perceived with visible
images. They are needed universally in many places where information cannot be obtained
through human eyes. Thus, an integrated analysis with visible images is essential. The
process of utilizing TIR images obtained by UAVs is likely to accelerate soon. This research
is state of the art in its approach to image matching, combined with the use of different
wavelengths and geometries. In the near future, it will serve as a trustworthy solution and
positive strategy for the uptake of TIR imagery.
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