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Abstract: Surfactants are essential in the manufacture of polymeric nanoparticles by emulsion
formation methods and to preserve the stability of carriers in liquid media. The deposition of non-
ionic surfactants at the interface allows a considerable reduction of the globule of the emulsion with
high biocompatibility and the possibility of oscillating the final sizes in a wide nanometric range.
Therefore, this review presents an analysis of the three principal non-ionic surfactants utilized in
the manufacture of polymeric nanoparticles; polysorbates, poly(vinyl alcohol), and poloxamers. We
included a section on general properties and uses and a comprehensive compilation of formulations
with each principal non-ionic surfactant. Then, we highlight a section on the interaction of non-ionic
surfactants with biological barriers to emphasize that the function of surfactants is not limited to
stabilizing the dispersion of nanoparticles and has a broad impact on pharmacokinetics. Finally, the
last section corresponds to a recommendation in the experimental approach for choosing a surfactant
applying the systematic methodology of Quality by Design.

Keywords: non-ionic surfactant; nanoparticle; polysorbates; poly(vinyl alcohol); poloxamer; stability;
quality by design

1. Introduction

Surface active agents, commonly known as “surfactants”, are molecules that decrease
surface and interfacial tension at the interfaces between solids, liquids, and gases, acting
as dispersants, wetting agents, emulsifiers, and detergents [1]. Furthermore, surfactants
can maintain the stability of the dispersed phases through the primary interaction at the
interface, regulating the exchange of energy and matter in natural and synthetic processes.
Thus, the participation of surfactants in the interaction of apparently incompatible phases
is crucial [2].

A dispersed system consists of one substance distributed (dispersed phase) in discrete
units in a second substance (continuous phase). Most of the nanoparticle manufacturing
methods in the biomedical field involve forming a liquid/liquid stable dispersed system
with the contribution of surfactant agents to produce a new colloidal type solid/liquid
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dispersed system. The initial globule size of emulsified dispersed systems is greater than
the colloidal particle size at the end of the manufacturing process, combined with the
presence of a high surface free energy and, therefore, the tendency of resulted nanoparticles
(NP) to flocculate and coagulate can be observed [3]. At the same time, the stability of NP
as a dispersed system in an aqueous medium is a fundamental challenge and a critical
subject of argumentation in most studies [4]. For this reason, the presence of surfactants is
essential before, during, and after the formation of the NP [5].

The presence of a surfactant affects the particle size, polydispersity index (PDI), drug
loading, zeta potential value, and correlation with apparent physical stability [6]. For this
reason, traditionally, the focus of surfactants is restricted to the stability phenomena of
NP [7]. However, the biological interaction highly depends on the surface phenomena
of the NP and, consequently, on surfactant agents [8]. The arrangement of surfactants
at biological interfaces contributes to cell, tissue, and organ homeostasis. Currently, it
highlights the trend of surfactant therapies to lessen alterations in surface tension derived
from inflammatory processes. However, the levels of industrial surfactants in the environ-
ment have always been a matter of concern and monitoring [9–11]. Current applications
of surfactants in the manufacture of NP for biomedical applications seek a vectorization
phenomenon to facilitate drug release at receptor sites [12]. In this regard, the participation
of surfactants represents a multifunctional ingredient that usually requires adsorption by
covalent crosslinking to guarantee better performance in biological pathways [13,14].

Polymeric NP are carriers that predominate in biomedical applications, while non-
ionic surfactants confer high biocompatibility in most methodologies. For several decades,
most nanoparticle formulations have included one of the following three excipients as
a surfactant: polysorbates (PS), poly(vinyl alcohol) (PVA), or poloxamers. This broad
trajectory of study has allowed an abundant exploration of technological benefits and
formulation limitations.

This work is a tribute to the principal non-ionic surfactants utilized to manufacture
polymeric NP in the biomedical field. It focuses on the three leading excipients for stabiliza-
tion: PS, PVA, and poloxamers. The purpose of this work is to offer an overview of each
type of non-ionic surfactant, including a general description of the types of molecules in
the family, general applications, obtention of derivatives in search of novel properties, and
formulation of NP with tables that condense aspects of the physicochemical parameters of
the NP according to the type of stabilizer. Moreover, we mention a brief section on toxicity
aspects, a critical section on advantages and disadvantages, and a section on drawbacks
and future. Finally, this review presents an analysis of the influence of surfactants on the
interaction with biological barriers and a narrative and comprehensive description of the
main variables involved in the methodological selection of surfactants through the Quality
by Design strategy (QbD).

2. Use of Surfactants for Nanoparticle Stabilization

Surfactants are crucial excipients in the synthesis of NP; they are amphiphilic molecules
characterized by a hydrophilic head group (ionic or non-ionic) and a hydrophobic tail
(Figure 1a). The amphiphilic nature of surfactants has been exploited to stabilize hydropho-
bic nanomaterials in aqueous media [15]. Hydrophobic regions interact with NP surfaces,
and hydrophilic regions interact with water (Figure 1b), thus providing colloidal stability
and improving dispersion stability by preventing NP aggregation [15,16]. The therapeutic
potential of polymeric NP generally depends on their physicochemical properties such as
size, shape, zeta potential, loading capacity, and surface functionalization with suitable
surfactants [17,18].

2.1. Background

Soap (general formula RCO-ONa) is formulated from anionic surfactants, and the
first records of its manufacture date back to 2800 B.C. in ancient Babylon [19,20]. However,
the word “surfactant” was first used in the 1940s [3,17]. More recently, in the 1960s, the
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term “amphiphilic” was introduced by Paul Winsor, a word that comes from two Greek
roots (Amphi meaning “double”, and Philos meaning “affinity”) [3]. Finally, between the
1950s and 1970s, the first models based on n-alkylammonium were developed to study
the arrangement and orientation of cationic surfactants in solid interfaces; these explain
the position and approximate inclination angle of adsorbed surfactant molecules and their
physicochemical implications in the surface coating [17,21]. As a result, the surfactants
industry has increased due to its wide application and discoveries. A field in which the
utility of surfactants is currently exploited is the pharmaceutical industry since scientists
have developed polymeric NP to administer therapeutic and diagnostic agents [22].
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phiphilic nature is represented with a hydrophilic region and a hydrophobic region. (b) Coating of 
NP with surfactants: the hydrophobic region possesses an affinity for the nanoparticle surface and 
the hydrophilic region with an affinity for the aqueous dispersion medium. (c) Classification of 
surfactants according to the ionic charge in its polar group: no charge (non-ionic), positive charge 
(cationic), negative charge (anionic), and both positive and negative charge (amphoteric). 
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Figure 1. Surfactants for nanoparticle stabilization. (a) Classic structure of surfactants: its amphiphilic
nature is represented with a hydrophilic region and a hydrophobic region. (b) Coating of NP
with surfactants: the hydrophobic region possesses an affinity for the nanoparticle surface and
the hydrophilic region with an affinity for the aqueous dispersion medium. (c) Classification of
surfactants according to the ionic charge in its polar group: no charge (non-ionic), positive charge
(cationic), negative charge (anionic), and both positive and negative charge (amphoteric).

2.2. Stabilization Mechanisms

The physical stability of NP mainly depends on electrostatic, steric, entropic, and Van
der Waals forces [23]. The DLVO theory (Derjaguin-Landau-Verwey-Overbeek) describes
the interaction energy between particles as the sum of electrostatic and Van der Waals forces;
the resulting equilibrium explains the stability (suspension or flocculation) of colloidal
systems [24]. When the surface charge of NP is homogeneous (either positive or negative),
the Van der Waals and electrostatic forces oppose each other, causing the net force between
particles to be strongly repulsive, and a stable suspension is formed [24,25]. As NP get
closer to each other, their ionic atmospheres begin to overlap, and a repulsive force develops.
On the other hand, Van der Waals interactions between NP are also generated due to forces
between individual molecules in each colloid [26].

More stable dispersions can be obtained when the system contains oppositely charged
NP and surfactants, such as anionic NP and cationic surfactants or vice versa. The dominant
mechanisms are electrostatic interactions and hydrogen bonding [27]. In electrostatic stabi-
lization, a minimum zeta potential of |20 mV| has been suggested [28]. However, there
have been reported cases in which nanosuspensions with zeta potential below |20 mV|
are physically stable [29,30]. This could be explained by the addition of non-ionic surfac-
tants and the resulting steric effect. Therefore, the interpretation of the zeta potential to
predict the stability of colloidal nanosuspensions should be considered with caution and in
conjunction with the surfactants utilized [29].
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2.3. Ionic and Non-Ionic Surfactants

Surfactants are classified according to the charge of their main group (polar head):
non-ionic (uncharged) and ionic (charged) (Figure 1c). Among those that are charged,
we find anionic (negatively charged), cationic (positively charged), and amphoteric (both
positively and negatively charged) [31]. The charges of the zwitterionic or amphoteric
surfactants can be permanent or can depend on the pH value to which they are exposed; for
example, betaines can function as cationic surfactants at highly acidic pH [32,33]. A study
showed the sensitivity of sulfobetaine to alteration of pH and inorganic salt. Hydrogen
bonds are formed between the amide groups of 3-(N-erucamidopropyl-N,N-dimethyl
ammonium) propane sulfonate and coordinated water in trans-[FeCl2(H2O)4] Cl structure;
this masks the ionic forces of repulsion between the head groups of surfactants [34].
The zwitterionic head groups of phosphatidylcholine show electroneutral charges and
high hydration, making them highly stable in aqueous media [35]. In addition, their
electrostatic attraction causes the polarity of ionic surfactants to the dipoles of water.
Moreover, non-ionic surfactants are solubilized without ionizing through the effect of weak
hydrophilic groups such as ether-type bonds and hydroxyl groups; these are employed
more frequently in pharmaceutical products. In Table 1, examples of surfactants commonly
used in pharmaceutical formulations are mentioned.

Table 1. Examples of surfactants used in pharmaceutical formulations.

Type Surfactants References

Anionic

Carboxylates (alkyl carboxylates-fatty acid salts).
Sulfates (sodium lauryl sulfate, alkyl ether sulfates).
Sulfonates (dioctyl sodium sulfosuccinate, alkyl
benzene-sulfonates).
Phosphate esters (alkyl aryl ether phosphates, alkyl
ether phosphates).

[1,36]

Cationic

Quaternary ammonium (cetrimonium bromide,
cetylpyridinium chloride,
dimethyldioctadecylammonium chloride).
Amine-Based (triethylamine hydrochloride,
octenidine dihydrochloride).
Pyridinium surfactants (benzethonium chloride)

[32,37]

Non-ionic
Polyol esters (fatty acid esters of sorbitan).
Polyoxyethylene esters (polysorbates).
Poloxamers (poloxamer 188).

[1,36]

Amphoteric

Phospholipids (phosphatidylcholine or lecithin).
Carboxylic Acid/Quaternary Ammonium
(cocamidopropyl betaine or amidosulfobetaine-16).
Phosphoric Acid/Quaternary Ammonium
(hexadecyl phosphocholine).
Betaines (alkylamidopropyl betaine).

[32,36,38]

2.4. New Surfactants

A wide range of classic surfactant agents is based on alkyl, peptides, lipids, DNA,
molecular ligands, and polymers [17]. In recent years, particular interest has been placed
in developing new biocompatible surfactant agents, representing low toxicity for the en-
vironment and human use; some of these agents are mentioned below. Carbohydrates:
Have been studied due to their biodegradability and low toxicity profile. Smulek et al. [39]
investigated a series of alkyl glycosides containing d-lixose and 1-rhamnose with alkyl
chains of 8–12 carbon atoms. The results revealed that long-chain alkyl glycosides could be
inexpensive biocompatible surfactants. Alkylpolyglucosides: Include a group of non-ionic
surfactants with excellent wetting, dispersing, and surface tension reducing properties;
their use for the stabilization of lipid NP is more frequent than classical stabilizers [40].
ImS3-n (3-(1-alkyl-3-imidazolium) propane-sulfonate): Represent a versatile class of zwitte-
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rionic compounds, which form normal and inverse micelles, capable of stabilizing NP in
water and organic media [41]. Polyhydroxy Surfactants: Involve ethylene oxide-free non-
ionic stabilizers known for their dermatological properties and favorable environmental
profile [42]. Rhamnolipids: Biosurfactants produced by marine bacteria have shown a lack
of cytotoxicity and mutagenicity, which justifies their commercial exploitation as natural
and ecological biosurfactants [43,44]. Animal-derived surfactants: in the same context of
using biocompatible surfactants, bioglycolipids such as cerebrosides (which represent a
group of non-ionic surfactants) and gangliosides (these are good cationic surfactants) have
been proposed [45]. PEG-ylated amides: PEG-conjugated amides improve the stability of
nanosystems and allow a prolonged circulation time, reducing the phenomenon of acceler-
ated blood clearance [46,47]. Recently, BioNTech and Pfizer used two novel surfactants in
the formulation of their BNT162b2 mRNA Covid-19 vaccine, the PEG-ylated lipid ALC-
0159 (2-[(polyethylene glycol)-2000]-N,N-ditetradecylacetamide) and the cationic lipid
ALC-0315 ((4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyldecanoate)) [48,49].
ALC-0159 allows forming a hydrophilic layer that sterically stabilizes the nanosystem, con-
tributing to storage stability and reducing non-specific binding to proteins. Furthermore,
ALC-0315 forms an electrostatic interaction with the negatively charged RNA skeleton
allowing its stabilization, encapsulation, and the formation of particles [48,50]. Notably, sev-
eral already known surfactants have been associated with new biological activities such as
ceramides. For example, exogenously administered N-hexanoyl-D-erythrosphingosine has
been reported to arrest the cell cycle, and in combination with Paclitaxel in biodegradable
polymeric NPs can significantly enhance apoptosis in multidrug-resistant and sensitive
cells [51]. Other strategies include stabilizing solid micro- or NP (Pickering stabilization),
surfactant-free, and confers high resistance to coalescence, making it attractive for pharma-
ceutical applications, where some surfactants can cause adverse effects [52,53]. In addition,
organic and inorganic particles are used, utilizing steric and/or electrostatic repulsion to
inhibit coalescence and improve emulsion stability. A recent study reported Pickering emul-
sions stabilized by biodegradable poly(lactic-co-glycolic acid) (PLGA) NP and exposed
that the degree of stabilization is highly dependent on the polymer composition [54].

3. Polysorbates

PS are one of the most utilized stabilizers in the industry. Their physicochemical prop-
erties have a striking impact on nanoparticulate systems. Despite its broad applications,
new PS properties and modes of employment are still being found and reported nowadays.

3.1. Physicochemical Properties

Tween is the commercial name for a group of compounds based on PS. PS are am-
phiphilic molecules synthesized by the reaction between sorbitan fatty acid ester with
ethylene oxide. The PS chemical structure has a sorbitan head group where the hydroxyl
groups are bound to a polyethylene glycol (PEG) chain. Basically, in the PS structure, the
fatty acid side chain (hydrophobic fragment) is esterified with one of the PEG (hydrophilic
fragment) side chains. However, the length of the PEG chains, the esterification in one
or more hydroxyl groups in the side chain, changes in the head group, and the fatty acid
composition are the fingerprint of each type of PS [55,56].

The HLB of PS (between 9.6–16.7) combined with their low critical micelle concentra-
tion (CMC) gives the PS high surface activity, even at low concentrations. Therefore, PS
confer high stability to the NP during storage in an aqueous medium and freeze-drying or
freeze/thaw processes. In addition, the use of PS prevents interface-induced aggregation
and surface adsorption in particulate systems. Therefore, a PS concentration of 0.001 to 0.1%
(w/v) is commonly utilized in the biopharmaceutical area with suitable performance. PS are
degraded through enzymes and chemically by autoxidation or hydrolysis pathways. The
susceptibility to the oxidation process in PS resides in the PEG ester bonds and unsaturated
alkyl chains. On the other hand, the chemical PS hydrolysis is catalyzed in acid or basic
conditions and directly affects the free fatty acids and the unesterified sorbitan [33–35].
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3.2. Types

The commercial PS present more complex interactions between their molecules. In
addition, the extensive subproducts and isomers formed during the synthesis process can
affect the stability and chemical activity. The group of PS accepted for the formulation in
human products comprises the PS-20, PS-60, PS-65, and PS-80. However, in cosmetics, the
PS-21, PS-40, PS-61, PS-81, and PS-85 are also used. All the PS are hydrophilic emulsifying
and stabilizing agents. The distinct levels of lipophilicity and hydrophilicity among the
PS arise from the chemical structural differences. The PS-20 presents the lauric acid as the
main fatty acid, making it a more hydrophilic molecule than the PS-60 and PS-80, which
present larger fatty acids: stearic acid and oleic acid, respectively. Likewise, PS-65 has
stearic acid as the primary fatty acid; however, PS-65 possesses three esterified hydroxyl
groups with stearic acid, which confer more lipophilicity (Figure 2) [55–57].
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Figure 2. (A) Chemical structure of PS-20, PS-60, and PS-80. (B) Chemical structure of PS-65. PS-65
presents RCO-groups in x, y, and z, making it a tristearate molecule. The average of the total number
of oxyethylene subunits on each polysorbate molecule (w + x + y + z) is 20.

3.3. Uses

PS are widely employed in the food, cosmetic, and pharmaceutical industries. Their
roles include oil/water emulsifier, detergent, dispersing agent, solubilizer, and stabilizer
in cosmetics. PS are common ingredients in applications for skin, hair, nails, and mucous
membranes, with a typical application several times a day depending on the product. With
a medical approach, the PS-20 and PS-80 are listed as clarifying agents in ophthalmic prod-
ucts and as cleaning, wetting, or solvent agents for contact lenses in concentrations below
1.0% [58,59]. Nowadays, PS offer a wide application in the development of nanoparticu-
late systems to improve drug physicochemical properties, bioavailability, and therapeutic
enhancement (Table 2).
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Table 2. Representative polymeric NP stabilized with polysorbates.

Polymer Surfactant NP Size
(nm) PDI Z-Potential

(mV) Drug EE or DL Application Reference

PLGA PS-80 1.0% ~120 N.A. N.A. Disulfiram EE = 24%

Anticancer potential in
Hep3B cell lines, in vitro

model of
hepatocellular carcinoma

[60]

PLGA
PS-80

0.1–7.5 mg/mL
10–30 mg/mL

160.5 ± 1.37 0.043 ± 0.0023 −21.53 ± 1.47 N.A. N.A.
ATR-FTIR method for
quantifying the PS-80

adsorbed on the PLGA NP
[61]

PLGA PS-80 1.0% ~226 0.143 −45.6 Thymoquinone EE = 69.5 ± 2.97% Alzheimer’s disease model
in albino mice [14]

PLGA PS-20 2.0% 155.6 ± 21.8 0.112 N.A. Rapamycin
Piperine EE ≈ 70% Polymeric NP for breast

cancer treatment [62]

PLGA
PLLA PS-80 1.0% 50–100 N.A. −26/−32 N.A. N.A. NP crossing BBB model [63]

PLGA PS-80 1.5% ~160 0.183 N.A. Artesunate DL = 23.67 ± 0.61% Anticancer activity
of artesunate [64]

PLGA PS-80 1.0% 77 ± 1 N.A. −19 ± 0.89 Bacoside-A EE = 57.11 ± 7.11% NP for brain targeting of
bacoside-A [65]

PLGA-PS80 16 PS-80 1.0% ~248.1 0.084 −30.9 plasmid DNA DL = 9.3% Nanopartcles for
gene delivery [66]

PLGA-Tween 80 PS-80
0.6 mmol 156.5 ± 8.6 0.14 −15.4 ± 1.1 Paclitaxel DL = 5% Multidrug resistance lung

cancer model [67]

mPEG-PLGA PS-80 1% ~145.2 0.133 N.A. Rhynchophylline EE = 60%
Neuroprotective effects in

an Alzheimer
disease model

[68]

PBCA PS-80
0.0–2.0% ~100 0.018 −2.44 Dalargin N.A. Brain targeting of dalargin

via oral administration [69]

Poly (methyl
methacrylate-co-

methacrylic
acid)

PS-60 0.1% 364.03 ± 5.7 N.A. −29.1 ± 1.9 Gliclazide EE = 57.46 ± 5.6% Oral delivery of gliclazide,
a hypoglycemic agent [70]

3-(trimethoxysilyl)
propyl methacrylate

(TPM)

PS-20
0.01–0.05 mM ~ 15–500 N.A. −49.0 ± 0.5 N.A. N.A.

Surfactants influence on
spontaneous monodisperse

nanoemulsions of TPM
[71]
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Table 2. Cont.

Polymer Surfactant NP Size
(nm) PDI Z-Potential

(mV) Drug EE or DL Application Reference

Polycaprolactone PS-80 193 0.15 −26.5 Memantine EE = 80 ± 3% Alzheimer’s disease
approach [72]

Polycaprolactone
PS-80

200 and 25
(mg/mL)

181–407 0.3–0.5 +11.60 to
+29.20

Rosmarinus
officinalis and

Zataria multiflora
essential oils

EE = 75.8–84.4%
Entrapment of two

essential oils against
Tribolium confusum

[73]

Polycaprolactone

PS-80
2.65 mg/mL
5.3 mg/mL

10.6 mg/mL
21.2 mg/mL

~200 N.A. −6.73 N.A. N.A. Optimization of
nanoprecipitation method [74]

Polycaprolactone PS-80
0.5%

~170 (uncoated)
~260–360

(chitosan coated)

0.181
(uncoated)

0.345 (chitosan
coated)

−12.91
(uncoated)

+31.73
(chitosan
coated)

Paliperidone EE ≈ 60%

Influence of PCL/drug
ratio, stabilizer type, and
high molecular weight of

chitosan coating

[75]

Polystyrene PS-20 0.1% 20–200 N.A. N.A. N.A. N.A. NP distribution after
periocular administration [76]

Poly
(sebacicanhydride)

(PSA)

PS-60
PS-20 200–160 N.A. N.A. N.A. N.A. Degradation of PSA NP [77]

Polyhydroxybutyrate
(PHB) PS-80 1% v/v 146 ± 30 N.A. −26 Carvacrol DL = 12.5%

Preparation and
characterization of PHB NP

by nanoprecipitation and
dialysis methods

[78]

Chitosan-folate
conjugated PS-80 0.5% v/v 111.8 ± 4.11 0.50 ± 0.21 N.A. Doxorubicin and

curcumin analog N.A. Concentration of PS-80
decreased the size of NP [79]

Chitosan and
chondroitin sulfate PS-80 15 mg ~234 0.2 +30.0 Artemether EE = 83 ± 0.28% Transdermal antimalarial

drug delivery system [80]

Chitosan PS-80 1.25% 208 ± 0.01 N.A. −32.56 ± 0.03 Imatinib EE = 68.52 ± 0.01% Colorectal cancer
targeting application [81]

Sodium Alginate PS-80 ~383 0.2 200 Curcumin EE = 95% Bioavailability in healthy
human volunteers [82]

Abbreviations: N.A. = Not Available; EE = Entrapment efficiency; DL = Drug Loading; PDI = Polidispersity Index; PS = Polysorbate; PDI = Polidispersity Index; PLLA = Poly(L-lactic acid); PLGA =
Poly(lactic-co-glycolic acid).
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3.4. Derivatives

PS are mainly utilized to refine the physicochemical properties of nanoparticle systems.
With this scope, the synthesis of new derivatives of PS has also been investigated. For
example, Masotti and coworkers [83] synthesized three PS-20 derivatives, differenced each
other by substituted head groups. The PS-20 was functionalized with glycine, N-methyl-
glycine, or N,N-dimethyl-glycine to develop a pH-sensitive system. PS-20 derivatives were
obtained by reaction of the PS with different amino substituents in the presence of H2SO4
at 90 ◦C for 12 h. The three derivatives exhibited the capacity to form vesicles complex
with cholesterol molecules—the vesicles presented a size between 176 and 320 nm, in a
pH range of 5.5 to 7.4. The three types of vesicle size increased while the pH decreased. In
contrast, the Z potential decreased to more negative values while the pH increased. These
changes confirm the pH-sensitive effect of the vesicles prepared with the modified PS and
open the opportunity to develop new systems with pH response activity.

Similarly, other groups have modified polymers using PS to improve some functions
in nanoparticle systems. These molecules are not accurately derivatives of PS, but the
addition of PS improved cellular uptake, even in multidrug-resistant cancer cells [66,67].
Evidence of this is the PLGA-PS-80 copolymer NP developed by Yuan et al. [67]. The
authors synthesized by esterification reaction 0.3 mmol of PLGA-COOH with 0.6 mmol
of PS-80. The novel copolymer was employed to obtain NP by the nanoprecipitation
technique. The particles presented a size of 156.5 ± 8.6 nm, a PDI of 0.14, and a zeta
potential of −15.4 ± 1.1 mV. PLGA-PS-80 NP were able to load 5% of 1 mg paclitaxel.
PLGA-PS-80 NP increased the cellular uptake in lung cancer cell line A549/T, with a
higher level of cytotoxicity than unmodified PLGA NP. Furthermore, the nanoparticle
system was evaluated in vivo and exhibited a higher antitumor efficacy than free taxol. The
development of new derivatives and copolymers of PS opens the opportunity to improve
existing drugs and their applications.

3.5. Examples of NP Applications

The PS-20 and PS-80 are mostly applied in biopharmaceutics to stabilize polymeric
NP, and both have a suitable preventing protein adsorption and low toxicity profile [55,56]
(Table 2). However, the PS-80 presents a longer monounsaturated chain, making them more
surface-active with a lower CMC. This property renders the PS-80 the most utilized PS for
nanoparticle systems. Moreover, PS-80 is reported as a molecule with the functionality
to enhance the crossing of NP through biological barriers. For example, the Poly(n-butyl
cyanoacrylate) (PBCA) NP coated with PS-80 improved the dalargin-induced analgesia.
Furthermore, PBCA NP summited to double PS-80 coating could cross the gastrointesti-
nal barrier after oral administration [69,84]. Similarly, the presence of the PS80 on the
nanoparticle surface improves the crossing of the blood-brain barrier (BBB). The PS chem-
ical properties interact with plasma protein such as apolipoprotein E. Receptors for the
apolipoprotein expressed in the cells of the BBB promote receptor-mediated endocytosis;
in consequence, the NP treated with PS-80 enhance the chance of the drug to reach the
brain [85,86].

Interestingly, the PS can be employed alone to form micellar systems to carry drugs.
For example, Ravichandran et al. [87] developed a PS-80 nanomicellar system to trans-
port piperlongumine and indocyanine green for cancer treatment. The system improved
the drugs’ storage stability, increased the photothermal conversion and cellular uptake
of indocyanine green. In addition, the pro-oxidant activity of the piperlongumine was
maintained, which was evidenced by the increased levels of reactive oxygen species in
MCF-7 cell cultures. This research proves the effective use of PS and opens a great field to
research the PS functionality. More examples are represented in Table 2.

3.6. Toxicity in NP

PS have occasional reports of hypersensitivity following their topical and intramuscu-
lar administration [59,88]. However, the PS concentrations are crucial to establish biosecu-
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rity in their application. For example, Elmowafy et al. [75] reported a cell death of around
70% in cells exposed to polycaprolactone (PCL) NP stabilized with PS-80 at high concentra-
tion (100 µg/mL). Contrariwise, the same NP stabilized with PS-80 at low concentration
(1.56 µg/mL) did not present cytotoxicity.

However, high cytotoxicity can be helpful when the nanoparticle application involves
one type of cancer. For example, Nguyen et al. [64] developed PLGA NP to entrap arte-
sunate (an anti-malarial agent) and tested the anticancer effect. The nanoparticle system
presented a particle size of around 150 nm with PS-80 as stabilizer, with a 23.6 ± 0.61%
of drug loading capacity. The cytotoxicity of the artesunate entrapped in nanoparticulate
systems was higher than the artesunate alone in SCC7, A549, and MCF7 culture cells.
Contrariwise, when the aim is to improve drug therapy, high cytotoxicity can be a problem,
and the particles’ redesign is necessary. For example, Chang et al. [89] developed a PLGA
NP system to enhance the transport throughout the BBB and evaluated the effect of PS-20.
In this study, the authors assessed the cytotoxicity following the tight junction aperture.
The authors described the high toxicity of the NP stabilized with PS-20, evidenced by a high
sucrose endothelial permeability coefficient Pe > 2 × 10−3 cm/min after 1 h of incubation.
This test was crucial to eliminate the use of the PS-20 NP in the subsequent experiments.

3.7. Advantages and Disadvantages

The physicochemical properties of PS make them a great stabilizer in nanoparticle
systems. For example, PS concentration can directly adjust the size of the adequate nanopar-
ticle. The use of PS also confers high stability in the formulation process as well as in
biological systems. Furthermore, PS increase the NP’s bioavailability by decreasing the
interaction with plasma proteins and increasing the cellular uptakes to cross biological
barriers [79].

However, the concentration of PS in NP should be formulated carefully because high
concentrations can alter the fluidity of barriers and can occur hypersensitivity reactions.
Inversely, the use of low concentrations could compromise the efficacy or stability of the
NP during storage. Therefore, the development of analytical methods that quantify the
amount of PS present on the surface of the NP takes relevance. These methods aim to
monitor and solve the optimum amount of PS [61,90–92], avoiding undesirable reactions.

In certain circumstances, the pharmaceutical storage and manufacturing conditions
could catalyze the PS hydrolysis and autooxidation, compromising the NP’s stability [57].
Moreover, the lack of uniformity in commercial PS is caused by monoesters and polyesters
of polyoxyethylene (POE), and POE sorbitan and POE isosorbide fatty acid esters, which
are typical products during the synthesis reactions. The inevitable presence of these
products affects the PS final chemical composition and performance in chemical, biological,
or mechanical stimuli. Although the variation is not exclusive to specific suppliers, the
variation among batches is common [93].

4. Polyvinyl Alcohol

PVA is a linear synthetic, amphiphilic, semicrystalline, biocompatible, biodegrad-
able, highly flexible, and nontoxic polymer that functions as an emulsifying agent by
lowering the solutions interfacial tensions [94,95]. Its capacity to form relatively small
particles and uniform size distribution makes it an appropriate candidate for biomedi-
cal applications [96–99]. In addition, PVA stabilizes emulsions because a fraction of PVA
remains associated with the NP by forming an interconnected network with the poly-
mer at the interface [100]. PVA is produced only by indirect methods [101–103], gen-
erally by hydrolysis or methanol transesterification (methanolysis) of polyvinyl-acetate
(PVAc) [104,105], and the result is a hydrophilic polymer with a simple structure having a
pendant hydroxyl group [95] that is resistant to many solvents [106]. In this respect, PVA is
soluble in highly polar and hydrophilic solvents, such as Dimethyl Sulfoxide (DMSO), N-
Methyl Pyrrolidone (NMP), Ethylene Glycol (EG), and water (the most important solvent of
PVA) [107]. On the other hand, PVA is resistant to oil, grease [108], and some solvents such
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as ethyl acetate, acrylonitrile, acetonitrile, and ammonia [109,110]. The resistance to most
organic compounds and solvents can be advantageous; for example, PVA-based materials
may protect packaged products from secondary contamination by those solvents [108].

4.1. Physicochemical Properties

The physicochemical and mechanical properties of PVA vary according to the degree
of polymerization (DP) and degree of hydrolysis (DH) (see Section 4.2). Differences include
water-solubility, adhesion and mechanical strength, gas barrier and aging resistance, ther-
mostability, chemical resistance, film-forming ability, low fouling potential, pH stability,
viscosity, high polar character, and easy processability [111–114]. PVA has a white to yel-
lowish color [101]. The melting point is 228 ◦C for fully hydrolyzed grades and 180–190 ◦C
for partially hydrolyzed grades [115], due to the content and distribution of acetyl groups,
tacticity, and water content [101]. The principal solvent of PVA is water [116], and the HLB
value is 18 [117].

4.2. Types

PVA is generally derived from PVAc through partial or total hydrolysis to remove the
acetate groups; then, there are types of PVA according to DP and DH [105,106,115,118,119].
PVA is commercially available in grades according to DH and viscosity. Partially hy-
drolyzed grades range from 84.2 to 89.0%, moderately hydrolyzed from 92.5 to 96.5%,
and the completely hydrolyzed from 98.0 to 99.0% [94,101,119,120]. PVA hydrolyzed at
40 and 80% have a molecular weight of 72,000, and 9000–10,000, respectively [94,119].
There is an inverse relationship between molecular weight and DH. Lower molecular
weight results in low viscosity, less aqueous solubility, and high flexibility, while lower DH
results in increased solubility, flexibility, water selectivity, and adhesion to hydrophobic
surfaces [108,120].

4.3. Uses

PVA is the world’s most-used synthetic polymer and is included in the Handbook
of Pharmaceutical Excipients [115]. Its versatility and properties have attracted interest
from several industrial applications [94]. In medicine, PVA is convenient because it has low
protein absorption and chemical resistance [121]. Thus, it has been used for applications
such as controlled drug delivery systems [106], soft contact lenses [96,106], eye drops [122],
embolization particles [123,124], tissue adhesion barriers [125,126], transdermal patches
and jellies for the skin [115], and as artificial cartilage and meniscus [106,127]. More-
over, PVA helps dissipate heat and prolongs electronic devices’ lifetime [128], is helpful
for wastewater treatment [129–132], as well as in the industrial, commercial, and food
sectors [106,133–140].

4.4. Derivatives

As mentioned, PVA is very versatile, and with some physical or chemical modifi-
cations, its properties can be modulated to improve its performance as a drug targeting
and stabilizer, among other benefits [120]. For biomedical purposes, physical modifica-
tions of PVA like freeze-thawing [141], annealing [120,142], irradiation [143], and compos-
ites [144,145] are preferred to avoid any possibility of toxic residues [139]. In addition, these
modifications cause molecular rearrangement by forming more crystalline regions [120].

Chemical modifications by crosslinking to PVA can be done through different tech-
niques due to its hydrophilic characteristic. In theory, it can be done using any com-
pound capable of reacting with -OH groups [132,146] such as aldehydes, dialdehydes
like glutaraldehyde [147–149], carboxylic acids (lactic acid, maleic acid, sulfosuccinic acid)
through esterification [146,150–152], sodium tetraborate [153], epichlorohydrin [154,155],
and carboxymethyl [156] among others. These modifications alter physical and mechan-
ical properties, reducing water solubility, and increasing polymer rigidity and chemical
stability [120,132,157–160].



Materials 2021, 14, 3197 12 of 39

4.5. Examples of NP Applications

PVA is highly effective as a colloidal protector and stabilizer of suspensions. For
example, polymer nanolatexes are obtained through emulsion polymerization. The use
of PVA as the sole stabilizer helped obtain an adjustable NP size from 60 to 100 nm with
a PDI between 0.05 to 0.07 [161]. PLGA-PVA NP loaded with chitosan-dextran sulfate-
doxorubicin were designed and successfully delivered doxorubicin to MCF-7-DOX-R
cells [162], obtaining the desired anti-proliferative effects. A poly(acrylic acid) (PAA)-b-
PVA double-hydrophilic block copolymer, with a pH- and IS-responsive block (PAA) was
used to stabilize γ-Fe2O3 NP, improving its colloidal stability for its potential application
for remotely magnetically triggered drug release to some tumor site [163]. Eudragit®

L100 NP loaded with ketorolac tromethamine with a size of 153.7 nm, a PDI of 0.318,
a zeta potential of −16.9 mV, and DL of 36.3% were successfully incorporated in PVA-
hydroxyethyl cellulose (HEC) films for ophthalmic drug delivery system [164]. More
examples are presented in Table 3.
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Table 3. Nanoparticulate formulations stabilized with PVA.

Polymer Surfactant NP Size
(nm) PDI Z-Potential

(mV) Drug EE or DL Application Reference

PLGA 2% 215.3 ± 23 0.071 −10.3 ± 2.3 Chlorogenic acid DL = 2.25 ± 0.21% As a promotor of type
17 collagen production [165]

PLGA 1–2% w/v
and 1.5% w/v 150 ± 10.4 0.081 ± 0.030 17.7 IFN-beta-1a EE = 96.2%

To diminish symptoms of
relapsing-remitting
multiple sclerosis

[166]

PLGA 0.1% 213.8 ± 34.99 0.232 ± 0.021 −52.6 ± 9.483 Curcumin and
ovalbumin

EE = 30% Cur;
16% Ova

Use as sublingual
immunotherapy (SLIT) in a

mouse model of
rhinitis allergic

[167]

PLGA 2% 172.6 ± 6.20
to 271.9 ± 18.2

0.070 ± 0.02
to 0.301 ± 0.03 N.A. Ketoconazole EE = 94.99% ± 3.45

to 97.53% ± 2.33
Treatment against
Candida albicans [168]

PLGA 2%
198.6 ± 5.4

(before freeze-drying)
299.8 ± 2.2

(after freeze-drying)

0.160 ± 0.033 (before)
0.412 ± 0.028 (after)

−20.8 ± 1.4 (before)
−16.6 ± 1.1 (after) Bevacizumab

DL = 1.62 ± 0.01%
(before

freeze-drying)
Antiangiogenic therapy [169]

PLGA 0.3% (w/v) 140 0.463 N.A. Farnesol N.A. Antibiofilm activity, against
Candida albicans [170]

PLGA 0.5% to 5% 127 ± 0.90 to 289 ± 1.56 0.191 ± 2.66
to 0.259 ± 2.67 −30.43 to −30.89 Bicalutamide N.A. For the treatment of

prostate cancer [171]

PLGA
0.3% (w/w), 1.0%
(w/w), and 3.0%

(w/w)
121 to 259 0.05 to 0.20 −27 to −34.4 FLAP/PGES-1

Inhibitor BRP-187 DL = 0.5 to 7.29%

A promising drug candidate
due to its improved

anti-inflammatory efficacy
with potentially reduced

side-effects in comparison
with NSAIDs

[172]

PLGA 1% 183.7 ± 72.21 N.A. −41.1 ± 4.81 mV p66shc siRNA EE = 32.3%
To ameliorate neuropathic

pain following spinal
nerve ligation

[173]

PLGA 1.0% (w/v) 110.0 ± 41.0 N.A. N.A. 17 beta-estradiol N.A.
To improve low bone mineral

density of cancellous bone
caused by osteoporosis

[174]

PLGA 4% 211 ± 74 N.A. −14.2 ± 0.8 Thioridazine DL = 26.5%
To reduce toxicity against
mycobacterial infection

in zebrafish
[175]

PLGA 1% 198 ± 0 0.16 ± 0.01 −78 ± 1 Combretastatin A4 EE = 32 ± 3%
DL = 0.41 ± 0.02%

To improve physicochemical
characteristics of

combretastatin A4, a natural
potent tubulin

polymerization inhibitor

[176]
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Table 3. Cont.

Polymer Surfactant NP Size
(nm) PDI Z-Potential

(mV) Drug EE or DL Application Reference

PLGA 1% 119 ± 9 to 206 ± 27 0.220 to 0.401 −4.38 to −5.24 Curcumin EE = 77.81 to 92.64%
DL = 7.86 to 10.53%

Toxicity on human
glioblastoma U87MG cells [177]

PLGA 0.5% w/v 186.6 0.108 −28.8 Recombinant ArgF EE = 76%
DL = 2.6%

For potential use for the
prevention of Mycobacterium

bovis infection
[178]

PLGA 5.21 mg/mL 202.8 ± 2.64 0.17 ± 0.016 N.A. Resveratrol EE = 89.32 ± 3.51% For prostate cancer cells [179]

PLGA 1% 225.9 0.257 −10.9 Curcumin and
Niclosamide

EE = 58.31% Cur and
84.8% Nic

DL = 2.92% Cur and
4.24% Nic

To improve therapeutic effect
on breast cancer cells [180]

PLGA 0.5% w/w 496 ± 8.5 0.607 −18.41 ± 3.14 Rivaroxaban EE = 87.9 ± 8.6%
DL = 9.5 ± 1.6%

Anticoagulant medication to
prevent blood clots [181]

PLGA 1% w/v 110 ± 1 0.117 ± 0.003 −1.29 ± 0.35 Doxorubicin EE = 80% For chemotherapy of
glioblastoma [182]

PLGA 1% w/v 527 ± 50.21 0.26 N.A. Olmesartan
medoxomil EE = 78.65 ± 4.31%

To increase the bioavailability
of the drug to treat

hypertension
[183]

PLGA 1% w/v 180 ± 8 0.04 −8.59 ± 0.20 Paclitaxel and
methotrexate

EE = 70% MTX and
88% PTX

DL = 4% MTX and
5% PTX

Treatment against
glioblastoma [184]

PLGA 3% w/v 152.8 ± 2.65 0.187 ± 0.024 −30.9 ± 1.67

Lipophosphoglycan
molecule (LPG) and
leishmania antigen

(ALA)

EE = 14% ALA,
28% LPG

DL = 28% ALA,
12% LPG

For a potential nanovaccine
to prevent leishmaniasis [185]

PLGA 0.5% w/v 114.7 to 124.8 0.113 to 0.147 N.A. Diclofenac sodium EE = 41.4% to 77.8% For inflammatory diseases [186]

PLGA 3% w/v 252.6 ± 2.854 0.209 ± 0.008 −23.7 ± 1.36 Rutin EE = 81 ± 5%

As a candidate for further
multidisciplinary studies

(support blood circulation,
allergies, viruses, etc.)

[187]

PLGA 4% w/v 182.2 ± 11.40 0.147 ± 0.01 N.A. Doxorubicin EE = 75.3%
DL = 4.9%

To arrest glioblastoma
growth via

intranasal delivery
[188]

PLGA 3% 191.92 ± 2.3
to 273.70 ± 1.9

0.070 ± 0.014
to 0.237 ± 0.030

−6.87 ± 0.1
to −11.5 ± 0.4 Dexamethasone

EE = 94.39 ± 2.70%
to 95.02 ± 2.98%

DL = 3.27 ± 0.58% to
5.43 ± 0.63%

Potential treatment of oral
precancerous lesions [189]
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Table 3. Cont.

Polymer Surfactant NP Size
(nm) PDI Z-Potential

(mV) Drug EE or DL Application Reference

PLGA 2% w/v 229.5 ± 38.4
to 379.2 ± 21.6

0.36 ± 0.02
to 0.73 ± 0.13

−1.2 ± 1.1
to −3.9 ± 0.5

Ethanolic Extract
of Propolis

EE = 89.90 ± 0.8% to
92.1 ± 0.5%

DL = 28.6 ± 1.1% to
56.7 ± 3.4%

As a treatment against
Candida albicans [190]

PLGA 1% 97.36 ± 2.01 0.263 ± 0.004 −17.98 ± 1.09 Thymoquinone EE = 82.49 ± 2.38%
Dl = 5.09 ± 0.13% For the treatment of epilepsy [191]

PLGA 2% w/v 200 ± 05 0.05 ± 0.02 N.A. Budesonide EE = 85 ± 3.5% To target the inflammation
of mucosa [192]

PLGA 1.0% w/v 277 0.18 −16 Cymbopog citratus
essential oil EE = 73%

As a vehicle for this essential
oil with anti-inflammatory,

antifungal, sedative,
antibacterial, antiviral and
anticarcinogenic properties

[193]

PLGA 1% w/v 118 to 279 0.103–0.581 N.A. Quercetin EE = 73.55 ± 2.11%
to 86.48 ± 1.67%

Potential vehicle for the
antioxidant quercetin [194]

PLGA 5% w/v 105 ± 3 N.A. −36 ± 5 Surfactant Protein D
(SP-D) EE = 59 ± 4%

As a potential treatment for
respiratory distress

syndrome in preterm infants
[195]

PLGA 2% w/v 154 ± 4.56 0.29 −18.4 Ursolic Acid EE = 40 ± 3.24%
DL = 4 ± 1.12%

Potential vehicle to deliver
the drug against different

bearing cell lines
[196]

PLGA 0.5–1.5% w/v 200 N.A. −17.5 Zaleplon DL = 5% For treatment of insomnia [197]

PLGA 1% w/w 244.3 ± 4 to 262.8 ± 7 N.A. −8.8 ± 0.8 to −17.4
± 1.0 Quercetin EE = 96.2 to 97.8% To treat foodborne pathogens [198]

PLGA 1% (w/v) 211 ± 3 0.211 ± 0.009 N.A. Clofazimine DL = 12 ± 1% To decrease toxicity of the
antimicrobial drug [199]

PLGA 1.5% (w/v) 268 ± 2.7 0.110 ± 0.026 N.A. Atrazine EE = 31.6 to 50.5% Potential herbicide release
system for agriculture [200]

PLGA 1% 192.6 ± 3.5 0.234 ± 0.008 −32.4 Atenolol EE = 71.65 ± 1.8% Drug carrier of a β-blocker
for cardiovascular disorders [201]

PLGA 2% (w/v) 294 ± 15 0.26 ± 0.02 −20.4 ± 2.5 Insulin DL = 12.1 ± 0.6%
To optimize the PLGA

formulation and
lyophilization

[202]

PLGA 2.5% 184 ± 7 0.19 ± 0.01 −21.7 Rhodamine-B EE = 40 ± 2.94% Potential probes for the drug
delivery in cardiac myocytes [203]

PLGA 2% w/v 133.3 ± 10.4 0.087 ± 0.009 −16.1 ± 4.5 Trastuzumab EE = 42.8 ± 1.6%
Potential vehicle for

therapeutic antibodies to
avoid current limitations

[204]
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Table 3. Cont.

Polymer Surfactant NP Size
(nm) PDI Z-Potential

(mV) Drug EE or DL Application Reference

PLGA 0.5% w/v 281.9 to 307.3 0.317 to 0.451 −32.8 ± 1.6
to −43.4 ± 2.6 Apremilast

EE = 39.5 ±1.1% to
61.1 ± 1.9%

DL = 1.3 ± 0.1% to
1.9 ± 0.1%

For the treatment of psoriasis
or psoriatic arthritis [205]

PLGA 3% w/v 150 ± 7 0.16 ± 0.05 −23.8 ± 0.8 Rifapentine EE = 85 ± 8% For a treatment against
tuberculosis [206]

PLGA 2.5% (w/v) and
0.25% (w/v) 157.7 0.071 −35.1 Indocyanine Green

and Resiquimod

EE = 65.61 ± 2.09%
ICG and 8.363 ±

0.325% R848
For prostate cancer treatment [207]

PLGA 1% 226.6 ± 44.4 0.039 ± 0.013 −0.144 Ketotifen Fumarate EE = 89.3 ± 3.3% Vitamin D binding protein [208]

PLGA 1% (w/v) 120 ± 1 0.104 ± 0.011 −11.6 ± 0.8 Doxorubicin EE = ~80%
For the delivery of the drug

into U87 human
glioblastoma cells

[209]

PLGA 0.5% w/v 210.0 ± 4.8 to 317.5 ± 4.7 0.190 ± 0.39
to 0.394 ± 0.53

−8.3 ± 2.1
to −19.3 ± 0.2 Dexamethasone

EE = 10.4 ± 2.6% to
64.9 ± 0.6%

DL = 0.67 ± 0.2% to
7.17 ± 3.2%

For treatment of
oral mucositis [210]

PLGA 1% w/v 167.6 ± 0.37 0.118 −16.17 ± 0.53 Loteprednol
etabonate EE = 96.31 ± 1.68% For the delivery of the drug

into the cornea [211]

PLGA 1% (w/v) 164.6 0.203 −17.6 Doxorubicin and
Sorafenib

EE = 74% Dox,
67% Sor

For a cancer treatment using
nanotherapeutics [212]

PCL 3.0% 188.5 ± 1.7 0.160 ± 0.022 −15.03 ± 2.83 Lapazine EE = 35.82 ± 1.47%
DL = 54.71% For antitubercular treatment [213]

PCL N.A. 202 ± 24 to 389 ± 37 0.08 to 0.164 −4.92 ± 0.88
to −8.29 ± 1.04 Nigella sativa oil EE = 71.6 to 98.6% For leishmaniasis treatment [214]

PCL 2.0% w/v 311.6 ± 4.7 0.21 ± 0.03 −16.3 ± 3.7 Carboplatin EE = 27.95 ± 4.21%
Intended to use for intranasal

administration to improve
brain delivery

[215]

PCL 2% to 3% 275.23 ± 4.56
to 452.30 ± 9.02 0.09 to 0.35 −4.41 ± 1.21 to

−14.77 ± 4.42 5-fluorouracil EE = 94.53 ± 0.23%
to 96.82 ± 0.46% For colon cancer treatment [216]

Abbreviations: N.A. = Not Available; EE = Entrapment efficiency; DL = Drug Loading; PDI = Polidispersity Index; PLGA = Poly(lactic-co-glycolic acid); NSAIDs = Non-steroidal anti-inflammatory drugs.
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4.6. Toxicity in NP

Sprague-Dawley rats were fed with PVA (2000, 3500, and 5000 mg/kg/day) for
up to 90 days, and no toxicological effects were observed. When tested in NP, simi-
lar results were obtained. PLGA/PVA NP tested in Human-like-THP-1 macrophages
found less cytotoxicity at high concentration (1 mg/mL) than other stabilizers [217]. Poly-
meric NP of chitosan-g-poly(methyl methacrylate) (PMMA) and PVA-g-PMMA were
ionotropically crosslinked with sodium tripolyphosphate to mask the positive charge and
successfully avoid toxicity after 0.8 mg/kg intranasal administration of NP in Hsd:ICR
mice [218]. In addition, tamoxifen-loaded-PLGA/PVA NP exhibited low toxicity in C127I
cells (up to 10 µg/mL) and rats with 12-dimethylbenz(a)anthracene-induced breast cancer
(3 mg/kg) [219]. Paclitaxel-loaded PVA-g-PLGA NP tested in RbVSMC cells presented
a 30% reduction in cell viability at 300 µg/mL, while biocompatibility was confirmed to
370 µg/mL in drug-free NP [220].

4.7. Advantages and Disadvantages

The high biodegradability in the environment may be the most desirable characteristic
of PVA because it can easily be degraded by bacteria (Gram-negative and Gram-positive)
and Penicillium sp [102,105,115,140]. Furthermore, PVA-coated NP exhibit a low level of
non-specific interaction with solutes like cell adhesion proteins due to its hydrophilic
nature [221], which could be beneficial or harmful. On the other hand, it has been re-
ported that a fraction of PVA forms a stable matrix on the polymeric surface that cannot be
removed, affecting the physical properties of NP and their interactions with the surround-
ing environment [222]. Finally, a problem with the reports of PVA-coated NP is that the
molecular weight and the hydrolysis percentage are generally not reported, affecting the
reproducibility of the studies.

5. Poloxamers

Poloxamers, also known as Pluronic®, are tri-block copolymers with amphiphilic
properties, which can be found in three different forms: liquid, paste, and flake. They were
commercially first produced by BASF Corporation in 1950 [223,224]. These block copoly-
mers contain two blocks of the hydrophilic POE separated by one block of the hydrophobic
poly(propylene oxide)(PPO) in an arrangement A-B-A (POE-PPO-POE) [225]. The possibil-
ity of modifying the amount and relation between POE and PPO in the poloxamer structure
allows the obtention of different physicochemical characteristics. Poloxamers present sur-
factant properties and are widely utilized in the stabilization of nanostructured systems.
Furthermore, these copolymers can interact with cells and cell membranes, providing a
high potential to be applied in the design of new biomaterials and novel nanomedicines
(Figure 3) [226,227].

5.1. Physicochemical Properties

Poloxamers are synthesized by sequential polymerization of ethylene oxide and
PPO units in sodium hydroxide and potassium hydroxide. Their chemical formula is
HO[CH2CH2O]x [CH(CH3)CH2O]y [CH2CH2O]xOH, where y is higher than 14. Depending
on the x and y values, these copolymers present different amphiphilic properties based on
their HLB values. The physicochemical characteristics of poloxamers could be modified
by changing the POE and PPO relation mass, obtaining different sizes, lipophilicity, and
hydrophilicity. Regularly, the molar mass ratio between POE and PPO blocks ranges
from 8:2 to 9:1, derived from the coexistence of hydrophilic and hydrophobic sections in
the poloxamers structure. These copolymers present a high temperature-dependent self-
assembling characteristic as well as thermo-reversible properties. Solutions of poloxamers
with concentrations higher than their CMC produce gels at temperatures above their sol-gel
transition temperature. Additionally, PPO blocks dehydrate at high temperatures, and it is
less soluble in water, which triggers the formation of the micelles with the dehydrated PPO
core and hydrated POE shell. Consequently, depending on the main properties needed for
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the application, appropriate physical and chemical modifications could be applied in the
poloxamer synthesis. Interestingly, several reports demonstrated that poloxamers could
decrease the cell membrane microviscosity (membrane fluidization) due to the presence
of hydrophobic PPO chains [223,228]. Furthermore, it has been reported that poloxamers
could reduce multidrug resistance, inducing a dramatic reduction in ATP levels in cancer
and barrier cells, and inhibiting drug efflux transporters [227,229,230].
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Figure 3. Poloxamer applications. Poloxamers could be used in several fields according to their
biological and physicochemical properties. For example, micelles are effectively used as drug
carriers. Moreover, they presented the ability to inhibit drug efflux transporters. Poloxamers
represent an attractive alternative to tissue engineering, both as injected hydrogel, exploiting their
thermosensitivity capacity, and structured hydrogel for wound dressing.

5.2. Types

As we mentioned, poloxamers are polymorph materials covering a range of gelation
states from liquid to paste and solid, depending on the molar mass ratios between the
POE and PPO blocks [224]. This class of A-B-A copolymers offers a pool of more than
50 materials with molecular weights ranging from 1600 to 14,600 Da that present differ-
ent properties [231]. In the commercial nomenclature of these copolymers, the name is
composed by a letter that indicates the morphism of each copolymer: liquid (L), paste
(P), and flake (F), followed by two or three digits, which is related to their structural
parameters [224,232]. For example, the Pluronic® known as L121 (poloxamer 401) has a
liquid presentation with above 2,000 Da of molecular weight and HLB of 3; meanwhile,
Pluronic® F68 (poloxamer 188) has an average molecular weight of 8,400 Da, a percentage
of POE around 80%, and an HLB value of 29 with flake morphology [231]. On the other
hand, Pluronic® P123 (poloxamer 403) is a paste with an HLB value of 8 and an average
molecular weight of 5,750 Da [224,233].
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5.3. Uses

The structural versatility of poloxamers makes them particularly attractive emulsify-
ing, solubilizing, and dispersing ingredients for pharmaceutical formulation [234,235]. It
has been reported that the incorporation of low molecular weight drugs into poloxamer
micelles could increase drug stability and solubility, improving the pharmacokinetics and
biodistribution. These polymeric micelles have been employed for the oral administration
of tumor-specific and brain drugs [234,236,237]. In addition, these copolymers have been
used as food additives. Moreover, due to their thermosensitivity, poloxamers can form
hydrogels, injectable hydrogels, 3D scaffolds, micro/nanofibers, and cell carrier constructs;
consequently, these copolymers have been utilized in tissue engineering and biomaterials
fields [232,238–240].

5.4. Derivatives

The synthesis of chemically cross-linkable poloxamers has also been analyzed to
enhance their mechanical properties. The chemical structure of poloxamers presents
only reactive groups available for the modification at the end of the chains; thus, chemi-
cally cross-linkable groups can only be used to end-cap the triblock chain. Ethoxylsilane
and methacrylate/acrylate are two groups employed for the crosslink of end-capping
groups [241]. To introduce ethoxy silane end-capping group, (3-isocyanatopropyl) tri-
ethoxysilane can be utilized to react with the hydroxyl groups of poloxamers under the
catalysis of 2-ethyl-hexanoate. For the coupling of methacrylate/acrylate, methacryloyl
chloride/acryloyl chloride reacts with hydroxyl groups on both ends, resulting in higher
mechanical properties [241,242]. In this context, in 2021, Popescu et al. developed a
hydrogel from a natural polymer and poloxamer 407 obtained by thiol-acrylate photopoly-
merization to be employed as a wound dressing [243].

5.5. Examples of NP Applications

Poloxamers have been widely applied in nanotechnology as a stabilizer and nanopar-
ticle shell component for different applications. In 2019, Del Prado et al. developed a
system of PCL NP stabilized by poloxamer 188 [244]. The results suggested that the pres-
ence of poloxamer in the nanoparticle’s surface produced a stable nanodispersion during
six months of storage. Interestingly, the nanocarrier leads to a decrement in reactive oxygen
species, which the authors attributed to the presence of poloxamer 188 [245]. Similarly, in
2021, the poloxamer 188 was employed as a stabilizer of rivaroxaban-loaded PLGA NP
as a novel strategy for treating thrombotic disorders [246]. The nanosystem presented a
spherical morphology with an average size of 200 nm and PDI of 0.09, the latter suggesting
a homogenous size distribution. Another poloxamer highly utilized as a stabilizer is the
poloxamer 407. Recent research reported the evaluation of amphotericin-loaded PCL NP
using poloxamer 407 as a surfactant [247]. The spherical nanocarriers presented a mean
hydrodynamic particle size of 183 nm and encapsulation efficiency of 85%. The elaboration
of poloxamer 407-based NP also has been explored [248,249]. Another research reported
NP of poloxamer 407 with a size around 100 nm and PDI of 0.122; the formulation exhib-
ited appropriate properties to deliver chemotherapeutic agents [248]. Table 4 compiles
examples of poloxamers formulated in nanoparticulate systems.
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Table 4. Nanoparticulate formulations stabilized with poloxamers.

Polymer Surfactant NP Size
(nm) PDI Z-Potential

(mV) Drug EE or DL Application Reference

PCL F-127, 2% 167 0.188 ~0 Amphotericin EE = 85%
Increase the solubility of the drug

as treatment for
Leishmania infections

[247]

Chitosan F-127, 15% 146 N.A 5.09 Curcumin EE = 61.7% Development of effective delivery
system with few side-effects [250]

PCL
F-108, 50%
F-127, 50%
F-68, 50%

182
184.7
698.4

0.2
0.28
0.88

–11.7
–1.6
–6.03

N.A N.A Evaluation of the effect of
different surfactants [251]

PLGA F-68, 0.88% 217.6 ± 8.6 0.171 –23.35 ± 1.17 Docetaxel EE = 88% Development of a delivery system
for breast cancer chemotherapy [252]

PLGA F-68, 0.5% 160–170 0.051 ± 0.012 −20.5 ± 0.069 N.A N.A Evaluation of the effect of
poloxamer as surfactant [253]

PCL/F-68 PVA, 0.05% 201.7 ± 10.1 0.096 –12.50 ± 0.86 Docetaxel EE = 69.1%
DL = 10%

Evaluation of the increased level of
uptake NP due to F-68 presence [254]

PCL F-68, 2% 149.9 ± 2.2 0.087 ± 0.05 N.A Curcumin EE = 96 ± 0.95%
DL = 4.9 ± 0.7%

Development of a potential
alternative

treatment for neuronal diseases
based on curcumin

[244]

PS

L61,
F-68,

F-108,
L121,
F-127

97 ± 1,
105 ± 1,

110,
100 ± 2,
108 ± 1

0.01,
0.03,
0.02,
0.02,
0.02

–42 ± 1,
–26 ± 2,
–14 ± 2,
–32 ± 1,
–18 ± 2,

N.A N.A Analysis of polymer NP modified
with different types of poloxamers [255]

Chitosan F-68 0.5% 252.80 ± 7.46 0.40 ± 0.03 17.50 ± 0.93 Doxorubicin EE = 61.3 ± 2.28%
Fabrication of DOX-loaded

pH-responsive NP
for chemotherapy

[256]

Silk sericin F-127 (1:5)
F-87 (1:5)

61.9 ± 5.36
103 ± 1.0 nm

0.21
0.18 N.A Inulin

Paclitaxel EE = 65 ± 10%

Development of silk sericin NP in
the presence of poloxamer for

successful delivery of both
hydrophobic and hydrophilic drugs

[257]

PLGA/F-68 PVA 1% 179.4 ± 11.2 0.309± 0.08 −22.7 ± 5.7 Paclitaxel EE = 65 ± 8.3%

Development of novel
PLGA:poloxamer blend NP for

intravenous administration
of paclitaxel

[258]

PLGA/F-68/F-127 PVA, 1% 160 ± 31 0.671 ± 0.03 18.7 ± 1.3 Curcumin EE = 90 ± 2.1%

Obtention of PLGA/poloxamer
blend NP and evaluation of their

interaction with serum proteins and
its internalization ability

[259]
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Table 4. Cont.

Polymer Surfactant NP Size
(nm) PDI Z-Potential

(mV) Drug EE or DL Application Reference

PLGA-Chitosan F-68, 1% 150.7 ± 1.8 0.16 ± 0.03 25.1 ± 1.6 miR-34a EE = 49 ± 2.1% Anticancer treatment of
multiple myeloma [260]

PLGA-Chitosan F-68, 1% ∼130 N.A 30 Anti-hTERT
siRNA N.A Block the growth of anaplastic

thyroid cancer xenograft [261]

Chitosan F-68, 10–50% ~122 N.A 23.63 Doxazosin
mesylate

EE = 99.9%
DL = 8.5%

Control release and enhancing the
bioavailability of

doxazosin mesylate
[262]

PLGA F-68, 1% ~94 0.091 ± 0.010 –0.3 Doxorubicin EE = 92% Treatment of glioblastoma [263]

PLGA/Chitosan F-68, 5% ~134.4 N.A 43.1 Insulin EE = 52.8%
DL = 1.3%

Characterization of bioadhesive NP
for oral administration [264]

PLGA P-85 156.7 ± 3.9 0.21 ± 0.04 –45.7 ± 2.9 Doxorubicin EE = 85.2 ± 4.1%
DL = 7.3 ± 1.2% Treatment of leukemia [265]

PLGA P-85/PVA 180.26 ± 5.60 0.184 −17.47 ± 2.67 Docetaxel EE = 82.7%
DL = 10% Breast cancer treatment [266]

Chitosan-γPGA F-127, 0.25–1% 193.1 ± 8.9 0.29 ± 0.02 20.6 ± 2.4 Curcumin EE = 52.8 ± 4.7% Wound regeneration [267]

PCL F-127, 0.06% ∼123.5 N.A –29.6 Chloramphenicol EE = 98.3% For treatment of MRSA-infected
burn wounds [268]

Folated
F127/PLGA F-127 107.6 ± 4.25 0.308 ± 0.01 N.A Paclitaxel EE = 3.4% Prolongation of the circulation time

of paclitaxel [269]

F-127 F-127, 0.02% 9.70 ± 0.31 0.195 ± 0.029 –27.01 ± 0.20 Berberine EE = 87.6 ± 1.52% Improve permeability and retention
in the skin [270]

PLGA F-127 and F-108,
0.2% ~115 <0.1 –11.3 N.A N.A Functionalization of polymeric NP [271]

F-127 F-127, 1.2% 70 ± 2.4 0.12 N.A Gossypol EE = 91.2 ± 3.1%
DL = 9.1 ± 0.42% Cancer drug release study [272]

Trimethyl chitosan F-127, 0.1% ~160 0.140 +20.1 Methotrexate EE = 93.6%
DL = 8.95%

Effective delivery of methotrexate
in osteosarcoma [273]

PLGA F-127, 1% 159.0 ± 3.0 0.099 ± 0.042 –15.4 ± 0.7 Rose Bengal DL = 0.82 ± 0.27%
Evaluation of the effect of the

nanoparticle delivery system on the
biodistribution of the drug

[274]

PLGA/F-68 N.A. 154 0.118 –25.2 ± 1.1 PDGF-BB EE = 87 ± 2%

Development of injectable
controlled release device based on
polymeric NP for the delivery of

growth factors.

[275]

Abbreviations: N.A. = Not Available; EE = Entrapment efficiency; DL = Drug Loading; PBCA = Poly(butyl cyanoacrylate); PCL = Poly (e-Caprolactone); PDGF-BB = platelet derived growth factor; PDI =
Polidispersity Index; PLGA = Poly(lactic-co-glycolic acid); PS = Poly(styrene; F-68 = poloxamer 188; F-87 = poloxamer 238; F-108 = poloxamer 338; F-127 = poloxamer 407; L61 = poloxamer 181; L121 = poloxamer
401; P-85 = poloxamer 235.
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5.6. Toxicity in NP

Several studies have reported the use of poloxamers-based or -coated NP in cell
culture, finding that the toxicity of these surfactants is relatively low [276]. For instance,
Li et al. [277] reported that after 14 days of feeding with solutions of poloxamer 235/poly
(lactic acid) NP at different concentrations, no deaths or treatment-related complications
were observed in mice, even in the higher concentration treatment. In 2017, the enhanced
viability of pancreatic islets due to nanosystems based on poloxamer 407/chitosan and
bilirubin entrapped into NP was reported [278]. In other work, a nanostructured system
was developed based on poloxamer 407, and poloxamer 403 modified in the end chains
with vitamin E succinate to encapsulate paclitaxel [279]. The cell viability was evaluated in
bone marrow-derived macrophages and a human glioma U87 cell line. The NP presented
no significant changes in viability of macrophages and high cytotoxicity in human glioma
U87 cells, which was related to the therapeutic effect of the NP.

5.7. Advantages and Disadvantages

As mentioned, poloxamers exhibit characteristics that are very useful for the pharma-
ceutical and biomedical fields. For instance, thermosensitivity, high capacity to solubilize
drugs, drug release properties, and the absence of toxicity in mucous membranes [240,280].
Furthermore, these safe materials present the ability to inhibit drug efflux transporters,
representing an essential advantage for drug release systems. On the other hand, a disad-
vantage of these block copolymers is their fast degradation rate in vivo [281]. Additionally,
it has been reported that Pluronic® copolymers presented low cytotoxicity and, remarkably,
weak immunogenicity in topical and systemic administration. It is known that POE-PPO-
POE copolymers are non-degradable; however, molecules with a molecular weight of 15
kDa or less are usually filtered by the kidney and cleared in urine [282]. On the other hand,
in recent publications, the complement system activation by POE-containing polymers
has been analyzed [283,284]. Authors suggested that these polymers could trigger acute
hypersensitivity reactions or pseudoallergic reactions [283]. However, some evidence
demonstrated that this effect is observed only in highly responsive patients to complement
activation [285]. Consequently, the Pluronic coating must be carefully developed.

6. Influence of Non-Ionic Surfactants on the Interaction with Biological Barriers

The impact of surfactants on the physicochemical parameters of NP is not limited
to stability phenomena. There is a significant influence of surface phenomena driven by
surfactants and interactions at the cellular level [8,286] (Figure 4). Therefore, it is possible to
increase or decrease the interaction with cells according to the type of surfactant; even the
vectorization process can be favored in a certain way. The influence of non-ionic surfactants
on the passage through the main biological barriers involved in the pharmacokinetic
processes is described below.

6.1. Blood-Brain Barrier

The BBB is a highly sophisticated brain barrier with tight junctions between endothelial
cells and a foreign substance detection system; therefore, it represents a challenge for drug
passage. Interestingly, Voigt et al. [18] conducted a blood-retina barrier passage study
as a BBB model of fluorescent PBCA NP with different types of surfactants: non-ionic
(PS-20, PS-80, polyethylene glycol monododecyl ether, poloxamer 188), anionic (sodium
dodecyl sulfate (SDS), and cationic (dextran). The authors used real-time imaging of retinal
blood and in vivo confocal neuroimaging during and after nanoparticle injection. The
study revealed that non-ionic or even cationic surfactants allowed a successful BBB passage,
while particle size and zeta potential had no influence. Furthermore, even when the authors
decreased the size of the NP to 87 nm but added SDS to the non-ionic surfactant, they did
not observe crossing in the BBB [18].
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6.2. Intestinal

Historically, the oral route has been the preferred drug administration route due
to patient comfort, ease of application, and low treatment costs. However, there are
different limitations inherent to the gastrointestinal region that produce variations in the
bioavailability of drugs. The use of NP is desirable to ensure adequate bioavailability,
drug stability, and even control in the sustained release system. The presence of non-ionic
surfactants can increase mucus penetration, reduce recognition and clearance, enhance
plasma circulation times, and promote drug accumulation. PEG is one of the predominant
strategies, and it is also a passive mucopenetrating excipient that reduces interactions with
luminal components and mucus in the gut [287].

6.3. Intranasal

Nasal administration is intended for local or systemic action. Some advantages of
the nasal region include a large surface area, low enzymatic activity, vascularized subep-
ithelial layer with direct passage to the systemic circulation, and evasion of the first-pass
metabolism in the liver. On the other hand, some challenges include low membrane per-
meability of polar drugs and rapid clearance [288]. In this respect, non-ionic surfactants
as absorption enhancers may play an important role. For example, poloxamer 188 gels
promote the permeation of nanocubic vehicles and PLGA mixture-based DNA NP. Fur-
thermore, an intentional comparative study to evaluate the effect of non-ionic surfactants
on the intranasal permeation of sumatriptan succinate demonstrated that Laurate sucrose
ester promoted higher absorption and absolute bioavailability. However, the effects of
polyethoxylated castor oil (cremophor EL®) and poloxamer 188 were also desirable [288].
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6.4. Pulmonary

Pulmonary drug delivery allows local and systemic effects. The lung has advantages
such as avoiding the gastrointestinal environment and reducing the first-pass metabolism
of drugs. However, its main barriers in the absorption process are the epithelial and
capillary cell barrier and a surfactant layer. Strategically, one of the tools in drug delivery
is the decrease in particle size and surfactants at the interface [289]. In this regard, non-
ionic surfactants act as modifiers of the absorption of drugs in the lung. For example,
the combination of PS-80 and poloxamer 407 increased the lung area under the curve of
itraconazole particles up to nine times through a wetting mechanism with the absence
of pro-inflammatory components. A similar strategy utilized PEG and PVA to stabilize
sebacic acid particles obtained by an emulsion method. Furthermore, poloxamer 188 can
also be used to stabilize inhalable particles with the additional advantage to prevent the
absorption of proteins and peptides that can be absorbed in the air-liquid interface of
droplets and produce surface erosion [289].

7. Quality by Design in the Choice of a Surfactant: The Royal Road

The pharmaceutical industry is working hard to achieve robust and high-quality
drug products. The QbD, which the International Conference of Harmonisation of Tech-
nical Requirements for Registration of Pharmaceuticals for Human Use defines in the
harmonized tripartite guideline for the pharmaceutical development Q8(R2) [290], is “a
systematic approach to development that begins with predefined objectives and empha-
sizes product and process understanding and process control, based on sound science and
quality risk management.” The QbD has been extended to the systematic development of
drug products by minimizing challenges, including a lack of consistency in quality and
product robustness. The application of QbD to nanopharmaceutical products has several
benefits for optimizing product performance in terms of complex design, dynamic material
properties, and stringent regulatory requirements for quality attributes (QAs), including
particle size, zeta potential, drug loading, in vitro drug release profile, surface morphology
characteristics, pharmacokinetic performance, drug stability, and impurity profiling [291].

In the current Quality by Test (QbT) system, product quality is ensured by following
a sequence of steps, including raw material testing, fixed drug product manufacturing
process, and end-product testing. If the specifications or other standards are met, the
product may be kept in the manufacturing or incorporated into the market. Otherwise,
it will have to be reprocessed [292]. Due to this situation, several compounds have been
studied utilizing QbD. The procedure for implementing QbD in the suspension of NP
includes the following steps (Figure 5): (1) determine the stabilizers and preparation
method according to the Quality Target Product Profile (QTPP), (2) define the Critical
Quality Attributes (CQAs) (particle size, charge, stability, etc.) and from that to establish
the critical material attributes (CMAs) and the Critical Process Parameters (CPPs) based on
prior knowledge when conducting risk assessment, and (3) conduct Design of Experiments
(DoE) to build a design space and verify its feasibility and robustness [293]. DoE is a better
strategy than changing a single experimental factor and keeping other factors constant
that can lead to more experiments than are feasible, especially if many variables are of
concern. Furthermore, this eliminates the possibility of evaluating factor interactions [294].
From careful and systematic considerations, the industry and researchers can assess the
influence of variables (for example, type and amount of stabilizer) on the nanoparticle
CQAs, which helps achieve minimal particle size, good crystallinity, a high yield percentage,
and more [295].
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Based on the above, it can be considered that the search for a successful nanoparticle-
based product results from the effect of several variables. One of these variables is asso-
ciated with the selection of the stabilizer since it has been shown in several studies that
the stabilizer, which is generally a surfactant, has a significant impact on several response
variables of the NP; for example, on the efficiency of encapsulation, particle size, charge,
among others. Through the employment of QbD, Saha et al. [296] indicated that the en-
capsulation efficiency of resveratrol in mucoadhesive lecithin/chitosan NP for prolonged
ocular drug delivery was significantly influenced by the concentration of poloxamer 407
and also revealed a significant interaction with the concentration of resveratrol utilized in
the manufacture of their NP. The evaluation of the effect of poloxamer 407 was established
after a risk analysis in which the polymer, together with the lecithin concentration, chitosan
to lecithin ratio, and drug concentration, were categorized by the severity score as high-risk
material attributes. The poloxamer 407 was ranked with a higher risk score than other
concerning parameters of the manufacturing process, such as the molecular weight of
chitosan, lecithin grade, type of needle, stirring speed, and injection rate others. Moreover,
parameters such as particle size, Z potential, encapsulation efficiency, and drug release
were considered QAs of greater relevance.

On the other hand, Patel et al. [297] evaluated the effect of the type of surfactant
(poloxamer 188 and PS-80) and concentration (0.5%, 2.0%, and 5.0%) on the development
of topical arginine solid lipid NP (SLN) from a QbD approach. After a risk analysis, the
authors found that the surfactant concentration presented a higher risk priority number
(RPN) than some process parameters such as homogenization speed and time, sonication
time and amplitude, and temperature. The study established that poloxamer 188 had a
more pronounced effect on particle size and drug loading percentage than poloxamer 407
and PS-80 alone.

With the above, we can see that three of the most common CMAs in the evaluation by
QbD concerning the stabilization of NP are the concentration of surfactant, the type of sur-
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factant, and the surfactant ratio (Figure 6). Of the three above, the surfactant concentration
turns out to be the one that has been most studied in the development of NP, as shown
by the review made by Cunha et al. [298]. The authors indicated that the independent
variables (CMAs) of lipid(s) and emulsifier(s) concentration produced important effects on
the dependent variables (CQAs), mainly in SLN and nanostructured lipid carriers (NLC).
However, it has also been observed that the temperature of the stabilizer solution may
impact the size and size distribution of dispersion [299], so it can also be considered within
the risk analysis to choose the CPPs.
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As mentioned, the establishment of CMAs related to NP stabilizers is carried out
through risk analysis. The risk analysis to identify and evaluate the type and concentration
of the stabilizer as CMAs, during the manufacture of NP, has been carried out mainly
through strategies such as Cause and Effect Diagram [300], Failure Mode Effects Analysis
(FMEA) [301] and Risk Estimation Matrix (REM) [302]. Despite proving certain differences,
all strategies lead to categorizing both variables as critical impacting on CQAs: particle size,
zeta potential, entrapment efficiency, PDI, and amount of drug released. However, other
tools such as Failure Mode, Effects, and Criticality Analysis (FMECA), Fault Tree Analysis
(FTA), Hazard Analysis and Critical Control Points (HACCP), Hazard Operability Analysis
(HAZOP), and Preliminary Hazard Analysis (PHA) [209] can also be implemented.

8. Drawbacks and Future

As described in previous sections, the diversity of surfactant types is vast, and the
possibility of derivatization towards new applications is also possible. It is one of the trends
in the search for environmentally friendly surfactants. We detected that although there are
different innovations in new structures, there is a predominance of the three mentioned
stabilizers, PS, PVA, and poloxamers. However, there is not a complete description of the
stabilizer properties in most studies in the case of PVA; while with the PS, some aspects
persist about the possible toxic effect in biological models. Concerning poloxamers, the
trade names for Lutrol® and Pluronic® make it challenging to distinguish structurally
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from the type of stabilizer. The new trends outline the lines of research in the search
for surfactants of natural origin that allow a high interaction in the interfaces but with
high biocompatibility and biodegradation. There may even be modifications of naturally
occurring surfactants with synthetic surfactant fragments.

9. Conclusions

Non-ionic surfactants offer a wide versatility of applications in the different manu-
facturing methods of polymeric nanoparticles, highlighting their high biocompatibility
and moderate interaction with biological barriers. Reports of significant toxicity are scarce,
while the physicochemical parameters of nanoparticles are widely modulated, from particle
size to encapsulation capacity. Although some PS, PVA, and poloxamers derivatives exist,
the traditional use of primary structures predominates due to the high stability conferred
to dispersed systems. The stability-biointeraction balance is necessary to have an adequate
performance of the formulation. At the same time, the systematic approach of QbD in
the choice of a surfactant is a route that has marked for some years a new and reliable
experimental strategy. The outlook in the manufacture of polymeric nanoparticles for
biomedical applications seems to indicate that the use of non-ionic surfactants will con-
tinue to predominate in the following years due to their ease of application, broad utility,
and extensive biosafety background.
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