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Larissa Almeida Martins2, Helena Langhansová1, Tatyana Prudnikova3, Monika Ederová1,
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Tick saliva is a rich source of pharmacologically and immunologically active molecules.
These salivary components are indispensable for successful blood feeding on vertebrate
hosts and are believed to facilitate the transmission of tick-borne pathogens. Here we
present the functional and structural characterization of Iripin-3, a protein expressed in the
salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and
Lyme disease. Belonging to the serpin superfamily of protease inhibitors, Iripin-3 strongly
inhibited the proteolytic activity of serine proteases kallikrein and matriptase. In an in vitro
setup, Iripin-3 was capable of modulating the adaptive immune response as evidenced by
reduced survival of mouse splenocytes, impaired proliferation of CD4+ T lymphocytes,
suppression of the T helper type 1 immune response, and induction of regulatory T cell
differentiation. Apart from altering acquired immunity, Iripin-3 also inhibited the extrinsic
blood coagulation pathway and reduced the production of pro-inflammatory cytokine
interleukin-6 by lipopolysaccharide-stimulated bone marrow-derived macrophages. In
addition to its functional characterization, we present the crystal structure of cleaved Iripin-
3 at 1.95 Å resolution. Iripin-3 proved to be a pluripotent salivary serpin with
immunomodulatory and anti-hemostatic properties that could facilitate tick feeding via
the suppression of host anti-tick defenses. Physiological relevance of Iripin-3 activities
observed in vitro needs to be supported by appropriate in vivo experiments.

Keywords: tick, serpin, X-ray crystallography, blood coagulation, inflammation, adaptive immunity, Ixodes ricinus, saliva
INTRODUCTION

The European tick Ixodes ricinus (Acari: Ixodidae) is an obligate blood-sucking ectoparasite that
transmits several medically important pathogens such as Lyme disease spirochetes from the Borrelia
burgdorferi sensu lato complex and tick-borne encephalitis virus (1). The insertion of the tick
hypostome and two chelicerae into host skin disrupts the surrounding tissue and capillaries, to
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Chlastáková et al. Immunomodulatory Tick Serpin Iripin-3
which the host responds by activating a series of physiological
defense processes including hemostasis and innate and adaptive
immune responses (2–5). Cutaneous tissue injury and tick
antigens are sensed by cells in the vicinity of the tick attachment
site, such as keratinocytes, fibroblasts endothelial cells, mast cells,
macrophages and dendritic cells (3). These cells release pro-
inflammatory and chemotactic molecules that stimulate the
recruitment of neutrophils and other immune cells to the area
of tick feeding (3, 4, 6). Moreover, Langerhans cells and
macrophages trap tick antigens and present them to T cells,
which triggers T cell proliferation and ultimately results in the
development of the acquired immune response (7). If unopposed,
the host defense reaction rejects the tick via detrimental effects on
tick viability and reproduction (8). Therefore, ticks surpass the
host response by secreting hundreds of bioactive molecules via
their saliva into the wound (9–11). Since these salivary molecules
can target hemostasis and almost every branch of the immune
response, they might be useful in the development of novel
pharmaceuticals for the treatment of immune-mediated
inflammatory diseases, hypercoagulable states, diseases
associated with excessive complement activation, or even cancer
(11–14). Moreover, tick salivary proteins represent potential
targets for the development of anti-tick and/or transmission
blocking vaccines (15).

Protease inhibitors form the largest functional group of tick
salivary proteins (16). Based on their specificity, tick protease
inhibitors can be divided into inhibitors of cysteine proteases
(e.g., cystatins) and inhibitors of serine proteases (e.g., Kunitz
domain-containing proteins and serpins) (17). Serpins (serine
protease inhibitors) are mid-sized proteins consisting of about
330–500 amino acids (18, 19) with a conserved serpin domain
and an exposed region near the carboxyl-terminal end referred to
as the reactive center loop (RCL) (20). Cleavage of the scissile P1-
P1′ bond in the RCL by a target serine protease results in the
formation of a covalent serpin-protease complex and permanent
inactivation of both the serpin and the protease (18, 20).

Serpins have been identified in many species of hard-bodied
ticks of medical and veterinary importance such as Amblyomma
americanum (21), Haemaphysalis longicornis (22), I. ricinus (23),
I. scapularis (24), Rhipicephalus appendiculatus (25), and
Rhipicephalus microplus (26, 27). Some of the functionally
characterized tick serpins have been shown to suppress the
enzymatic activity of blood clotting factors (mainly thrombin
and factor Xa) and consequently inhibit the intrinsic and
common coagulation pathways (28–31). Tick serpins that
inhibit thrombin and cathepsin G can block platelet
aggregation triggered by these two serine proteases (30–33). In
addition to anti-hemostatic activities, many of the functionally
characterized tick serpins interfere with the host innate
immunity, since they inhibit the enzymatic activity of mast cell
and neutrophil serine proteases, reduce vascular permeability
and paw edema formation, suppress neutrophil migration
in vivo and attenuate the production of pro-inflammatory
cytokines by activated innate immune cells, such as macrophages
and dendritic cells (32, 34–37). Last but not least, tick serpins can
modify the host adaptive immune response via suppression of T
Frontiers in Immunology | www.frontiersin.org 2
lymphocyte proliferation and inhibition of Th1 and Th17 cell
differentiation (35, 37–40). A number of RNA interference and
vaccination experiments have demonstrated the important role
of tick serpins in successful completion of a blood meal by
prolonging the feeding period, reducing engorgement weight, or
resulting in higher mortality rates or impaired oviposition
(41–45).

To date, only two serpins from the tick I. ricinus have been
assigned functions: Iris (I. ricinus immunosuppressor) (38) and
IRS-2 (I. ricinus serpin-2) (32). Due to possible confusion arising
from the previously used abbreviation IRS for I. ricinus serpins
(32) (with insulin receptor substrates), we decided to name
I. ricinus serpins Iripins (Ixodes ricinus serpins). Here we
present the structural and functional characterization of Iripin-
3 (I. ricinus serpin-3). Iripin-3 primarily inhibited two trypsin-
like serine proteases, kallikrein and matriptase. When tested in
various in vitro assays, Iripin-3 displayed several distinct
functions: it inhibited the extrinsic blood coagulation pathway,
attenuated interleukin-6 (IL-6) production by LPS-activated
bone marrow-derived macrophages (BMDMs), impaired the
survival and proliferation of CD4+ T cells, and suppressed the
Th1 immune response. The presence of Iripin-3 protein in tick
saliva suggests that this serpin could play a role at the tick-host
interface by suppressing various aspects of the host defense to
I. ricinus feeding. Further in vivo studies, however, are necessary
to confirm herein presented results. Finally, we determined the
crystal structure of cleaved Iripin-3 at 1.95 Å resolution.
MATERIALS AND METHODS

Animals
C57BL/6N mice were purchased from Velaz, Ltd (Praha-
Lysolaje, Czechia). C3H/HeN mice and OT-II transgenic mice
were obtained from Charles River Laboratories (Wilmington,
MA). Mice were maintained under standard, pathogen-free
conditions in the animal house facility of the Department of
Medical Biology, Faculty of Science, University of South
Bohemia in České Budějovice, Czech Republic. Guinea pigs
utilized for I. ricinus feeding and a rabbit used for the
production of anti-Iripin-3 antibodies were bred and
maintained at the Institute of Parasitology, Biology Centre of
the Czech Academy of Sciences (IP BC CAS), Czech Republic.
All animal experiments were performed in accordance with the
Animal Protection Law of the Czech Republic No. 246/1992 Sb.
(ethics approval No. 34/2018) and protocols approved by the
Ministry of Education, Youth and Sports of the Czech Republic
(protocol No. 19085/2015-3) and the responsible committee of
the IP BC CAS. Pathogen-free I. ricinus ticks were obtained from
the tick colony maintained at the IP BC CAS.

Bioinformatics Analyses
The molecular weight and isoelectric point of Iripin-3 were
computed by ProtParam (46). The presence of a signal peptide
was predicted using the SignalP 4.1 server (47). The ScanProsite
tool (48) was utilized to identify the serpin signature motif
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PS00284 as well as two other consensus amino acid motifs N-
[AT]-[VIM]-[YLH]-F-[KRT]-[GS] and [DERQ]-[VL]-[NDS]-
E-[EVDKQ]-G (26, 49). The reactive central loop together
with the amino acid residue at the P1 site were determined
based on the eight-residue pattern p17[E]-p16[E/K/R]-p15[G]-
p14[T/S]-p13[X]-p12-9[AGS]-p8-1[X]-p1′-4′ [X] (26, 49).
NetNGlyc 1.0 (Gupta et al., unpublished) and NetOGlyc 4.0
(50) servers were used to predict potential N-glycosylation and
O-glycosylation sites, respectively. To compare Iripin-3 with
other known serpins, the Iripin-3 protein sequence was tested
against the GenBank database of non-redundant protein
sequences using BLASTP (51). Alignment of IRS-2 and Iripin-
3 amino acid sequences was conducted with ClustalW (52).
Visualization of the alignment and addition of secondary
structure elements were performed using ESPript 3.0 (53).

Crystal Structure Determination
The production of recombinant Iripin-3 in an Escherichia coli
expression system is detailed in the Supplementary Materials.
Crystallization experiments were conducted using the sitting-
drop vapor diffusion technique, and the obtained crystals were
used to collect X-ray diffraction data on the beamline BL14.1 at
the BESSY II electron storage ring operated by the Helmholtz-
Zentrum Berlin (54). The structure of Iripin-3 was solved by the
molecular replacement method, in which the known structure of
IRS-2 (Protein Data Bank (PDB) code 3NDA) (32) was used as a
search model. The whole procedure of Iripin-3 structure
determination, starting with crystallization and ending with
structure refinement and validation, is described in detail in
the Supplementary Materials. Complete data processing and
refinement statistics are summarized in Supplementary Table 1.
Atomic coordinates were deposited in the PDB under accession
code 7AHP.

Phylogenetic Analysis
For the purpose of phylogenetic analysis, the amino acid
sequences of 27 tick serpins and one human serpin were
retrieved from GenBank. Accession numbers of these
sequences are provided in Supplementary Table 2. Retrieved
sequences were aligned and edited manually using BioEdit 7.2.5
(55). Evolutionary history was deduced from the protein
sequences without a signal peptide by using the maximum
likelihood method and Jones-Taylor-Thornton (JTT) matrix-
based model (56). Initial trees for the heuristic search were
obtained automatically by applying the neighbor-joining (57)
and BIONJ (58) algorithms to a matrix of pairwise distances
estimated using the JTT model, and then the topology with a
superior log likelihood value was selected. The reliability of
individual branches was determined by bootstrapping. Bootstrap
values were calculated for 1000 replicates. Evolutionary analyses
were conducted in MEGA X (59).

Iripin-3 Expression in Ticks
I. ricinus nymphs were fed on C3H/HeN mice for 1 day, 2 days,
and until full engorgement (3–4 days). I. ricinus adult females
were fed on guinea pigs for 1, 2, 3, 4, 6, and 8 days. Tick removal
from host animals at given time points was followed by the
Frontiers in Immunology | www.frontiersin.org 3
dissection of nymphs and adult female salivary glands, midguts,
and ovaries under RNase-free conditions. RNAwas isolated from
tick tissues using TRI Reagent (Molecular Research Center, Inc.,
Cincinnati, OH), and 1 mg of total RNA was reverse transcribed
into cDNA using the Transcriptor First Strand cDNA Synthesis
Kit (Roche Applied Science, Penzberg, Germany) according to
the manufacturer's instructions. Five-fold diluted cDNA mixed
with FastStart Universal SYBR Green Master (Roche Applied
Science) and gene-specific primers were used for the analysis of
iripin-3 expression in the Rotor-Gene 6000 thermal cycler
(Corbett Research, Saffron Walden, UK). Cycling conditions
were 95°C for 10 min followed by 45 cycles of 95°C for 15 s,
60°C for 10 s and 72°C for 30 s. The relative quantification of
iripin-3 transcripts in tick tissues was performed using the DDCt
method (60). The I. ricinus gene encoding ribosomal protein S4
(rps4, GenBank accession number MN728897.1) was utilized as a
reference gene for the calculation of relative expression ratios
(61, 62). Nucleotide sequences of forward and reverse primers as
well as amplicon lengths are provided in Supplementary
Table 3.

Presence of Iripin-3 in Tick Saliva
Polyclonal antibodies against Iripin-3 were produced in a rabbit
injected subcutaneously with 100 mg of purified Iripin-3 in 500 ml
of complete Freund's adjuvant. The first immunization was
followed by another two injections of Iripin-3 in 500 ml of
incomplete Freund's adjuvant at 14-day intervals. On day 14
after the last injection, the rabbit was sacrificed, and its blood was
collected. Prepared rabbit antiserum to Iripin-3 was subsequently
utilized for the detection of Iripin-3 in tick saliva by indirect
ELISA and western blotting. The saliva was collected from I.
ricinus ticks feeding for 6–7 days on guinea pigs as described
previously (63). ELISA and western blot analyses are detailed in
the Supplementary Materials.

Inhibition of Serine Proteases
Preliminary screening of Iripin-3 inhibitory activity against a set
of 17 serine proteases was performed as described previously
(32), with the exception of factor VIIa (FVIIa). Human FVIIa
(Haematologic Technologies, Inc., Essex Junction, VT) at 20 nM
concentration was pre-incubated for 10 min at 30°C with 400 nM
Iripin-3 before the addition of 250 mM fluorogenic substrate Boc-
QAR-AMC. The assay buffer used consisted of 20 mM Tris,
150 mM NaCl, 0.01% Triton X-100, 5 mM CaCl2, and
0.1% polyethylene glycol 6000, pH 8.0. After the determination
of the substrate hydrolysis rate, the six most strongly inhibited
proteases were chosen for more detailed analysis. The assessment
of covalent complex formation between Iripin-3 and selected serine
proteases and the determination of second-order rate constants of
protease inhibition are detailed in the Supplementary Materials.

Blood Coagulation
The effect of Iripin-3 on blood coagulation was tested by
prothrombin time (PT), activated partial thromboplastin time
(aPTT), and thrombin time (TT) assays. All chemicals were
purchased from Technoclone (Vienna, Austria). Citrated human
plasma (Coagulation Control N) was mixed either with 6 mM
March 2021 | Volume 12 | Article 626200
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Iripin-3 or with five different Iripin-3 concentrations and then
incubated for 10 min at room temperature. To perform the PT
test, 100 ml of plasma with added Iripin-3 was incubated for
1 min at 37°C before the addition of 200 ml of Technoplastin HIS
pre-warmed to 37°C. Plasma clotting time was measured on the
Ceveron four coagulometer (Technoclone). In the aPTT test, the
incubation of 100 ml of plasma mixed with Iripin-3 at 37°C for
1 min was followed by the addition of 100 ml of Dapttin TC. After
incubating the mixture of plasma and Dapttin at 37°C for 2 min,
100 ml of 25 mM CaCl2 was added to initiate the coagulation
cascade. Plasma clotting time was determined as described
above. To perform the TT test, 200 ml of plasma mixed with
Iripin-3 was incubated at 37°C for 1 min. At the end of
incubation, 200 ml of thrombin reagent was added, and plasma
clotting time was measured as in the PT and aPTT assays.

Pro-Inflammatory Cytokine Production
by BMDMs
Bonemarrow cells were isolated from femurs and tibias of C57BL/6N
mice. Both ends of the bones were cut with scissors, and bone
marrow was flushed with complete medium. The complete medium
was prepared by supplementation of RPMI 1640 medium containing
glutamine (Biosera) with 10% heat-inactivated fetal bovine serum
(FBS, Biosera), 50 mM 2-mercaptoethanol (Sigma Aldrich, St Louis,
MO), 100 U/ml penicillin G (Biosera, Kansas City, MO) and 100 mg/
ml streptomycin (Biosera). After erythrocyte lysis in RBC lysis buffer
(eBioscience, San Diego, CA), bone marrow cells resuspended in
complete mediumwere seeded into 10 cm Petri dishes and incubated
in the presence of 10 ng/ml granulocyte-macrophage colony-
stimulating factor (GM-CSF, Sigma Aldrich) at 37°C and 5% CO2

for 10 days. On days 4 and 7, non-adherent cells were removed and
the medium was replaced with fresh complete medium containing
10 ng/ml GM-CSF. On day 10, adherent cells (macrophages) were
collected, resuspended in RPMI 1640 medium supplemented only
with 0.5% bovine serum albumin (BSA, Biosera), and seeded into 24-
well culture plates (2×105 cells in 500 µl of culture medium per well).
After 5 h incubation at 37°C and 5% CO2, the medium was replaced
with fresh RPMI 1640 medium containing 0.5% BSA, and BMDMs
were pre-incubated for 40 min with 3 mM or 6 mM Iripin-3. Finally,
100 ng/ml of LPS (Sigma Aldrich; E. coli serotype O111:B4) was
added, and macrophages were incubated in the presence of Iripin-3
and LPS for another 24 h. At the end of incubation, cells and cell-free
supernatants were collected for RNA isolation and protein
quantification, respectively. Relative expression of Tnf, Il6, and Il1b
in macrophages was determined by RT-qPCR and concentrations of
tumor necrosis factor (TNF), IL-6, and interleukin-1b (IL-1b)
cytokines in collected supernatants were measured by DuoSet
ELISA Development Kits (R&D Systems, Minneapolis, MN)
according to the manufacturer's instructions with only minor
modifications. The RT-qPCR analysis is described in detail in the
Supplementary Materials.

Splenocyte Isolation and Culture in the
Presence of Iripin-3
Spleens harvested fromOT-II mice were forced through a Corning
70 mm cell strainer to obtain a single cell suspension. Red blood
Frontiers in Immunology | www.frontiersin.org 4
cells (RBCs) were removed from the suspension by the addition of
1× RBC lysis buffer (eBioscience), and the erythrocyte-free spleen
cells were resuspended in RPMI 1640 medium with stable
glutamine (Biosera) supplemented with 10% heat-inactivated
FBS (Biosera), 50 mM 2-mercaptoethanol (Sigma Aldrich),
100 U/ml penicillin G (Biosera), and 100 mg/ml streptomycin
(Biosera). Splenocytes were then seeded into 24-well or 96-well
culture plates and pre-incubated with 3 mM or 6 mM Iripin-3 for
2 h. Pre-incubation with Iripin-3 was followed by the addition of
ovalbumin (OVA) peptide 323–339 (Sigma Aldrich) at a
concentration of 100 ng/ml. Splenocytes were incubated in the
presence of Iripin-3 and OVA peptide at 37°C and 5% CO2 for
either 20 h (assessment of cell survival) or 72 h (analysis of cell
proliferation and transcription factor expression).

Survival of B and T Cells
Mouse splenocytes were seeded into 96-well culture plates
(5 x 105 cells in 200 ml of complete medium per well), pre-
incubated with Iripin-3, and stimulated with OVA peptide. After
20 h incubation at 37°C and 5% CO2, cells were harvested for
flow cytometry analysis. First, splenocytes were stained with
fixable viability dye eFluor 780 (eBioscience). Subsequently, Fc
receptors were blocked with anti-CD16/CD32 antibody
(eBioscience, clone 93), and surface antigen staining was
performed with following monoclonal antibodies purchased
from eBioscience: anti-CD45-PerCP-Cyanine5.5 (clone 30-
F11), anti-CD19-PE (clone eBio1D3(1D3)), and anti-CD3e-
APC (clone 145-2C11). Finally, the active form of caspase 3 in
splenocytes was labeled using the FITC Active Caspase-3
Apoptosis Kit (BD Biosciences). The percentage of live CD19+

and CD3e+ splenocytes as well as the level of active caspase 3
were analyzed on the BD FACSCanto II flow cytometer using BD
FACSDiva software version 6.1.3 (BD Biosciences).

Proliferation of CD4+ T Cells
Erythrocyte-free splenocytes were stained with red fluorescent
dye eFluor 670 (eBioscience), which allows monitoring of
individual cell divisions. The stained splenocytes were seeded
into 96-well culture plates (5 x 105 cells in 200 ml of complete
medium per well), pre-incubated with Iripin-3, and stimulated
with OVA peptide. Cells were allowed to proliferate for 72 h and
then were harvested for flow cytometry analysis. Collected cells
were stained with FITC-labelled anti-CD4 monoclonal antibody
(clone GK1.5, eBioscience) and propidium iodide (eBioscience),
and the percentage of proliferating live CD4+ splenocytes was
measured on the BD FACSCanto II flow cytometer using BD
FACSDiva software version 6.1.3 (BD Biosciences).

Transcription Factor Expression in CD4+

T Cells (RT-qPCR)
Splenocytes were seeded into 24-well culture plates (4.5 x 106 cells
in 500 ml of complete medium per well), pre-incubated with Iripin-
3, and stimulated with OVA peptide. At the end of 72 h incubation,
non-adherent cells were collected, stained with FITC-labeled anti-
CD4 monoclonal antibody (clone GK1.5, eBioscience), and CD4+

splenocytes were separated from the rest of the cell population using
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the S3e Cell Sorter (Bio-Rad Laboratories, Hercules, CA). RNA was
extracted from CD4+ cells with the help of NucleoSpin RNA
isolation kit (Macherey-Nagel, Düren, Germany), and 1 mg of
total RNA was reverse transcribed into cDNA using the
Transcriptor First Strand cDNA Synthesis Kit (Roche Applied
Science). RT-qPCR was performed in the CFX384 Touch thermal
cycler (Bio-Rad) by utilizing five-fold diluted cDNA, SsoAdvanced
Universal SYBR Green Supermix (Bio-Rad), and gene-specific
primers. The PCR cycling conditions were 95°C for 3 min
followed by 40 cycles of 95°C for 10 s and 60°C for 30 s. The
relative quantification of Tbx21 (Tbet), Gata3, Rorc, and Foxp3
transcripts in CD4+ splenocytes was performed using Pfaffl's
mathematical model (64). Based on the results of geNorm
analysis (65), Actb and Gapdh were utilized as reference genes for
the calculation of relative expression ratios. Nucleotide sequences of
forward and reverse primers as well as amplicon lengths are given in
Supplementary Table 3.

Transcription Factor Expression in CD4+ T
Cells (Flow Cytometry)
Splenocytes were seeded into 24-well culture plates (2 x 106 cells in
500 ml of complete medium per well), pre-incubated with Iripin-3,
and stimulated with OVA peptide. After 68 h incubation at 37°C
and 5% CO2, 20 ng/ml of phorbol 12-myristate 13-acetate (PMA;
Sigma Aldrich) together with 1 mM ionomycin (Sigma Aldrich)
were added to re-stimulate the cells. Brefeldin A (eBioscience) at a
concentration of 3 mg/ml was added 1 h later, and splenocytes
were incubated in the presence of PMA, ionomycin, and brefeldin
A for another 4 h. At the end of incubation, non-adherent cells
were collected and stained with fixable viability dyes eFluor 520
and eFluor 780 (eBioscience). Subsequently, Fc receptors were
blocked with anti-CD16/CD32 antibody (eBioscience, clone 93),
and surface antigen staining was performed with anti-CD4-
Alexa Fluor 700 (BD Biosciences, clone RM4-5) and anti-CD25-
PerCP-Cyanine5.5 (eBioscience, clone PC61.5) monoclonal
antibodies. Surface antigen staining was followed by intracellular
staining of transcription factors and cytokine IFN-g, for which the
Foxp3/Transcription Factor Staining Buffer Set (eBioscience) was
used in conjunction with following monoclonal antibodies: anti-T-
bet-APC (clone eBio4B10 (4B10)), anti-GATA-3-PE
(clone TWAJ), anti-RORgt-PE-CF594 (clone Q31-378), anti-
Foxp3-PE-Cyanine7 (clone FJK-16s), and anti-IFN-g-PE
(clone XMG1.2). All antibodies were purchased from
eBioscience except for the anti-RORgt antibody, which was
obtained from BD Biosciences. Analysis was performed on the
BD FACSCanto II flow cytometer using BD FACSDiva software
version 6.1.3 (BD Biosciences).

Statistical Analyses
Data are presented in all graphs as mean ± the standard error of
the mean (SEM). Differences between the mean values of two
groups were analyzed by the unpaired two-tailed t-test.
Differences between the mean values of three or more groups
were analyzed by one-way ANOVA or randomized block
ANOVA, which involved two variables: a fixed effect factor
(treatment) and a random effect factor/block (an experimental
Frontiers in Immunology | www.frontiersin.org 5
run) (66). In the case of a statistically significant result (p < 0.05),
Dunnett's post hoc test was performed to compare the mean of a
control group with the means of experimental groups. All
statistical tests were conducted using the software package
STATISTICA 12 (StatSoft, Inc.). Statistically significant
differences between groups are marked with asterisks (* p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001).
RESULTS

Iripin-3 Belongs to the Serpin Superfamily
A full-length nucleotide sequence of Iripin-3 was obtained
during a salivary gland transcriptome project (16) and was
submitted to GenBank under accession number GADI01004776.1.
This sequence, consisting of 1182 base pairs, encodes a 377-amino
acid (AA) protein with predicted molecular weight of approximately
42 kDa and with theoretical isoelectric point (pI) 5.23. The SignalP
4.1 server found a 16-AA signal peptide at the N terminus of the
protein sequence (Figure 1A), which indicates that Iripin-3 is a
potentially secreted protein. Using ScanProsite, the serpin signature
motif PS00284 was identified at AA positions 366-376 (Figure 1A).
Moreover, two other serpin consensus AA motifs N-[AT]-[VIM]-
[YLH]-F-[KRT]-[GS] and [DERQ]-[VL]-[NDS]-E-[EVDKQ]-G
were recognized: NAMYFKG at AA positions 183-189 and
EVNEEG at AA positions 338-343 (Figure 1A), suggesting that
Iripin-3 belongs to the serpin superfamily. The hinge region of the
Iripin-3 RCL has glycine at the P15 position, threonine at the P14
position, and residues with short side chains (alanine and valine) at
positions P12-P9 (Figure 1A), which correspond to the RCLs of
inhibitory serpins (68). The P1 site is occupied with the basic amino
acid residue arginine (Figure 1A), suggesting Iripin-3 might target
trypsin-like rather than chymotrypsin-like or elastase-like serine
proteases (69). Using NetNGlyc 1.0 and NetOGlyc 4.0 servers, the
Iripin-3 AA sequence was predicted to contain two potential N-
glycosylation sites (N-X-[S/T]) and one putative O-glycosylation site
(Figure 1A).

Iripin-3 Adopts a Typical Serpin Fold
Employing X-ray crystallography, we determined the 3D
structure of Iripin-3 at 1.95 Å resolution. The crystal used
exhibited symmetry of the P6222 space group and contained
one molecule in the asymmetric unit with a solvent content of
42.68%. The tertiary structure of Iripin-3 matched the 3D
structures of other serpins, including the tick serpin IRS-2
(Figure 1B), with which it had the highest sequence similarity
of all the serpin structures currently deposited in the PDB. More
specifically, the Iripin-3 tertiary structure was composed of ten
a-helices and three b-sheets, which were sequentially arranged in
the order a1-b1-a2-a3-a4-a5-b2-a6-b3-a7-b4-b5-b6-b7-b8-
a8-a9-b9-b10-a10-b11-b12-b13-b14-b15 (Figures 1A, 2).
The sheet A consisted of six b-strands (b2, b3, b4, b10, b11,
b12), sheet B of five b-strands (b1, b7, b8, b14, b15), and sheet C
of four b-strands (b5, b6, b9, b13) (Figure 2). Iripin-3 in the
crystal adopted a conformation known as the relaxed (R) state,
since its RCL was probably cleaved by some contaminating
March 2021 | Volume 12 | Article 626200
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proteases before or during the crystallization experiment. A
protein sample can contain traces of contaminating cysteine
and serine proteases, as demonstrated previously (70). The
cleavage of the RCL led to the insertion of the RCL hinge
region into the b-sheet A as an additional b-strand S4 (Figure
2). The 3D structure of Iripin-3 contained 367 amino acid
residues. The first 19 residues, which basically corresponded to
the signal peptide of the protein, were missing. Moreover, the
region 356LRSGSFD362, in which the cleavage occurred, could not
be modelled in the Iripin-3 structure due to its absence in the
electron-density map. To compare the tertiary structure of
Iripin-3 with that of IRS-2, the molecular structure of Iripin-3
was superposed with Ca atoms of IRS-2 with root-mean-square
deviation of 0.8085 Å. The secondary structure elements were
well conserved in both serpins, but there was a certain degree of
divergence in disordered loop regions (Figure 1B).

Iripin-3 Is Most Closely Related to Serpins
From I. scapularis
The BLASTP search of the GenBank non-redundant protein
sequences identified three I. scapularis serpins (accession
numbers XP_029826754.1, EEC19555.1, and AAV80788.1)
Frontiers in Immunology | www.frontiersin.org 6
whose sequences were highly similar to the Iripin-3 sequence
(percentage identities 95.4%, 94.9%, and 93.6%, respectively).
These homologs have not been functionally characterized. The
phylogenetic relationship of Iripin-3 with 26 tick serpins, whose
function was deciphered either by using recombinant protein or
at least by gene knockdown via RNA interference in ticks, was
determined by using the maximum likelihood method and JTT
matrix-based model. The resulting phylogenetic tree, with
human alpha-1-antitrypsin as an outgroup, showed two
distinct groups of tick serpins (Figure 3A). The first group at
the bottom of the tree included eight serpins without a signal
peptide with presumably intracellular function (Figure 3A).
Notably, these serpins usually contained one or more cysteines
and methionines in their RCL (Figure 3B). The second, larger
group at the top of the tree comprised 19 serpins with a signal
peptide, including Iripin-3 (Figure 3A). Iripin-3 formed a small
branch with one serpin from I. scapularis (IxscS-1E1) and one
serpin from I. ricinus (IRS-2) (Figure 3A). In addition to the
construction of the phylogenetic tree, we aligned the RCLs of the
serpins used in the phylogenetic analysis (Figure 3B). Serpins
that clustered together usually had similar RCLs, and the RCL of
Iripin-3 resembled that of IxscS-1E1 (Figure 3B).
A

B

FIGURE 1 | A comparison of the primary, secondary and tertiary structures of Iripin-3 and IRS-2. (A) Structure-based sequence alignment of Iripin-3 and IRS-2.
Secondary structure elements, which are shown above the aligned sequences, are depicted as spirals (a-helices, 310-helices) and arrows (b-sheets). Both Iripin-3
and IRS-2 possess a signal peptide (SP) at the N terminus of their sequences. Conserved AA motifs PS00284, N-[AT]-[VIM]-[YLH]-F-[KRT]-[GS], and [DERQ]-[VL]-
[NDS]-E-[EVDKQ]-G are boxed in blue. The RCLs of both serpins are double underlined. Numbering of amino acid residues in the RCL is based on the standard
nomenclature developed by Schechter and Berger (67). Putative N-glycosylation and O-glycosylation sites are marked with blue asterisks. (B) Superposition of the
cleaved Iripin-3 structure (blue) on the structure of cleaved IRS-2 (gray). Cleavage sites are marked with black stars.
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Iripin-3 Is Expressed in Feeding Ticks and
Is Secreted Into Tick Saliva
In order to see how iripin-3 expression changes during blood
feeding, nymphal and adult ticks were allowed to feed on blood
from host animals for various periods of time, and the amount of
iripin-3 transcript in tick tissues was subsequently determined by
RT-qPCR. Overall, iripin-3 expression was significantly induced
in response to blood feeding in nymphs as well as in the salivary
glands and ovaries of adult females (Figure 4A). In adults, the
highest levels of iripin-3 mRNA were detected in the salivary
glands (Figure 4A). To prove the presence of Iripin-3 protein in
tick saliva, we collected saliva from ticks that were feeding for 6
to 7 days on guinea pigs. By ELISAs, markedly higher optical
density values were obtained after exposure of tick saliva to anti-
Iripin-3 serum than to pre-immune serum (Figure 4B),
suggesting that Iripin-3 is a salivary protein. This result was
further confirmed by western blotting. Rabbit pre-immune
serum did not recognize recombinant Iripin-3, and there was
no band of appropriate size (around 42 kDa) in tick saliva
(Figure 4C). Conversely, the use of anti-Iripin-3 serum led to
the recognition of recombinant Iripin-3 and appearance of an
approximately 45 kDa band in tick saliva, which might represent
native Iripin-3 (Figure 4D). The difference in the sizes of native
and recombinant Iripin-3 was probably caused by the fact that
native Iripin-3 is glycosylated, whereas recombinant Iripin-3 was
prepared in the E. coli expression system and therefore lacks
glycosylation. The other bands with sizes greater or less than 45
kDa that appeared in the lanes with tick saliva after exposure of
membranes to either pre-immune serum or anti-Iripin-3 serum
are most likely a result of non-specific binding of antibodies to
some components of tick saliva (Figures 4C, D).
Frontiers in Immunology | www.frontiersin.org 7
Iripin-3 Primarily Inhibits Kallikrein and
Matriptase
An initial screen for Iripin-3 inhibitory activity was carried out
against 17 different serine proteases. Statistically significant
reductions in enzymatic activity were observed for ten proteases,
but only six of these, namely kallikrein,matriptase, trypsin, plasmin,
thrombin, and FVIIa, had their proteolytic activity reduced by >20%
(Figure 5A). Iripin-3 formed covalent complexes, typical for the
serpin “suicide” mechanism of inhibition (71), with kallikrein,
matriptase, thrombin, and trypsin, as shown by SDS-PAGE
(Figure 5B). There was no visible complex between Iripin-3 and
plasmin on the gel (Figure 5B). It is possible that the complex was
hidden within an approximately 70 kDa protein band, which was
also present in the lanewithplasminonly (Figure 5B).Moreover, no
SDS- and heat-stable complex was formed between Iripin-3 and
FVIIa in the absence or presence of tissue factor under given
conditions (Supplementary Figure 1), suggesting Iripin-3
probably does not reduce the proteolytic activity of FVIIa through
the classic serpin inhibitory mechanism. Finally, the second-order
rate constants k2 for the interactions between Iripin-3 and kallikrein,
matriptase, thrombin, and trypsin were measured by a
discontinuous method under pseudo first-order conditions. Iripin-
3mostpotently inhibitedkallikreinwithk2=8.46±0.51x10

4M-1 s-1

(Figure 5C). The k2 for the interactions between Iripin-3 and
matriptase and trypsin were determined as 5.93 ± 0.39 x 104

M-1 s-1 and 4.65 ± 0.32 x 104 M-1 s-1, respectively (Figures 5D, F).
Thrombin was inhibited by Iripin-3 with the lowest potency
(k2 = 1.37 ± 0.21 x 103 M-1 s-1) (Figure 5E). Interface analysis
between the active sites of matriptase, thrombin, kallikrein and
trypsin and the P4-P4′ part of Iripin-3 RCL revealed possible
polar interactions that could indicate the binding selectivity of
FIGURE 2 | Cartoon representation of the structure of cleaved Iripin-3. a-helices are colored cyan, b-sheet A is blue, b-sheet B is magenta, b-sheet C is purple, and
loops are colored wheat. The insertion of the RCL hinge region between b-strands S3 and S5 (depicted in blue) resulted in the formation of an additional b-strand S4
(depicted in pink). Cleavage sites are marked with asterisks.
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et
al.

Im
m
unom

odulatory
Tick

S
erpin

Iripin-3

Frontiers
in

Im
m
unology

|
w
w
w
.frontiersin.org

M
arch

2021
|
Volum

e
12

|
A
rticle

626200
8

A B

FIGURE 3 | Phylogenetic analysis of selected tick serpins. Protein sequences of previously characterized tick serpin
built using the maximum likelihood method and JTT matrix-based model. Alpha-1-antitrypsin (A1AT) was utilized as a
The reliability of individual branches, assessed by bootstrapping, is expressed as a percentage of trees in which a giv
center loop (RCL) regions of 27 tick serpins and one human serpin was performed using BioEdit. RCLs were determ
p8-1[X]-p1′-4′ [X] typical for inhibitory serpins (68). Amino acid residues at the predicted P1 site are highlighted in blu

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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Iripin-3 for target proteases (Supplementary Figure 2). The
strongest interaction with the catalytic triad was calculated for
matriptase, followed by trypsin, kallikrein and thrombin (data not
shown). According to this analysis, thrombin and kallikrein should
be inhibited by Iripin-3with similar potency. This, however, was not
supported by enzyme-substrate kinetic analyses (Figures 5C–F), in
which kallikrein displayed 60 times higher k2 value than thrombin.
Therefore, the specificity of Iripin-3 is probably dependent onmore
factors. As shown in Supplementary Figure 3, matriptase and
trypsin have open and shallow active sites, easily accessible to
various substrates, including Iripin-3 RCL. Thrombin and
kallikrein, on the other hand, possess narrower and deeper cavities
with the catalytic triad (Supplementary Figure 3). It is possible that
some subtle differences in spatial arrangement hinder the access of
Iripin-3 RCL to the thrombin's active site, while facilitating its access
to the kallikrein's active site cleft.

Iripin-3 Prolongs Plasma Clotting Time in
the Prothrombin Time Assay
Since tick serpins commonly inhibit the host coagulation system
(72), we tested the effect of Iripin-3 on the extrinsic coagulation
pathway, intrinsic coagulation pathway, and common
Frontiers in Immunology | www.frontiersin.org 9
coagulation pathway by using prothrombin time (PT),
activated partial thromboplastin time (aPTT), and thrombin
time (TT) tests, respectively (73). Iripin-3 at 6 mM final
concentration did not significantly prolong plasma clotting
time in the aPTT and TT assays (data not shown). However,
there was a statistically significant delay in blood clot formation
in the PT test when plasma was treated with 1.5, 3, and 6 mM
Iripin-3 (Figure 6). The highest Iripin-3 concentration
prolonged the prothrombin time by 8.8 s when compared to
control plasma (Figure 6). These results therefore indicate that
Iripin-3 slightly inhibits the extrinsic pathway while not affecting
the intrinsic and common pathways of blood coagulation.

Iripin-3 Decreases Production of IL-6
by BMDMs
Serpins secreted in tick saliva can facilitate blood meal uptake not
only by inhibiting coagulation but also by suppressing host
inflammatory responses (37, 72, 74). Therefore, we next
investigated whether Iripin-3 attenuates pro-inflammatory
cytokine production by LPS-stimulated BMDMs. The
production of TNF, IL-6, and IL-1b was assessed at the mRNA
level by RT-qPCR as well as at the protein level by ELISA. Iripin-
A

B C D

FIGURE 4 | Iripin-3 transcription in I. ricinus ticks is increased in response to blood feeding, and Iripin-3 protein is present in the saliva of feeding ticks. (A) Iripin-3
mRNA expression in nymphs and in the salivary glands, midguts and ovaries of adult females feeding for 1 (D1), 2 (D2), 3 (D3), 4 (D4), 6 (D6), and 8 (D8) days or not
feeding at all (D0). In nymphs, the last column represents fully engorged ticks that completed their blood meal in 3 or 4 days. N/A – data not available. Relative
expression values were calculated using the DDCt (Livak) method (60), with rps4 serving as a reference gene. A group with the highest iripin-3 expression (nymphs
feeding for 2 days) was utilized as a calibrator during calculations, and its expression value was set to 100%. Data are presented as mean of three biological
replicates ± SEM. Statistically significant induction (p < 0.05) of iripin-3 expression as compared to unfed ticks is marked with an asterisk. (B) ELISA results
expressed as optical density (OD) values measured after exposure of tick saliva to either rabbit pre-immune serum or rabbit antiserum to Iripin-3. Data are presented
as mean ± SEM of three values (**p < 0.01). (C, D) Tick saliva (10 mg) and Iripin-3 (1 ng or 10 ng) were resolved by SDS-PAGE and transferred to PVDF membranes.
The membranes were incubated with rabbit pre-immune serum (C) or rabbit antiserum to Iripin-3 (D).
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3 caused a dose-dependent and statistically significant reduction
in the transcription of all three genes (Figures 7A–C). However,
decreases in the transcription of Tnf and Il1b did not result in
corresponding changes in the concentrations of these two pro-
inflammatory cytokines at the protein level (Figures 7D, F).
Conversely, Iripin-3 was an efficient inhibitor of both IL-6
synthesis and secretion (Figure 7E).

Iripin-3 Impairs B and T Cell Viability
In Vitro
In addition to inhibiting innate immune mechanisms, tick
serpins can alter the host adaptive immune response (35, 37,
Frontiers in Immunology | www.frontiersin.org 10
72). First, we tested whether Iripin-3 had an effect on B and T
lymphocyte viability. Incubation of splenocytes derived from
OT-II mice for 20 h in the presence of two different
concentrations of Iripin-3 (3 mM and 6 mM) resulted in a
pronounced dose-dependent reduction in the viability of both
B cells (CD45+ CD19+ splenocytes) and T cells (CD45+ CD3e+

splenocytes), with B cell survival more negatively affected by the
serpin presence than T cell survival (Figures 8A–D). B and T cell
viability was impaired irrespective of whether the splenocytes
were left unstimulated or were stimulated with OVA peptide
(Figures 8C, D). Conversely, Iripin-3 did not reduce the viability
of BMDMs or dendritic cells (Supplementary Figures 4A, B),
A C

D

E

F

B

FIGURE 5 | Iripin-3 suppresses the enzymatic activities of kallikrein, matriptase, thrombin, and trypsin through the classic serpin inhibitory mechanism. (A) The residual
enzymatic activities of 17 selected serine proteases in the presence of 400 nM Iripin-3. The experiment was performed in triplicate, and data are expressed as mean ± SEM.
The enzymatic activities of individual proteases in the absence of Iripin-3 (control groups) were considered as 100%, and differences between control groups and Iripin-3-
treated groups were analyzed by the unpaired two-tailed t-test. Enzymes labelled with an asterisk were inhibited with statistical significance (p < 0.05). (B) Formation of SDS-
and heat-stable complexes between Iripin-3 and kallikrein, matriptase, plasmin, thrombin, and trypsin. Proteins were resolved on 4 to 12% NuPAGE Bis-Tris gels and
visualized by silver staining. Covalent complexes between Iripin-3 and target proteases are marked with black arrows. (C–F) The apparent first-order rate constant kobs was
plotted against Iripin-3 concentration, and linear regression was performed to obtain the line of best fit. The slope of the line represents the second-order rate constant k2 for
the inhibition of kallikrein (C), matriptase (D), thrombin (E), and trypsin (F) by Iripin-3. For each determination, the standard error of the slope is given.
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and the viability of LPS-activated neutrophils was impaired only
in the presence of the highest (6 mM) concentration of Iripin-3
(Supplementary Figure 4C). Therefore, Iripin-3 might
selectively induce B and T cell death. To investigate the
possibility that Iripin-3 triggers lymphocyte apoptosis, we
measured active caspase-3 levels in both unstimulated and
OVA peptide-stimulated splenocytes. Treatment of splenocytes
with Iripin-3 did not lead to a statistically significant increase in
the level of active caspase-3 (Figures 8E, F). Therefore, Iripin-3
probably does not induce B and T cell death through activation
of a caspase-3-dependent pathway.
Iripin-3 Inhibits In Vitro CD4+ T Cell
Proliferation
Since Iripin-3 reduced T cell viability, we tested whether it also
affected the survival and proliferation of CD4+ helper T cells.
OT-II splenocytes were pre-incubated with 3 mM or 6 mM Iripin-
3 for 2 h before being stimulated with OVA peptide for 72 h.
Propidium iodide staining in combination with the application
of anti-CD4 antibody revealed a lower percentage of live CD4+

cells in Iripin-3-treated groups than in the control group (Figure
9A), suggesting Iripin-3 has a negative effect on CD4+ T cell
viability. After the exclusion of dead cells, we assessed the
FIGURE 6 | Iripin-3 inhibits the extrinsic pathway of blood coagulation.
Human plasma was treated with no Iripin-3 or with 0.375, 0.75, 1.5, 3, and
6 mM Iripin-3 and the time required for blood clot formation in the
prothrombin time assay was subsequently determined on a coagulometer.
Data are presented as mean ± SEM of three independent experiments
(***p < 0.001, ****p < 0.0001).
A B C

D E F

FIGURE 7 | Iripin-3 inhibits the expression of pro-inflammatory cytokines in LPS-stimulated BMDMs. Macrophages derived from bone marrow cells isolated from
C57BL/6N mice were pre-incubated with 3 mM or 6 mM Iripin-3 for 40 min and were then stimulated with LPS (100 ng/ml) for 24 h. (A–C) At the end of 24 h
incubation, cells were harvested for RNA extraction and the expression of Tnf (A), Il6 (B), and Il1b (C) was determined by RT-qPCR. Relative expression values were
calculated using the delta-delta Ct (Livak) method (60), with Gapdh serving as a reference gene. Cells incubated only in the presence of LPS were utilized as a
calibrator during calculations. Data are presented as mean ± SEM of four independent experiments (*p < 0.05, **p < 0.01, ***p < 0.001). (D–F) Supernatants were
collected, and TNF, IL-6, and IL-1b concentrations in these supernatants were measured by sandwich ELISA. TNF (D), IL-6 (E), and IL-1b (F) production by Iripin-3-
treated BMDMs is expressed as the percentage of the cytokine production by control macrophages, since there were large differences in the concentrations of the
same cytokine between three independent repeats of the experiment. Data are expressed as mean ± SEM, and statistically significant differences (p < 0.05) are
marked with an asterisk.
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proliferation of CD4+ T cells. Unstimulated CD4+ cells did not
proliferate at all (Figure 9C), whereas addition of OVA peptide
triggered proliferation in approximately 95% of cells (Figures
9B, D). Treatment with Iripin-3 caused a dose-dependent
decrease in CD4+ splenocyte proliferation (Figure 9B). While
about 84% of cells proliferated in the presence of 3 mM Iripin-3
(Figures 9B, E), only 35% of cells were capable of proliferation
after addition of 6 mM Iripin-3 (Figures 9B, F). Therefore,
Iripin-3 impairs both the viability and proliferation of CD4+

T cells.

Iripin-3 Inhibits a Th1 Immune Response
and Promotes Differentiation of Regulatory
T Cells (Tregs) In Vitro
To examine whether Iripin-3 alters the differentiation of naïve
CD4+ T cells into Th1, Th2, Th17, or Treg subpopulations, we
evaluated the expression of transcription factors T-bet, GATA-3,
RORgt, and Foxp3 in OVA peptide-stimulated CD4+ splenocytes
by RT-qPCR and flow cytometry. T-bet, GATA-3, RORgt, and
Frontiers in Immunology | www.frontiersin.org 12
Foxp3 are considered lineage-specifying transcription factors
that govern Th1, Th2, Th17, and Treg differentiation,
respectively (75–79). Iripin-3 markedly and dose-dependently
inhibited the expression of T-bet in CD4+ T cells at both the
mRNA and protein levels (Figures 10A–C). Since T-bet controls
Ifng transcription (76), we also tested the ability of Iripin-3 to
inhibit the production of this hallmark Th1 cytokine. As with T-
bet, Iripin-3 induced a pronounced and dose-dependent
reduction in the percentage of CD4+ T cells producing IFN-g
(Figures 10D, E). Despite the inhibition of the Th1 immune
response, we did not observe significant changes in the
differentiation of T cells into Th2 or Th17 subpopulations
(Figures 10F–K). GATA-3 expression was slightly increased
only in CD4+ T cells treated with 3 mM Iripin-3 (Figures 10G,
H). Similarly, both Iripin-3 concentrations induced only a small
and non-significant increase in the percentage of CD4+ T cells
expressing RORgt (Figures 10J, K). Finally, Iripin-3 moderately
stimulated the expression of Foxp3 at both the mRNA and
protein levels (Figures 10L–N). Therefore, Iripin-3 might
A C
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FIGURE 8 | Iripin-3 reduces B and T cell viability and does not significantly alter active caspase-3 levels. (A, B) Dot plots depicting the percentage of live
CD45+CD19+ cells (B cells) and live CD45+CD3e+ cells (T cells) in unstimulated splenocytes (A) or OVA peptide-stimulated splenocytes (B). Splenocytes were not
treated with Iripin-3 (left) or were treated with 3 mM (middle) or 6 mM (right) Iripin-3. (C, D, F) The percentage of live B cells (C), live T cells (D), and median
fluorescence intensity (MFI) corresponding to the level of active caspase-3 (F) after incubating the splenocytes for 20 h in the absence of Iripin-3 or in the presence of
3 mM and 6 mM Iripin-3. The cells were left either unstimulated or were stimulated with 100 ng/ml of OVA peptide. Data are presented as mean ± SEM of
three independent experiments (**p < 0.01, ***p < 0.001). (E) Histograms showing the level of active caspase-3 in either unstimulated splenocytes (left) or
splenocytes stimulated with OVA peptide (right). Splenocytes were incubated for 20 h without Iripin-3 or were treated with 3 mM or 6 mM Iripin-3.
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induce the differentiation of Tregs in addition to inhibiting Th1
cell development.

Iripin-3 Is Not Essential for Feeding
Success of I. ricinus Nymphs
Since iripin-3 expression is induced in nymphs in response to
blood feeding, we decided to assess the role of this serpin in the
blood-feeding process by silencing iripin-3 expression in nymphs
via RNA interference. Iripin-3 expression in iripin-3 dsRNA-
treated ticks was 34% when compared to gfp dsRNA-treated ticks
(data not shown), suggesting that the knockdown of the target
gene was successful. Despite diminished iripin-3 expression, the
time course of blood feeding and overall feeding success (i.e. the
number of nymphs that reached full engorgement) did not
significantly differ between control ticks and iripin-3 dsRNA-
treated ticks (Supplementary Table 4). The weight of fully
engorged nymphs was not significantly affected by iripin-3
silencing as well (Supplementary Table 4). Therefore, we can
conclude that the deficiency of Iripin-3 alone is not sufficient to
impair the blood meal acquisition and processing by nymphal I.
ricinus ticks.
DISCUSSION

Tick saliva contains hundreds to thousands of proteins from
diverse protein families (80). These salivary proteins are
Frontiers in Immunology | www.frontiersin.org 13
differentially expressed over the course of blood feeding and
enable ticks to feed to repletion by maintaining blood fluidity
and suppressing host defense responses (80). Serpins form one of
four serine protease inhibitor families that have been discovered in
ticks (72). Serpins are particularly intriguing to study, not only due
to their unique trapping inhibitory mechanism but also because
they regulate a variety of physiological processes in many
organisms. The functional diversity of the serpin superfamily is
exemplified by the widely studied human serpins, which have been
shown to regulate blood pressure, transport hormones, and
control blood coagulation, fibrinolysis, angiogenesis,
programmed cell death, inflammation, or complement activation
(81–84). We presume that ticks employ some of their serpins to
modulate host defenses, as evidenced by several tick serpins
with anti-platelet, anti-coagulant, anti-inflammatory, and/or
immunomodulatory properties that have been shown to be
secreted via saliva into the host (34–37, 72).

Here we determined the structure and partially deciphered
the function of Ixodes ricinus serpin Iripin-3 by using several in
vitro models. The size (377 amino acids), molecular weight
(42 kDa), and 3D structure of Iripin-3, consisting of three b-
sheets, ten a-helices, and a cleaved RCL, correspond to the
structural parameters of typical serpins (18, 20, 71). Iripin-3
expression was induced by blood feeding in both nymphs and
adult females, suggesting Iripin-3 contributes to feeding success
in both developmental stages. Of the three organs of adult ticks,
the highest levels of iripin-3 transcript were detected in the
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FIGURE 9 | Iripin-3 impairs the survival and proliferation of CD4+ splenocytes. (A, B) The percentage of live CD4+ cells (A) and the percentage of proliferating live
CD4+ cells (B) after exposure to 3 mM or 6 mM Iripin-3. Cells not treated with Iripin-3 were used as control. After 2 h pre-incubation with Iripin-3, cells were cultured
in the presence of OVA peptide (100 ng/ml) for 72 h. Data are presented as mean ± SEM of three independent experiments (*p < 0.05, **p < 0.01).
(C–F) Histograms showing the number of live CD4+ cells that managed to divide once (blue), twice (light blue), 3 times (pink), 4 times (rose), 5 times (plum), or did
not divide at all (gray) within the 72 h culture period. Cells were incubated in the absence of Iripin-3 and OVA peptide (C), in the presence of OVA peptide only (D), or
were treated with the combination of 3 mM Iripin-3 and OVA peptide (E) or 6 mM Iripin-3 and OVA peptide (F).
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salivary glands. The presence of Iripin-3 protein in the saliva of
partially engorged adults was confirmed by immunodetection.
Thus, we can assume that Iripin-3 is secreted via saliva into the
tick attachment site where it interferes with host anti-tick
Frontiers in Immunology | www.frontiersin.org 14
defenses. Statistically significant increase of iripin-3 expression
in response to blood feeding occurred not only in the salivary
glands but also in the ovaries of adult ticks, which indicates that
Iripin-3 might be somehow involved in the reproductive process.
March 2021 | Volume 12 | Article 626200
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FIGURE 10 | Iripin-3 alters the expression of CD4+ T cell transcription factors at both the mRNA and protein levels. (A, F, I, L) Expression of Tbx21 (A), Gata3 (F),
Rorc (I), and Foxp3 (L) in CD4+ cells stimulated with OVA peptide for 72 h. Cells were untreated with Iripin-3 or were treated with 3 mM or 6 mM Iripin-3. Cells
incubated only in the presence of OVA peptide were utilized as a calibrator during calculations of relative expression values. Data are presented as mean ± SEM of
four independent experiments (* p < 0.05, ** p < 0.01). (B, D, G, J, M) Representative contour plots showing the proportion of OVA peptide-stimulated CD4+

splenocytes expressing T-bet (B), IFN-g (D), GATA-3 (G), RORgt (J) and the combination of CD25 and Foxp3 (M). The cells were incubated in the absence of Iripin-
3 (left) or in the presence of two different Iripin-3 concentrations: 3 mM (middle) and 6 mM (right). (C, E, H, K, N) The percentage of CD4+ T cells producing the
cytokine IFN-g (E) and expressing transcription factors T-bet (C), GATA-3 (H), RORgt (K), and Foxp3 together with CD25 (N). Cells were cultured in the presence of
Iripin-3 (3 mM or 6 mM) and OVA peptide for 72 h. Cells incubated without Iripin-3 were used as control. Data are presented as mean ± SEM of three or
four independent experiments (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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The role of serpins in tick reproduction has been evidenced
recently by Rhipicephalus haemaphysaloides serpin RHS-8, the
knockdown of which impaired oocyte maturation due to the
inability of oocytes to uptake adequate amount of vitellogenin (45).

The presence of the basic amino acid residue arginine at the
P1 site of the Iripin-3 RCL indicates that Iripin-3 might inhibit
trypsin-like rather than chymotrypsin-like or elastase-like serine
proteases (69, 85). Indeed, out of 17 selected serine proteases,
Iripin-3 most potently inhibited trypsin-like serine proteases
kallikrein and matriptase and exhibited weaker inhibitory
activity against trypsin, thrombin, plasmin, and factor VIIa.
Kallikrein participates in the activation of the intrinsic blood
coagulation pathway, promotes fibrinolysis, and is also
responsible for the release of the potent inflammatory
mediator bradykinin, which further induces vasodilation,
increases vascular permeability, and evokes pain and itch (86,
87). Matriptase is a type II transmembrane serine protease that is
primarily expressed in epithelial cells and is essential for the
maintenance of skin barrier function (88). Moreover, matriptase
seems to be involved in cutaneous wound healing (89, 90) and
might contribute to the amplification and perpetuation of the
inflammatory response through the activation of protease-
activated receptor-2 (PAR-2) (91). Therefore, we speculate that
Iripin-3-mediated inhibition of kallikrein and matriptase
contributes to tick feeding success by suppressing the inflammatory
response and consequent itch and pain and by impairing
wound healing.

A phylogenetic analysis of 27 functionally characterized tick
serpins revealed a close phylogenetic relationship between Iripin-
3 and I. scapularis serpin IxscS-1E1. Both serpins possess
arginine at the P1 site and inhibit trypsin and thrombin (30).
However, while IxscS-1E1 prolonged plasma clotting time in
aPTT and TT assays and had no effect on blood clot formation in
the PT assay (30), Iripin-3 inhibited only the extrinsic
coagulation pathway. This indicates that the Iripin-3-mediated
inhibition of kallikrein and thrombin was not sufficient to
significantly impair the intrinsic and common coagulation
pathways. Other blood clotting factors (XIIa, XIa, Xa) involved
in the intrinsic and common pathways were not markedly
inhibited by Iripin-3. Several tick serpins are capable of
inhibiting the common (and perhaps intrinsic) pathway of
blood coagulation (28–31, 41, 92); however, none have shown
any effect on the extrinsic coagulation pathway. The extrinsic
coagulation pathway is initiated by damage to a blood vessel and
subsequent formation of a FVIIa/tissue factor (TF) complex,
which further activates factor X (93). In view of the fact that
Iripin-3 exhibited weak inhibitory activity only in the PT test and
not in the aPTT test or TT test, we hypothesized that it might
target either FVIIa or TF, since these two proteins are the only
unique components of the extrinsic pathway. FVIIa seemed to be
a more likely target for Iripin-3 given that it is a serine protease
(94), and some human serpins, such as antithrombin III or
protein C inhibitor, have been shown to inhibit the proteolytic
activity of FVIIa (95–97). In our hands, Iripin-3 did not form a
covalent complex with FVIIa either in the absence or in the
presence of TF. However, the proteolytic activity of FVIIa was
Frontiers in Immunology | www.frontiersin.org 15
reduced by approximately 30% in the presence of 400 nM
Iripin-3 in the kinetic enzyme-substrate assay. Therefore, the
prolongation of blood clot formation in the PT assay might be
caused by the non-canonical inhibition of FVIIa by Iripin-3.
Alternatively, a possible interaction between Iripin-3 and TF
could also prevent FVIIa/TF complex formation, leading to a
lower rate of FXa generation and inhibition of blood coagulation.

In addition to the inhibition of blood coagulation, Iripin-3
displayed anti-inflammatory activity in vitro, since it significantly
and dose-dependently attenuated the production of pro-
inflammatory cytokine IL-6 by LPS-stimulated bone marrow-
derived macrophages. The decreased IL-6 production was
probably caused by the inhibition of Il6 transcription and not
by reduced viability of macrophages, since the metabolic activity
of macrophages remained unchanged in the presence of Iripin-3.
Several tick serpins have been shown to inhibit IL-6 transcription
and secretion (37–39, 74, 98), which can occur as a result of
serpin-mediated inhibition of proteases such as cathepsin G and
cathepsin B (37). However, the inhibition of pro-inflammatory
cytokine production does not have to be dependent on serpin
anti-protease activity because some serpins, like Iris and a-1-
antitrypsin, can alter pro-inflammatory cytokine production by
binding to immune cells via exosites (98, 99). An inflammatory
environment with reduced IL-6 might favor differentiation of
Tregs (100–102). Splenocytes, incubated in the presence of
Iripin-3 for 72 h, increased the expression of Treg-specific
transcription factor Foxp3 (77, 78), suggesting that Iripin-3
indeed induces the differentiation of naïve CD4+ T cells into
anti-inflammatory Tregs. Tregs would facilitate the suppression
of the host immune response (103), which would be beneficial
for feeding ticks. There is scarce evidence that tick saliva induces
Treg differentiation (104, 105). The results of our in vitro assay
indicate that salivary serpins could contribute to this particular
activity of tick saliva.

Besides the reduction in IL-6 production and increase in
Foxp3 expression, Iripin-3 caused a pronounced, dose-
dependent decrease in B and T cell viability in vitro. This effect
appears to be B and T cell-specific since macrophage and
dendritic cell survival was not affected by Iripin-3 and the
viability of LPS-stimulated neutrophils was slightly impaired
only at the highest (6 mM) concentration of Iripin-3. Serpins
usually protect cells from dying by reducing the proteolytic
activity of enzymes (such as granzymes and caspases) involved
in programmed cell death (106). However, certain serpins, e.g.,
kallikrein-binding protein, pigment epithelium-derived factor, or
maspin, induce apoptosis of endothelial cells and some cancer
cells through distinct mechanisms such as the activation of the
Fas/FasL/caspase-8 signaling pathway or the permeabilization of
the outer mitochondrial membrane followed by a loss of
transmembrane potential (107–111). Active caspase-3 levels
were only slightly and non-significantly increased in Iripin-3-
treated splenocytes. Therefore, the induction of caspase-
dependent apoptosis was not the main cause of impaired
splenocyte viability. Various forms of caspase-independent cell
death have been described such as autophagy, paraptosis,
necroptosis, or necrosis (112, 113). Elucidation of the exact
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mechanism behind the extensive splenocyte death in the
presence of Iripin-3 is, however, beyond the scope of this paper.

I. ricinus saliva and salivary gland extracts inhibit T cell
proliferation and suppress Th1 cell differentiation while
simultaneously augmenting the Th2 immune response (114–
117). Iripin-3 might contribute to this immunomodulatory effect
of saliva, since in our in vitro assays it inhibited CD4+ T
lymphocyte proliferation and impaired the differentiation of
naïve CD4+ T cells into Th1 cells. Impaired Th1 cell generation
was evidenced by decreased expression of the Th1 lineage-
specifying transcription factor T-bet and a reduced percentage
of CD4+ T cells producing the hallmark Th1 cytokine IFN-g.
Several studies have reported inhibition of splenocyte and
peripheral blood mononuclear cell proliferation in the presence
of tick serpins (35, 37, 38, 40). Interestingly, the inhibition of
mitosis observed in these studies was usually accompanied by
decreased IFN-g production (35, 38, 40), which might indicate,
among other things, the suppression of Th1 cell differentiation.
The causative mechanism of reduced cell proliferation and
impaired Th1 cell differentiation in the presence of tick serpins
remains unknown, but it could be associated with decreased
production of certain cytokines such as IL-2, IL-12, and IFN-g.
In the case of Iripin-3, there might be a connection between the
inhibition of cell proliferation and impaired viability of
splenocytes, i.e., the mechanism behind B and T cell death could
be also responsible for the suppression of CD4+ T cell division.
Iripin-3-mediated differentiation of naïve CD4+ T cells into Tregs
might also contribute to the reduction in CD4+ T cell proliferation,
since Tregs can inhibit cell multiplication by various mechanisms
including the production of immunosuppressive cytokines TGF-b
and IL-35, consumption of IL-2, and conversion of ATP to
adenosine (103, 118).

It is worth mentioning that the Iripin-3 concentrations used
in in vitro experiments (3 mM and 6 mM) are probably higher than
the amount of Iripin-3 at the tick feeding site. This fact, however,
does not make the anticoagulant, ant-inflammatory and
immunomodulatory activities of Iripin-3 observed in vitro
physiologically irrelevant. Tick saliva is a complex mixture of
proteins from the same or different protein families, and some of
these salivary proteins can share the same function (119).
Therefore, even a low concentration of one tick protein may be
sufficient to achieve a desired effect at the tick attachment site if this
protein acts in concert with other tick proteins (119). For instance,
the ability of I. ricinus saliva to inhibit CD4+ T cell proliferation is
probably a result of combined action of more proteins with anti-
proliferative properties, such as the serpins Iripin-3 and Iris, the
cystatin Iristatin and the Kunitz domain-containing protein IrSPI
(38, 120, 121). That I. ricinus saliva may contain other proteins
possessing Iripin-3-like activities was demonstrated by the RNA
interference experiment. Iripin-3 knockdown did not significantly
affect the overall feeding success, time course of blood feeding and
weight of fully engorged nymphs, which indicates that other
similarly acting salivary proteins might compensate for the loss
of iripin-3 expression.

It is also important to note that native Iripin-3 is most likely
glycosylated. However, recombinant Iripin-3 was prepared in an
Frontiers in Immunology | www.frontiersin.org 16
E. coli expression system, and therefore it lacks glycosylation.
Glycosylation has been shown to reduce the propensity of serpins
for polymerization (122) and increase the stability and half-life of
circulating serpins by conferring resistance to proteolytic
degradation (123, 124). The impact of glycosylation on the
biological function of serpins is less clear. Recombinant Iripin-
3 inhibited the proteolytic activity of some serine proteases,
suggesting that its functions dependent on anti-protease activity
(like anticoagulant properties) may not be affected by missing
glycosylation. However, the absence of glycosylation might have
an impact on anti-inflammatory and immunomodulatory
activities of Iripin-3 mediated by its binding to cell surfaces
and soluble immune mediators. For example, only glycosylated,
but not non-glycosylated, a-1-antitrypsin was capable of binding
IL-8, thus inhibiting IL-8-CXCR1 interaction (125).
CONCLUSION

To conclude, Iripin-3 is a pluripotent salivary protein secreted by
I. ricinus ticks via saliva into the feeding site, where it might
suppress various aspects of host anti-tick defenses. The
attenuation of IL-6 production, suppression of CD4+ T cell
proliferation, and inhibition of Th1 immune responses have
also been observed with other tick serpins and are consistent with
the previously reported immunomodulatory effects of I. ricinus
saliva and salivary gland extracts (114–117). On the other hand,
our study is the first to describe the inhibition of the extrinsic
pathway of blood coagulation, impaired B and T cell survival,
and the induction of Treg differentiation by a tick serpin. The
pluripotency and redundancy in Iripin-3 functions are consistent
with the theory about the importance of these protein features
for successful tick feeding (119). Although several distinct in
vitro activities of Iripin-3 were observed in this study, their
physiological relevance, mechanisms behind them and potential
of Iripin-3 to be a candidate for drug or vaccine development
remain to be determined. Therefore, further in vivo experiments
and mechanistic studies are needed to validate and elucidate the
Iripin-3 functions described in this work.
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9. Šimo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick
salivary glands and saliva in tick feeding and pathogen transmission. Front
Cell Infect Microbiol (2017) 7:281. doi: 10.3389/fcimb.2017.00281

10. Mans BJ. Chemical equilibrium at the tick–host feeding interface: a critical
examination of biological relevance in hematophagous behavior. Front
Physiol (2019) 10:530. doi: 10.3389/fphys.2019.00530
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