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A B S T R A C T

Misinformation of COVID-19 is prevalent on social media as the pandemic unfolds, and the
associated risks are extremely high. Thus, it is critical to detect and combat such misinformation.
Recently, deep learning models using natural language processing techniques, such as BERT
(Bidirectional Encoder Representations from Transformers), have achieved great successes
in detecting misinformation. In this paper, we proposed an explainable natural language
processing model based on DistilBERT and SHAP (Shapley Additive exPlanations) to combat
misinformation about COVID-19 due to their efficiency and effectiveness. First, we collected
a dataset of 984 claims about COVID-19 with fact-checking. By augmenting the data using
back-translation, we doubled the sample size of the dataset and the DistilBERT model was
able to obtain good performance (accuracy: 0.972; areas under the curve: 0.993) in detecting
misinformation about COVID-19. Our model was also tested on a larger dataset for AAAI2021 —
COVID-19 Fake News Detection Shared Task and obtained good performance (accuracy: 0.938;
areas under the curve: 0.985). The performance on both datasets was better than traditional
machine learning models. Second, in order to boost public trust in model prediction, we
employed SHAP to improve model explainability, which was further evaluated using a between-
subjects experiment with three conditions, i.e., text (T), text+SHAP explanation (TSE), and
text+SHAP explanation+source and evidence (TSESE). The participants were significantly more
likely to trust and share information related to COVID-19 in the TSE and TSESE conditions than
in the T condition. Our results provided good implications for detecting misinformation about
COVID-19 and improving public trust.

. Introduction

‘‘The best way to prevent COVID-19 is actually traditional Chinese medicine’’ ; ‘‘COVID-19 came from Chinese people eating bat soup’’ ;
‘Coronavirus is an engineered bioweapon’’ ; ‘‘Coronavirus is just like the flu’’ (CDC, 2020). Such false and misleading information about
OVID-19 has been widely disseminated in digital spaces and is even promoted by famous public figures, including celebrities and
oliticians. The focus has been going beyond prevention and treatment to include its origin and conspiracy theories. The World
ealth Organization announced a massive ‘‘infodemic’’ that made it difficult for us to find trustworthy sources and reliable advice
mid this horrific pandemic (Kassam, 2020). What is lacking is how to distinguish true information from false claims timely with
apid changes of the COVID-19 pandemic and provide explanations to mitigate the risks associated with COVID-19 to improve public
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trust through digital spaces (Beaunoyer, Dupéré, & Guitton, 2020). Hence, there is an urgent need to develop prediction models to
debunk false claims and to provide timely and trustworthy information to the general public. The failure to meet this need represents
an important issue amid the COVID-19 pandemic, as without it both misuse and disuse of such misinformation will continue to exist.

In order to avoid the spread of misinformation, researchers have been focusing on machine learning-based NLP (Natural Language
rocessing) techniques. For example, Ozbay and Alatas (2020) used twenty-three supervised machine learning models to identify
isinformation. Recently, more successful models based on deep learning techniques have been used to detect misinformation. For

xample, Aggarwal, Chauhan, Kumar, Mittal, and Verma (2020) detected misinformation using BERT with very minimal text pre-
rocessing, but obtained very good performance. It was also reported that by April 2020 Facebook removed more than fifty million
osts related to COVID-19 since they were classified as misinformation using machine learning-based NLP techniques (Sumbaly
t al., 2020). Other big social media companies, including Google and Twitter, also removed scammers of ads related to face masks,
and sanitizers, and manipulative posts related to COVID-19 using these deep learning-based models (Sumbaly et al., 2020). Hence,
n this study, we proposed an NLP machine learning model based on BERT (Devlin, Chang, Lee, & Toutanova, 2019) to detect
isinformation about COVID-19. BERT is a deeply bidirectional, unsupervised language model, and was pre-trained using a huge

mount of text corpus. One of the disadvantages of BERT is that it is computationally intensive, which might be difficult to be
eployed without advanced computational resources. Thus, we made use of DistilBERT which was able to maintain almost similar
erformance of BERT with fewer parameters (Devlin et al., 2019).

Despite the efforts using deep learning models in debunking misinformation about COVID-19, there is a lack of research on
ow to help the general public detect misinformation and improve their trust at the same time. In addition, NLP techniques based
n machine learning are usually black-box models. The trust in and acceptance of such models are often compromised without
evealing the domain knowledge, i.e., explainability, contained in the data (Doshi-Velez & Kim, 2017). Compared to other domains,
he importance of explainability in decision making with high risks is even greater, such as COVID-19 in the medical area (Zhou,
hen, & Lei, 2020) and fatigue detection in driving (Zhou, Alsaid, Blommer, Curry, Swaminathan, Kochhar, Talamonti, Tijerina,
Lei, 2020). On the contrary, if the insights captured by such models are revealed, it can help improve trust and acceptance

nd potentially attain the intended purposes. For example, Gilpin et al. (2018) showed that explainable machine learning models
chieved a higher level of acceptance and trust. Thus, it is crucial for the black-box machine learning models to provide explanations
bout their decisions.

In order to improve the trustworthiness of the model, we proposed to explain the reasoning process of distilBERT using SHAP
SHapley Additive exPlanations). SHAP capitalizes on the Shapley value from cooperative game theory (Shapley, 1953) to calculate
ndividual contributions of the features in the prediction model. It has many desirable properties in explaining machine learning
odels, including local accuracy, missingness, and consistency (Lundberg & Lee, 2017). Furthermore, we designed a between-

ubjects experiment to evaluate the proposed explainable NLP models in three conditions (i.e., text (T), text+SHAP explanation (TSE),
nd text+SHAP explanation+source and evidence (TSESE)) in terms of trust and willingness to share the information. As a summary,
he contributions of this paper include (1) building a prediction model based on state-of-the-art NLP techniques, i.e., DistilBERT,
2) explaining model predictions using SHAP in order to improve public trust, and (3) conducting a human-subject experiment to
valuate trust in model prediction and willingness to share information.

. Related work

To reduce the negative effects of misinformation, researchers developed different prediction models to automatically detect
isinformation. Machine learning models using various features are dominant, such as linguistic features (e.g., styles of writing,

ubjectivity, and authenticity) and social contextual features (e.g., user characteristics and credibility, content, and social net-
orks) (Shu, Sliva, Wang, Tang, & Liu, 2017). These machine learning-based methods can be further categorized into supervised
nd semi-supervised methods. Gilda (2017) evaluated different supervised models on misinformation classification and the best
erformance were obtained with stochastic gradient descent. Ozbay and Alatas (2020) assessed the performance of twenty-three
upervised machine learning models (e.g., logistic model tree, stochastic gradient descent, classification via clustering, bagging,
ecision tree). The decision tree model achieved the best performance. With the existing computational capabilities and a large
mount of data, supervised deep learning models provide better performance compared to traditional machine learning models.
ecurrent neural networks (RNNs) and convolutional neural networks (CNNs) were explored by multiple researchers to handle
isinformation detection (Wang, 2017). Ma et al. (2016) proposed a RNN model with well-designed recurrent units and extra
idden layers to learn the latent features of the contextual information of microblogs over time and their model performed better
han online rumor debunking services. Ruchansky, Seo, and Liu (2017) proposed a hybrid deep RNN model that incorporated three
odules, including capture, score, and integrate, which obtained better results in fake news detection. Yang et al. (2018) proposed a
NN-based model by including text and images as features for the model. Bahad, Saxena, and Kamal (2019) proposed a bi-directional

ong short-term memory (LSTM) model to detect misinformation. The model was capable of detecting complex patterns in text data
y examining a sentence bi-directionally and thus performed better than unidirectional LSTM models. Ma, Gao, and Wong (2019)
roposed a model based on generative adversarial learning to detect misinformation on Twitter, in which a generator was used to
roduce conflicting information for the discriminator to learn better representations to detect rumors. For a more detailed review
n fake news detection, please refer to Pérez-Rosas, Kleinberg, Lefevre, and Mihalcea (2018) and Zhou and Zafarani (2020).

The main limitation of the supervised method is to label a huge amount of data to train the model, which is laborious and time-
onsuming. Therefore, in search of an alternative to the supervised method, semi-supervised methods learn domain knowledge from
2
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Fig. 1. Summary of the proposed misinformation detection process.

a small set of labeled data on top of a pre-trained unsupervised model. Guacho, Abdali, and Papalexakis (2018) proposed a semi-
supervised content-based approach to detect misinformation, using tensor embedding and label propagation. Benamira et al. (2019)
introduced a content-based semi-supervised approach by capturing contextual similarities using a graph learning task. Shu, Wang and
Liu (2019) focused not only on news content features but also on publisher bias and user engagement to detect misinformation using
a semi-supervised linear classifier to guide the misinformation detection process. Dong, Victor, and Qian (2020) implemented a two-
paths semi-supervised deep learning approach based on three CNNs, where both the labeled and unlabeled data were used to train
the model. One of the powerful deep learning semi-supervised methods in detecting misinformation is BERT (Devlin et al., 2019).
BERT is composed of two stages, i.e., unsupervised pre-training and supervised fine-tuning. Aggarwal et al. (2020) showed that
BERT outperformed LSTM and gradient boosted tree models even with minimal text pre-processing. To improve the performance of
BERT, Jwa, Oh, Park, Kang, and Lim (2019) proposed a model that classified the data using weighted cross-entropy. They pre-trained
BERT on additional news data and obtained better results than BERT.

However, the BERT model is computationally expensive and contains millions of parameters (i.e., 110 million parameters for
BERT base and 340 million parameters for BERT large) (Devlin et al., 2019), which makes it difficult to apply in real time without
accelerated hardware, such as GPUs and TPUs. In contrast, in this paper, we attempted to address this problem by distilling the
knowledge from BERT to detect misinformation (Sanh, Debut, Chaumond, & Wolf, 2019). DistilBERT was shown to be 60% faster
than BERT while retaining over 95% of BERT’s performance (Sanh et al., 2019). Another difficulty is the lack of labeled data
in fine-tuning the model for a domain-specific task. Therefore, we proposed a data augmentation method using back-translation,
which helped to double the size of the training data collected by ourselves and to improve the model performance. For example,
Xie, Dai, Hovy, Luong, and Le (2019) showed that sentences generated by back-translation reached a significant improvement in
text classification.

Furthermore, in the case of fact-checking related to COVID-19 claims, both understanding and trust are necessary for the adoption
of the predictions. Very few studies focused on improving trust in model prediction by incorporating model explanation (Lai & Tan,
2019). However, according to Rudin (2019), an inaccurate explanation limits the trust in the model. Therefore, it was suggested
that we should not only show the model performance but also include explanations about the predictions (Lai & Tan, 2019).
There are two approaches to explain a machine learning model including example- and feature-based methods (Lai & Tan, 2019).
The example-based approach is based on criticisms and prototypes (Kim, Khanna, & Koyejo, 2016). This method was proved to
improve human understanding and reasoning. For example, Shu, Cui, Wang, Lee and Liu (2019) proposed a sentence-comment
co-attention sub-network to detect fake news and used the top-k user comments as contextual information to explain why they were
fake. However, example-based methods are often limited to improve the interpretability when the claims do not have contextual
information (Molnar, 2020), where claims about COVID-19 lack specific contexts to tell if they are true or fake. In the feature-based
approach (e.g., SHAP), each feature is characterized by an importance value for a particular prediction (Lundberg & Lee, 2017).
For example, Reis, Correia, Murai, Veloso, and Benevenuto (2019) examined a large and diverse set of features of fake news and
found some features were very effective to detect certain types of fake news, which were used to explain model decisions to help
detect fake news. The feature-based approach can provide two major advantages, including global and local interpretability. The
global interpretation aims to show how much each feature contributed to the overall prediction and the local interpretation explains
individual predictions, which tends to be more helpful to improve user understanding and trust. Therefore, we proposed to use SHAP
to explain the prediction of DistilBERT locally to improve trust and acceptance as a feature-based explanation method. To further
evaluate the explanations provided by SHAP, a between-subjects experiment was designed with three conditions i.e., T, TSE, and
TSESE.

3. Methods

The summary of the proposed method is illustrated in Fig. 1 with the following steps:
(1) Data preprocessing: We collected a dataset and manually labeled the data with fact-checking from different trustworthy

sources. Then, we doubled the size of the dataset using back-translation. In addition, we included another large dataset for AAAI2021
— COVID-19 Fake News Detection Shared Task (Patwa et al., 2020) to further test our proposed method.

(2) Model building: We transformed (i.e., tokenization, padding, masking) the dataset into the shape needed to fine-tune the BERT
model. After that, the PyTorch-Pretrained-BERT library was used to build the BERT model. Then the BERT model was fine-tuned
with our labeled data or the COVID-19 Fake News dataset (Patwa et al., 2020). Then, we distilled the knowledge from the BERT
model by training a logistic regression model.

(3) Model explanation: To improve user trust in the distilled BERT model, SHAP was used to explain the predictions locally.
(4) Model evaluation: To evaluate user trust in the model predictions and the provided SHAP explanations, we conducted a
3

between-subjects experiment with three conditions on Amazon Mechanical Turk (AMT, Seattle, WA, www.mturk.com)
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Table 1
Examples of collected COVID-19 claims.

Label Source Date Claims

Fake FactCheck Jan. 28, 2020 ‘‘Chinese spy team’’ working in a Canadian government lab sent ‘‘pathogens to the Wuhan
facility’’ prior to the coronavirus outbreak in China.

Fake Snopes March 2, 2020 Sales of Corona beer dropped sharply in early 2020 because consumers mistakenly
associated the brand name with the new coronavirus.

Fake Poynter Jan. 22, 2020 Chinese influencer caused the new coronavirus outbreak after eating bat soup.

Fake WHO March 20, 2020 COVID-19 only affects the old.

True CNN April 9, 2020 There’s no evidence to support the theory that 5G networks cause COVID-19 or contribute
to its spread.

True WHO March 20, 2020 Being able to hold your breath for 10 s or more without coughing or feeling discomfort
DOES NOT mean you are free from COVID-19.

True CDC April 11, 2020 Stay home for 14 days after your last contact with a person who has COVID-19.

True FactCheck March 16, 2020 Gargling water with salt won’t ‘eliminate’ coronavirus.

3.1. Data preprocessing

We collected and labeled our own misinformation of COVID-19 dataset with lateral reading and verification (Wineburg &
cGrew, 2019) and fact-checking from different trustworthy websites. We collected our claims (in sentences rather than in long news

rticles, see Table 1) in English about COVID-19 from well-edited sources, including Cable News Network (i.e., CNN, www.cnn.com),
ord Health Organization (i.e., WHO, www.who.int), Centers for Disease Control and Prevention (i.e., CDC, https://www.cdc.gov),

nd Aljazeera (www.aljazeera.com), and facts check websites, including Snopes (www.snopes.com), FactCheck (www.factcheck.org),
nd Poynter (www.poynter.org/covid-19-poynter-resources) The reasons that we collected the claims from these sources are that
1) these sources are trustworthy and (2) individual tweets, posts, or reports without verification are less reliable, especially at the
arly stage of the COVID-19 pandemic when knowledge about the virus was not well-established.

Then, we developed a back-translation augmented method to increase the sample size of our own collected data by using a high-
uality translation app (www.deepl.com/en/translator). Back-translation is simply translating a text back to the original language
i.e., English) after translating it into another language (i.e., German) (Xie et al., 2019). This resulted in new sentences differed from
hat we started with. For example, using the back-translation technique, two original claims, i.e., ‘‘Consuming boiled ginger with
n empty stomach can kill the coronavirus’’ and ‘‘Several viral tweets purporting that snorting cocaine would sterilize one’s nostrils
f the coronavirus spread around Europe and Africa’’ became ‘‘Eating cooked ginger on an empty stomach can kill coronavirus’’
nd ‘‘In Europe and Africa, several viral tweets spread claiming that snorting cocaine would rid one’s nostrils of coronavirus’’,
espectively. Although the new claims had nearly the same meaning as the original ones, the keywords and some of the word orders
ere different. We collected 984 claims (575 true and 409 fake) about COVID-19, and doubled the sample size with back-translation.

The COVID-19 Fake News dataset (Patwa et al., 2020) had 10,700 claims. However, only the training and validation dataset with
560 claims (4480 true and 4080 fake) were available and used in this paper. They were directly used in the BERT and DistilBERT
odels. However, for traditional machine learning models (see Table 2), we prepared both this dataset and our own labeled dataset
sing tokenization, lemmatization, removing stop words and punctuation, and converting the textual representation into a vector
pace model using the term frequency–inverse document frequency.

.2. Model building

Fine-tuning with BERT: BERT produced state-of-the-art results in a wide variety of NLP tasks (e.g., question answering,
ranslation, and text classification). It was first pre-trained on a huge amount of text data (800M words from the BooksCorpus and
500M words from the English Wikipedia) (Devlin et al., 2019). The basic transformer relied on an encoder to read the text and a
ecoder to produce a prediction. To prepare the needed input to the BERT encoder, the data was passed into three embedding layers
ncluding a token, segment, and position embedding layers. In the first step of the processing, sentences were tokenized and after
hat, each input token was passed through a token embedding layer to transform it into a vector representation of fixed dimension
i.e., 768-dimensional vector). Additionally, extra classification [CLS] and separator [SEP] tokens were added to the start and end
f the tokenized sentence to serve as an input representation and a sentence separator for the classification task. The segment
mbedding layer helps in classifying a text given a pair of input texts. The positional embedding layer learns the relative position of
okens in a sentence using a sinusoidal function. The final input embedding is a summation of the three embeddings. The summed
nput was passed to the transformer. In this study, we used the PyTorch-Pretrained-BERT library to build the BERT model. Then,
e fine-tuned its linear layer and the sigmoid activation to obtain the predictions with the labeled COVID-19 dataset. During the

ine-tuning process, Adam optimizer was used with a learning rate of 3 × 10−6 and a batch size of 12. We fine-tuned the model on
the collected COVID-19 dataset for three epochs.

DistilBERT: It is an approximation method of BERT that uses only 60% of the number of BERT model parameters (i.e., 66
million parameters instead of 110 million). The main benefit of DistilBERT is its capability of almost reproducing the behavior of
4

BERT by compressing the big BERT model. In this study, we made use of the knowledge distillation process in DistilBERT, defined as
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Table 2
Summary of model performance on our own collected dataset.

Model Precision (False/True) Recall (False/True) F1-score (False/True) Accuracy AUC

BERT 0.998/0.990 0.985/0.998 0.991/0.994 0.993 0.999
DistilBERT (Logistic) 0.772/0.876 0.836/0.824 0.803/0.849 0.829 0.887
Aug-BERT 0.994/0.994 0.991/0.996 0.993/0.995 0.994 0.999
Aug-DistilBERT (Logistic) 0.961/0.980 0.972/0.972 0.967/0.976 0.972 0.993
Classification tree 0.721/0.794 0.707/0.805 0.714/0.800 0.764 0.756
Logistic regression 0.835/0.894 0.853/0.880 0.844/0.887 0.869 0.922
Random forest 0.775/0.864 0.817/0.831 0.795/0.848 0.825 0.920
Aug-Classification tree 0.872/0.918 0.886/0.908 0.879/0.913 0.899 0.897
Aug-Logistic regression 0.949/0.957 0.939/0.964 0.944/0.961 0.954 0.992
Aug-Random forest 0.930/0.947 0.925/0.950 0.928/0.949 0.940 0.987

BERTa 0.998/0.989 0.988/0.998 0.993/0.994 0.993 1.000
DistilBERT (Logistic)a 0.923/0.952 0.949/0.928 0.936/0.940 0.938 0.985
Classification treea 0.897/0.900 0.889/0.907 0.893/0.903 0.898 0.900
Logistic regressiona 0.926/0.941 0.936/0.931 0.931/0.936 0.934 0.984
Random foresta 0.880/0.947 0.946/0.883 0.912/0.914 0.913 0.977

Note ‘‘Aug-’’ denotes the model was augmented by extra data using back-translation tested with our own labeled dataset.
aModels indicate the performance on the COVID-19 Fake News Detection dataset (Patwa et al., 2020).

a compression technique in which the student (i.e., DistilBERT) is trained to mimic the teacher’s behavior (i.e., BERT) (Sanh et al.,
2019). The BERT predictions were first used to train a smaller model, DistilBERT, by learning the inner representation with raw
predictions (i.e., predictions before the final activation function) rather than the hard target probabilities. Then, the knowledge was
transferred to the student with a cross-entropy on the raw target probabilities of the teacher and the distillation loss of the training
process is as follows:

𝐿 =
∑

𝑖
𝑡𝑖 ∗ 𝑙𝑜𝑔(𝑠𝑖) (1)

where 𝑡𝑖 and 𝑠𝑖 are the probabilities estimated by the teacher and the student, respectively. We ran a distillation for three epochs
ith a learning rate 3 × 10−6 and a batch size of 12 using the Adam optimizer on Google Colaboratory.
Logistic regression: It is a supervised classification technique that is characterized by a logistic function to model a probability

(i.e., sigmoid function) of a prediction given a set of features. In this paper, we distill the knowledge from the BERT model by training
a logistic regression model, which might result in a slight loss of accuracy to improve the explainability of the model predictions
using SHAP.

3.3. Model explanation

SHAP was used in this paper to explain the output of the DistilBERT model by assigning each feature with an importance value
related to a particular prediction (Lundberg, Erion, & Lee, 2018). SHAP is built on Shapley value derived from coalitional game
theory (Shapley, 1953), in which each player is assigned with payouts depending on their contribution to the total payout when
all of them cooperate in a coalition. It combines optimal allocation with local explanations using the classic Shapley values. Studies
have shown that it is often easier for the users to trust prediction models not only by providing what the prediction is, but by also
providing why and how the prediction is made (Ayoub, Yang, & Zhou, 2021; Kovalerchuk & Neuhaus, 2018). In this paper, SHAP
is used to explain DistilBERT (logistic regression) model. The units of the SHAP values are in the log-odds space, which was then
transformed into predicted truth probabilities (see Fig. 2).

The SHAP value for the 𝑖th feature-value set is calculated as follows:

𝜑𝑖 = 𝛽𝑖.(𝑥𝑖 − 𝐸[𝑥𝑖]) (2)

where 𝛽𝑖 is the weight corresponding to feature i, 𝑥𝑖 is a feature value, 𝐸[𝑥𝑖] is the mean effect estimate for feature i. For example,
if we want to predict if a given claim represents a misinformation or not, each feature (i.e., word) will have its contribution to push
the final prediction away from the base value (see Fig. 2). By aggregating all the features for one instance marginalized over all
other features that are not included in the set 𝑆, we can calculate the overall SHAP value (Lundberg et al., 2018),

𝑓𝐱(𝑆) = 𝐸[𝑓 (𝐱)|𝐱𝑆 ] = ∫ 𝑓 (𝑥1,… , 𝑥𝑃 )𝑑𝑃𝑥∉𝑆 − 𝐸(𝑓 (𝐱)), (3)

where 𝑃 is the number of the words in the instance, and 𝑆 is the set of non-zero indexes of words in the dataset and 𝐱 = [𝑥1,… , 𝑥𝑃 ].
𝐸[𝑓 (𝐱)|𝐱𝑆 ] indicates the expected value of the function conditioned on the subset 𝑆 of the input words in the model. Then, according
to the coalitional game theory (Shapley, 1953), the Shapley value of the 𝑖th feature-value set is defined as its contribution to the
payout, weighted and summed over all possible feature-value combinations as follows:

𝜙𝑖(𝑓 ) =
∑

𝑆⊆𝑁∖{𝑖}

|𝑆|!(𝑃 − |𝑆| − 1)!
𝑃 !

(𝑓𝐱(𝑆 ∪ {𝑖}) − 𝑓𝐱(𝑆)), (4)

where 𝑁 is the set of all the input words and 𝑁∖{𝑖} indicates the set that does not include 𝑖th word. In order to estimate both
𝐸[𝑓 (𝐱)|𝐱 ] and 𝜙 (𝑓 ) efficiently, we adopted the TreeSHAP algorithm proposed in Lundberg et al. (2018).
5
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Fig. 2. Three conditions involved in the between-subjects experiment: (a) Condition T (Text); (b) Condition TSE (Text+SHAP Explanation); (c) Condition TSESE
(Text+SHAP Explanation+Source and Evidence). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

3.4. Model evaluation

To evaluate the provided SHAP explanations, we conducted a between-subjects experiment on AMT. AMT is a web-based survey
company, operated by Amazon Web Services. The survey was created with Qualtrics (Provo, UT, www.qualtrics.com), web-based
survey software, and was integrated with AMT. We investigated participants’ trust in model predictions and their willingness to
share the provided information in three conditions, i.e., T, TSE, and TSESE, as shown in Fig. 2 using a 7-point Likert scale. The
source and evidence information was manually collected during our own the data collection process and we included the source
and evidence and information as a third condition, i.e., TSESE, to further test if such information was needed, comparing with the
TSE condition.

We designed a between-subjects experiment where each participant was randomly assigned to one of the conditions. In condition
T, participants were given a classifier prediction (i.e, true, false) about a claim related to COVID-19 (see Fig. 2(a)). In condition
TSE, in addition to the claim and the model prediction, SHAP explanation was provided to increase the model transparency in
making predictions (see Fig. 2(b)). In addition to the information provided in condition TSE, evidence and source of the claims
were presented to the participants in condition TSESE (see Fig. 2(c)). In the three conditions, participants reported their degree
of trust in model predictions by answering ‘‘Based on the given explanation, what is your degree of trust in the model prediction’’) and
6
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Fig. 3. Examples of a (a) true claim: (‘‘Men have higher concentrations of angiotensin-converting enzyme 2 (ACE2) in their blood than women, which may help to
explain why men are more vulnerable to COVID-19 than women’’) and (b) false claim: ‘‘Consuming alcoholic beverages may help reduce the risk of infection by the novel
coronavirus’’ explained by SHAP. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

their willingness to share by answering ‘‘Based on the given explanation, how much are you willing to share this claim with your friends
and/or families’’) using a 7-point Likert scale. In the given SHAP explanations, participants were explained with three main points,
including (1) the output value which represents the predicted truth probability (i.e., if it is close to 0 the claim is more likely to be
false, whereas if it is close to 1 it is more likely to be true), (2) a base value which represents the mean predicted truth probability,
and (3) words represented in red (i.e., pushing the prediction to be true) and blue (i.e., pushing the prediction to be false). In each
condition, there were 10 claims, including 5 true and 5 false, about COVID-19 randomly selected from our own labeled dataset. After
going through a training session and correctly answering two attention-check questions, the participant was eligible to take part in
the survey. One qualitative question was also designed at the end of each condition in the survey, which asked the participants to
state the reasons behind trusting/distrusting the model predictions and willingness/unwillingness to share the information. A total
number of 300 participants in the USA filled in the survey with 100 in each condition. To complete the survey, participants needed
to be 18 years old and above. We further removed participants who did not answer the third attention question correctly at the end
of the survey. We ended up with 84 participants in condition T and 80 participants each in conditions TSE and TSESE. Participants
were compensated with $1 upon completion of the survey.

4. Results

4.1. Model performance

The performance of the different tested models, including precision, recall, F1 score, accuracy, and area under the receiver
operating characteristic curve (short for AUC) using a 10-fold cross-validation process is shown in Table 2. The BERT model had
a slightly better performance (see Table 2) than the DistilBERT model while the DistilBERT model is more efficient and has better
explainability to improve its trustworthiness using SHAP (see Fig. 3). Since our model distilled BERT with a much simpler model,
i.e., logistic regression, which was much more efficient and without losing much performance compared to BERT, we compared the
performance of the augmented DistilBERT with other traditional machine learning models that were also more efficient than BERT.
We used Python in Google Colaboratory. The augmented DistilBERT method performed the best among all the selected traditional
machine learning models, including classification tree, logistic regression, and random forest (see Table 2).

4.2. SHAP explanation

To show how SHAP explained individual predictions, we randomly selected two observations as shown in Fig. 3. The figure
shows the different features contributing to pushing the predicted truth probability from the base value. Factors pushing the
prediction to be true are shown in red (i.e., words in red increase the predicted truth probability) while those pushing the prediction
to be false are shown in blue (i.e., words in blue decrease the predicted truth probability). The first example (see Fig. 3(a))
represents a true claim with a predicted truth probability of 0.99. Words that contributed to producing the given prediction are
‘‘help’’, ‘‘angiotensin’’, ‘‘converting’’, ‘‘enzyme’’, ‘‘women’’, ‘‘ace2’’, and ‘‘higher’’. The second example (see Fig. 3(b)) represents a
false claim with a predicted truth probability of 0.02. The words that contributed to producing the given prediction are ‘‘novel’’,
‘‘coronavirus’’, ‘‘alcoholic’’, ‘‘help’’, and ‘‘reduce’’. These words help explain why the model predicted such results in order to improve
its trustworthiness.
7
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Fig. 4. The effects of three conditions on trust and willingness to share the information. Note ‘‘T’’, ‘‘TSE’’, and ‘‘TSESE’’ denote ‘‘text’’, ‘‘text+SHAP explanation’’,
and ‘‘text+SHAP explanation+source and evidence’’, respectively; ‘‘*’’, ‘‘**’’, and ‘‘***’’ indicate p < .05, p < .01, and p < .001, respectively.

4.3. Survey results

A one-way ANOVA model was used to analyze the survey data with a significance level of 𝛼 = 0.05. A post-hoc analysis was
used with a Tukey HSD correction. Fig. 4 summarizes the mean and standard error of trust and willingness to share the information
under the three conditions. The main effects of the three conditions on trust (𝐹 (2, 241) = 5.628, 𝑝 = .004) and willingness to share
the information (𝐹 (2, 241) = 10.730, 𝑝 = .000) were significant. Trust in the model decision was shown to be significantly higher in
the TSE condition (𝑝 = .031) and the TSESE condition (𝑝 = .005) than the control condition. Willingness to share was shown to be
significantly higher in the TSE condition (𝑝 = .001) and the TSESE condition (𝑝 = .000) than the control condition. However, there
were no significant differences between the TSE and TSESE conditions both for trust and willingness to share.

5. Discussions

5.1. DistilBERT-based NLP models

We showed previously in the results (see Table 2) that the performance of DistilBERT was reasonably well compared with BERT
while having 40% fewer parameters. In addition to the good performance, DistilBERT was 60% faster than BERT. We also showed
that distilling the knowledge from BERT by training a logistic regression model outperformed other traditional machine learning
models (e.g., classification tree, logistic regression, and Random Forest). One of the reasons for this performance was that DistilBERT
was built on BERT, which learned deep representation of the words by pre-training on contextual representation using a large corpus
with bidirectionality, whereas the traditional models used the term frequency–inverse document frequency. A model with good
performance is important, especially in the situation of the COVID-19 pandemic, since participant’s trust in model prediction can
be improved with higher predicted accuracy (Lai & Tan, 2019).

5.2. SHAP-explanations and user trust

Compared to the control condition (i.e., the T condition), we showed that participants’ trust and willingness to share was
significantly enhanced by adding SHAP explanations in the TSE condition. This result proved the effectiveness of SHAP explanation to
help improve trust in COVID-19 related claims. This was also supported by participants’ qualitative responses, such as ‘‘The predictions
confirm my beliefs’’. Furthermore, by adding the source and evidence of the information in the TSESE condition, participants’ trust
and willingness to share information were also significantly higher than those in the control condition (one participant stated in
the TSESE condition, ‘‘I trusted the predictions if the claims were backed up by reliable resources and evidence’’). Such results were
consistent with previous research that providing more explanations (e.g., feature importance, predicted probabilities, sources, and
evidence) improved participant’s trust in the model (Xie et al., 2019). The increase in willingness to share information is also related
to the increase in trust in the information as Mosleh, Pennycook, and Rand (2020) showed that self-reported willingness to share
information on social media reflected the actual intentions of trust, which further supported the effectiveness of our proposed model.

However, there was no significant difference between the TSE and TSESE conditions in terms of trust and willingness to share.
To investigate the reasons, we further examined the answers to the qualitative questions at the end of the survey. We did find that
31% of the participants in the TSESE condition confirmed that they built their trust in the model predictions based on the source
of information and evidence. This showed the effectiveness of the source of information and evidence in helping build trust, which
was supported by previous research that a primary evaluation of verifiable claims was by checking the source of the information
and evidence (Wineburg & McGrew, 2019). However, this percentage was not big enough and it was unclear whether the addition
8
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of source and evidence could influence their trust and willingness to share information significantly on top of the model explanation
augmented by SHAP. On the other hand, 16% of the participants stated that they trusted the model predictions when they had prior
knowledge about the claims (e.g, ‘‘I trust/distrust the prediction if I have previous knowledge/read about it before’’), which indicated that
the pre-exposure to COVID-19 claims in the experiment could potentially mitigate the influence of extra source and evidence of the
information. To understand the insignificance between the TSE and TSESE conditions, we further ran a one-way ANOVA (Note we
first ran a 3 (explanation, i.e., T, TSE, TSESE) by 2 (claim nature, i.e., true and false) two-way ANOVA and found no main effects for
claim nature or interaction effects. Then we ran two one-way ANOVA models) to compare the three conditions for the false claims
and the true claims separately. For the false claims, the main effects of the three conditions on trust (𝐹 (2, 241) = 7.984, 𝑝 = .000) and
willingness to share (𝐹 (2, 241) = 11.918, 𝑝 = .000) were significant. As for the true claims, the main effect of the three conditions on
trust (𝐹 (2, 241) = 2.158, 𝑝 = .118) was not significant, but it was significant on the willingness to share (𝐹 (2, 241) = 6.208, 𝑝 = .002).
This indicated that model explanation helped improve trust for the false claims more than the true claims, which might be explained
by the fact that 11% of the participants trusted the claims based on what was true or untrue (e.g, ‘‘I trust/distrust it based on what
I know to be true or untrue’’). In this situation, there was no need for them to further check the source or evidence for true claims.
Furthermore, since we only tested 10 randomly selected claims in our dataset, one should be cautious to interpret the insignificant
results between the TSE and TSESE conditions. As a summary, the fact that we did not find significant differences between the TSE
and TSESE conditions for trust did not necessarily indicate that sources and evidence information is not useful in helping build trust
in claims associated with COVID-19. More studies are needed to further understand when sources and evidence are not needed and
when they are needed in building trust in specific claims about COVID-19.

As for willingness, the majority of the participants (40%) were willing to share only true information (e.g, ‘‘If the information
is almost guaranteed to be true, I would probably post’’). We had half of false claims in the experiment and this could potentially
reduce the effects of extra sources and evidence on their willingness to share information. In addition, there were no significant
differences between the TSE and TSESE conditions on willingness to share for either false claims or true claims, separately, despite
the significant main effects among the three conditions. This was probably explained by the fact that 21% of the participants in the
TSESE condition were not willing to share any kind of information on social media (e.g., ‘‘I do not share any sort of information like
this with my friends or family’’). Therefore, a calibration process about their tendency to share information on social media might be
included in future studies to better examine the effects of extra sources and evidence on participants’ willingness to share. Another
possible reason could be associated with the specific content of claims about COVID-19 in the experiment and we should include
more claims in future studies to further examine whether there is any difference between the TSE and TSESE conditions.

5.3. Implications

The risks associated with false and misleading information about COVID-19 are especially high with the rapid changing situation
of the pandemic. Examples include (1) misinformation and false claims about different methods of prevention, treatment, testing,
diagnosis, and miracle cures of the disease, and (2) false claims of conspiracy theories about its origins, bioweapons, and population
control schemes. Thus, it is extremely important to provide a trustworthy model for the general public to verify whether such claims
are true or not. We made use of the state-of-the-art NLP machine learning models with explanations to improve both accuracy and
trustworthiness of the application. As machine learning models are impacting our everyday lives, it is crucial not only to improve
their performance but also to develop a better understanding of how they work. In addition, we investigated participants’ trust in the
model predictions and their willingness to share the model predictions under three conditions. As our study showed, improvement
in trust can be achieved through explanations offered by SHAP. To convince the public that the given information is trustworthy,
we need to provide explanations of how the model made the prediction and potentially the source and evidence of the information
as well. Although no significant difference was found between the TSE and TSESE conditions, further studies should be investigated
to see if sources and extra evidence actually help improve trust and willingness to share information.

6. Conclusion and future work

We built a trustworthy prediction model to debunk false claims of COVID-19 by capitalizing DistilBERT and SHAP. Our results
have demonstrated the effectiveness of the proposed method and provided good implications in detecting misinformation about
COVID-19 and improving public trust. Among the three conditions, participants were significantly more likely to trust and share
information related to COVID-19 in the TSE and TSESE conditions than in the T condition.

One of the limitations in building such a machine learning model is to potentially verify a large number of claims about COVID-19.
Our model is built on a small dataset collected by April 2020 and the COVID-19 Fake News Detection dataset (Patwa et al., 2020).
Thus, it might be limited to detect new misinformation related to COVID-19. To maintain and help improve the trustworthiness of
the proposed model, it is imperative to include more data as the pandemic unfolds over time, such as the COVID-19 Healthcare
Misinformation Dataset (Cui & Lee, 2020). In addition, although BERT aims to learn contextualized representation across a wide
range of NLP tasks, it is still challenging to leverage BERT (i.e., it has almost no understanding of COVID-19) without domain
knowledge about COVID-19. This is mainly due to the fact that there is a limited labeled number of claims about COVID-19 to
fine-tune BERT to ensure full task-awareness of the system. Thus, in the future we plan to increase the domain task awareness with
an unsupervised training method by making use of the COVID-19 Open Research Dataset (CORD-19) and strengthen the end task
awareness using supervised fine-tuning by labeling and augmenting the claims. In this research, we recruited participants using
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participants’ political and ideological biases related to COVID-19 claims, which could potentially have a significant effect on their
belief and/or disbelief in such claims, although we tried to minimize such an effect by randomly assigning participants into three
conditions. Future studies should include extra survey questions to calibrate such biases. Managing the quality of the survey data
from AMT was also challenging. We removed the invalid participants by examining their responses to the three designed attention
questions. However, the quality could also be affected by the compensation rate. Another limitation of this study was the limited
knowledge about the participants’ demographic information, which can also influence the results in this study. Further investigation
should include demographic factors. In addition, interpreting the explanations provided by SHAP can be challenging for the first
time. Even though we provided a training section at the beginning of the survey, some participants found it confusing to make
predictions based on individual words. In the future, more intuitive explanations should be explored to better improve trust.
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