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Abstract: Most head and neck squamous cell carcinomas (HNSCCs) are caused by lifestyle, such
as cigarette smoking, or by viruses, such as human papillomavirus (HPV) and Epstein–Barr virus
(EBV). HNSCC remains a clinical challenge, notwithstanding the improvements observed in the
past years, involving surgery, radiotherapy, and chemotherapy. Recurrent/metastatic (R/M) disease
represents an unmet clinical need. Immunotherapy has improved the prognosis of a small proportion
of these patients, but most still do not benefit. In the last decade, several preclinical and clinical
studies have explored the HNSCC tumor immune microenvironment (TIME), identifying important
differences between smoking-associated and virus-associated HNSCCs. This review aims to present
how different etiologies affect the HNSCC TIME, affecting immune escape mechanisms and sensitivity
to immunotherapy.

Keywords: head and neck; tumor microenvironment; smoking-associated; virus-associated

1. Introduction

Head and neck squamous cell cancer (HNSCC) represents the sixth most common
cancer worldwide [1]. Two distinct HNSCC entities can be identified by their etiologies:
the more frequent carcinogen-associated HNSCC, strongly related to tobacco and alcohol,
and virus-associated HNSCC [2]. The well-known etiological risk factors for the latter are
human papillomavirus (HPV—primarily type 16) and Epstein–Barr virus (EBV) [2–4].

In the last decade, immune checkpoint inhibitors (ICIs) have been approved by the
FDA and EMA for (R/M) HNSCC not amenable to loco-regional treatment: nivolumab for
second-line therapy in platinum-resistant patients, regardless of PD-L1 status [5,6], and
pembrolizumab with or without chemotherapy in PD-L1-positive patients in the first-line
setting [7,8]. Unfortunately, the impact of immunotherapy as a single approach on HNSCC
remains marginal. Only 15–20% of patients achieve an objective clinical response [9].

2. HNSCC Tumor Microenvironment: General Considerations

In the last several years, clinical, genomic, and cellular studies have demonstrated that
the HNSCC TIME is highly heterogeneous and immunosuppressive [10].

HNSCC can evade immune surveillance by deregulating key signaling steps for an-
titumor immunity, leading to unrestrained tumor growth [11]. This immunosuppressive
mechanism includes a decrease in T-cell receptor (TCR) activity and HLA–peptide antigen
interactions with the inactivation of the antigen-processing machinery, preventing the
processing and presentation of tumor-associated antigens; other important immunosup-
pressive mechanisms are the upregulation of checkpoint inhibitory molecules, the induction
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of T-cell apoptosis, an increase in immunosuppressive Th2-type cytokines with augmented
regulatory T-cell (Treg), myeloid-derived suppressor cell (MDSC), or M2 macrophage
recruitment, and a decrease in chemokines that attract immune effector cells into the
TIME [12,13]. Moreover, tumor cells are constrained by a dynamic process known as
immunoediting, which, under selective pressure, favors the expansion of less immunogenic
tumor cells able to escape the immune response and thus gain a survival advantage [14].

3. The Main Immunophenotypes Identify Specific Escape Mechanisms

Evaluating data from preclinical and translational research, Chen and Mellman [15]
suggested clustering tumors into three major immune phenotypes: the inflamed phenotype
(“hot”), the immune-excluded phenotype (“excluded”), and the immune-desert phenotype
(“cold”).

The first profile is characterized by the presence of tumor-infiltrating lymphocytes in
the tumor bed, together with myeloid cells and monocytic cells; the infiltrating immune
cells and, in some cases, tumor cells exhibit checkpoint activation, i.e., programmed cell
death protein 1 (PD-1) and its ligand (PD-L1). mRNA analysis performed on tumor sections
is able to detect many proinflammatory and effector cytokines [16–18]. This immune
phenotype may respond to ICIs, suggesting the presence of a pre-existing but inhibited
antitumor immune response.

The second profile is the immune-excluded phenotype, which is characterized by a
high presence of immune cells that do not infiltrate the tumor nests but remain trapped in
the surrounding stroma [15,16,19,20]. After treatment with ICIs, CD8+ and CD4+ T cells
can show evidence of activation and proliferation but not infiltration, suggesting a block in
tumor homing. This tumor profile rarely responds to checkpoint inhibitors, suggesting that
immune escape mechanisms are not related to the inhibitory effect of the PD-(L)1 axis [15].

The immune-desert phenotype is characterized by the rarity of T cells in either the
tumor bed or the stroma [15,16,21,22] and the immunosuppressive reprogramming of the
TIME with aberrant tumor vasculature and/or stroma. These tumors rarely respond to
anti-PD-L1/PD-1 therapy [16]. This phenotype probably reflects the absence of pre-existing
antitumor immunity, which suggests that the generation of tumor-specific T cells is the rate-
limiting step. The “cold” and “excluded” phenotypes can both be considered non-inflamed
tumors [15], as described in Figure 1.

Recently, a study that integrated genetic data with the RNA-seq-based deconvolution
of immune cell populations and effector/regulatory molecules in a large cohort of HNSCC
patients revealed that HNSCC is one of the most highly immune-infiltrated cancer types,
with high NK and Treg cell presence; however, the authors identified a broad diversity in
the levels of immune infiltration and activation across HNSCCs. In particular, tumors with
the smoking-high signature have low levels of T-cell infiltration and activation [23].

Ribbat-Idel et al. [24] recently published a large comprehensive clinicopathological
study on ICI-naive primary HNSCCs, aiming to categorize them as either immunologically
“hot,” “cold,” or “excluded”, as presented above. Survival analysis showed significantly
lower OS for “cold” primary HNSCC when compared to “hot” or “excluded” ones. In
addition, they observed that the HPV association (as the p16 expression status) and the
immune infiltration pattern were statistically significant independent factors for OS in
multivariate analysis. The authors suggested considering this immunological classification
as a prognosticator for HNSCC patients [24].
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4. Different Microenvironments in HNSCC

Epidemiological studies have revealed a broad range of risk factors for HNSCC that
can classify these tumors into two main groups: the first group, carcinogen-associated
HNSCC, is related to tobacco consumption, alcohol consumption, and exposure to environ-
mental pollutants, and the second group, virus-associated HNSCC, is related to HPV and
EBV infections. Interestingly, several risk factors display geographical or cultural and/or
habitual prevalence [25].

For instance, in regions such as Southeast Asia and Australia, HNSCC has a high
prevalence associated with the consumption of specific carcinogen-containing products,
such as betel-nut and tobacco chewing [25].

Below, we describe the differences between these two groups, focusing on the effect of
these factors on the TIME.

4.1. Difference between Carcinogen-Associated and Virus-Associated HNSCC

Using multiplex immunohistochemistry, recent studies explored the HNSCC TIME
and found that a myeloid-inflamed profile was associated with a poor prognosis and
that high numbers of CD8+ T cells at the invasive margin of HPV-negative HNSCC were
associated with prolonged overall survival, respectively [26,27].

Saloura et al. observed that HPV-positive tumors are enriched with CD8+ T cells
and Tregs, and HPV-negative tumors show a lower abundance of CD8+ T cells but a high
infiltration of M2 macrophages compared to HPV-positive tumors [28].

The difference in survival between HPV-positive and HPV-negative HNSCC patients
could be due to an adaptive immune response directed against the viral antigens expressed
by tumor cells, which determines a higher presence of tumor-infiltrating lymphocytes (TILs)
and an inflamed gene expression profile [29]. A minority of HPV-positive oropharyngeal
squamous cell carcinoma (OPSCC) patients respond poorly to treatment and have a dismal
prognosis [30]. Smoking has been shown to reduce the survival benefit of individuals with
HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) [3], and therefore, it might
be that these patients are also smokers.
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The disease-specific survival of OPSCC patients, stratified according to HPV status
and tumor-infiltrating lymphocyte (TIL) levels, is lower in HPV-positive/low-TIL patients,
and it is similar to that of HPV-negative patients [30]. This is consistent with the observation
that not all HPV-positive OPSCCs are the same.

EBV-positive nasopharyngeal carcinoma (NPC) displays an inflamed phenotype, ac-
cording to Chen and Mellman [15]: immune cells are in close proximity to and in contact
with NPC cells, instead of being embedded in the surrounding area away from the tumor
core. Since the nasopharynx is one of the first defensive organs against viral and bacterial
entry and infection, its microenvironment is physiologically highly reactive and immuno-
genic. In the normal nasopharyngeal stroma, two different major cell lineages are present:
CD45+ immune cells, including T cells, B cells, NK cells, and MDSCs, as well as CD45-
non-immune stromal cells, including fibroblasts and endothelial cells. The non-cancer-
associated inflamed nasopharyngeal microenvironment differs from the TIME of NPC: the
former shows an abundance of B cells, whereas T cells, NK cells, myeloid-derived cells,
and fibroblasts are more likely to infiltrate the NPC TIME [31,32].

Finally, even if arising in similar anatomical sites, carcinogen-associated HNSCC and
virus-associated HNSCC are characterized by distinct immune landscapes that strongly
influence patients’ responses to immunotherapy and their outcomes, as described in Table 1.
It is noteworthy that carcinogen-associated HPV-negative HNSCC displays a higher mu-
tational load but low immune infiltration [23] compared to HPV-positive tumors; these
factors influence the different clinical behaviors as well as the sensitivity to treatment and
the prognosis. Exploring the distinct TIME features can help HNSCC investigators to ratio-
nally identify new immune targets and consequently plan new strategies for TIME-oriented
clinical trials.

Table 1. Factors influencing TIME: difference between carcinogen-associated and virus-associated
HNSCC.

Factors
Influencing

TIME

Involvement
in TIME

Carcinogen-
Associated Tumors (ref)

HPV-
Associated Tumors (ref)

EBV-
Associated Tumors (ref)

P53
Block of apoptosis and
increased mutational

charge
++ (48−50−51) exp + (56) rev + (88) exp

LAG3
TIM3
TIGIT
PD-1

T-cell exhaustion
+ (60, 66) rev ++ (79) rev

+ (60, 66) rev

+ (60) rev

+ (60) rev

++ (79) rev

++ (79) rev

++ (79) rev

TMB Increased tumor antigens ++ (37) exp

TCD8+ Infiltrate-positive – (23) exp ++ (28) exp – (84) cli

TCD4+ Infiltrate-positive – (10, 51) rev, exp – (55,60) rev c, rev

T regs Infiltrate-negative ++ (10, 51) rev, exp ++ (28) exp ++ (85) exp

TAM M2 Infiltrate-negative ++ (43) rev - (28) exp ++ (93) rev

NK cells Infiltrate-positive – (23) exp – (55) rev c + (88) exp

DC
CD11b+

Infiltrate-positive
Inhibition of antigen

presentation ++ (10, 51) rev, exp
– (59) rev

IFNγ Inflammatory response – (23) exp – (71−73) rev -(71) rev

CXCL9,10,11/
CXCR3 axis

Immune cell
recruitment - (42) exp ++(78) rev

CCL2
IL-8

CCL20

Proinflammatory
Immunosuppression Treg

recruitment

++ (44) rev – (59) rev

– (59) rev

– (59) rev ++ (84) cli

TGF-β Immunosuppression ++ (45,46) rev ++ (61) rev

IL-10 Immunosuppression ++ (45,46) rev ++ (60) rev ++ (82) exp

IL-6
CXCL12

Proinflammatory
T-cell recruitment

++ (45,46) rev – (70) rev

+ (59) rev

Legend: ++ more expressed/mutated; + expressed; - not expressed; – downregulated; exp: preclinical data; cli:
clinical data; rev: review; rev c: revision of clinical data.
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4.2. How Smoking Affects HNSCC TIME and Its Influence on Escape Mechanisms
to Immunotherapy

Carcinogen-associated HNSCC is usually diagnosed in men in their 50s or 60s, and
it is strongly associated with smoking and alcohol; it is slowly declining globally, in part
because of the decreased use of tobacco [2]. Even if treated with the best multimodal treat-
ment (surgery, radiotherapy, and chemotherapy), locally advanced carcinogen-associated
HNSCC still presents a dismal prognosis with a 40–50% 5-year OS [25].

Yet, in 2013, Hernandez C.P. et al. [33] demonstrated that cigarette smoke extract (CSE)
is able to induce the inhibition of T-cell proliferation and activate T-cell apoptosis in vitro
in a dose-dependent manner. Apoptosis enhanced by CSE was independent of caspase
activation and endogenously mediated through reactive oxygen species (ROS) and reactive
nitrogen species (RNS). This explanation is compelling and well supported by others:
in fact, early studies have already shown that a chronically inflamed microenvironment
(inflammatory disease or cancer-related) inhibits cytotoxic T cells and strengthens their
hypofunction [34], for example, via NF-κB phosphorylation inhibition [35], a dimeric
transcription factor involved in the expression of proteins necessary for innate immunity,
apoptosis, and cell proliferation [36]. Moreover, the exposure of T cells to CSE induces the
phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2), a factor involved
in the expression of proteins promoting cellular apoptosis [33].

Besides in vitro studies, recently, de la Iglesia et al. [11] found that in an HPV-negative
HNSCC population, active smoking led to an immunosuppressive signature, presenting as
a decrease in cytotoxic T-cell tumor infiltration and the reduced expression of genes in the
IFNα and IFNγ response pathways compared with former and never smokers. The smok-
ing mutational signature, as found by TCGA, is correlated with tumor mutational burden
(TMB) [23,37]; surprisingly, the authors analyzed the smoking status (using self-reporting)
and TMB in a study subpopulation and did not find any correlations between these two
parameters. Although the mutagenic effects of tobacco exposure are similar in HNSCC
and squamous lung cancer (SLC), Desrichard A. et al. demonstrated an inverse correlation
between the mutational smoking signature and the IFNγ signature in HNSCC patients and
a positive correlation in SLC patients. Indeed, in HNSCC patients, the mutational smoking
signature is associated with poorer survival, fewer tumor-infiltrating lymphocytes (TILs),
and strong immunosuppressive effects. Conversely, in the SLC population, smoking is
associated with a more inflamed tumor microenvironment, a higher TIL level, and a better
response to immunotherapy [38]. In particular, HNSCC patients with a high mutational
smoking signature show both low CD8+ T-cell infiltration and low IFNγ expression, sug-
gesting that CD8+ T cells are not only less represented but also less capable of producing
IFNγ [23]. In other words, smokers seem to have fewer infiltrating and also less functional
CD8+ T cells.

Chemokine profile analyses performed in current smokers showed the decreased
expression of the CXCL9,10,11/CXCR3 axis compared to current non-smokers. These
chemokines are known to regulate immune cell migration, differentiation, and activation
through the recruitment of cytotoxic lymphocytes and natural killer (NK) cells in response
to IFNγ expression [39]. Recent data suggest that tumors associated with the IFNγ signature
and inflamed phenotype have the highest probability of response and survival benefits
when treated with anti-PD-1 checkpoint inhibitors [40,41]. An in vivo preclinical study
showed the inhibition of anti-PD-1 inhibitor effects in CXCR3 knockout mice, indicating
that the homing of T cells to the tumor through the CXCL9,10,11/CXCR3 axis may be
critical for anti-PD-1 inhibitor efficacy [42].

Current smokers had significantly lower numbers of PD-L1-positive cells in the tu-
mor core and tumor margins compared with never and former smokers [11], which is
consistent with data that patients with smoking-high HNSCC have a lower response rate
when given anti-PD-1 checkpoint inhibitors compared with smoking-low HNSCC [38].
Carcinogen-associated HNSCCs are characterized by enriched M2-phenotype macrophages,
contributing to the creation of the immune-excluded TIME [43]. Monocytes recruited by
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specific cytokines released by the tumor (mainly CCL2 [44]) differentiate into M2-phenotype
macrophages (M2s) in the hypoxic environment under VEGF pressure, losing their ability
to migrate. Once they become residents in the TIME, M2 cells start to produce VEGF, which
enhances the “feed-forward” loop, attracting new macrophages to the TIME, and TGF-β,
one of the most potent immunosuppressive cytokines, which transforms normal fibroblasts
and probably other stromal cells into cancer-associated fibroblasts (CAFs) [45]. CAFs, in
turn, are known to release immunosuppressive cytokines (such as high levels of TGF-β,
IL-10, and IL-6) in the TIME and to produce a stiff extracellular matrix that forms a sort of
impenetrable barrier for immune cells and impairs oxygen and drug distribution [46]. In
brief, the HNSCC TIME, ruled by high levels of TGF-β, leads to a self-renewing hypoxic
environment. Brooks JM et al. [47] validated a combined hypoxia and immune prognostic
classifier in HNSCC, finding three different categories: high hypoxia associated with low
immune infiltration, low hypoxia associated with high immune infiltration and a mixed cat-
egory. The first category is composed almost completely of carcinogen-associated HNSCCs
with the worst overall survival in comparison to the other two.

p53 is the most frequently mutated gene in carcinogen-associated HNSCC [48–50].
The loss of p53 function promotes the recruitment and instruction of suppressive myeloid
CD11b+ cells, in part through the increased expression of CXCR3/CCR2-associated chemokines
and macrophage-colony-stimulating factor (M-CSF), and attenuates CD4+ T-helper 1 (Th1)
and CD8+ T-cell responses in vivo; additionally, p53-null tumors also show an accumulation
of suppressive regulatory T (Treg) cells [10,51].

4.3. How HPV Affects HNSCC TIME and Influences Escape Mechanisms

HPV-associated OPSCC is increasing, mainly in the US and Western Europe, with a 10–
30-year latency after oral sex exposure [9,25]. The outcome of non-metastatic HPV-positive
oropharyngeal cancer is more favorable than the HPV-negative form, because it tends
to have a better response to radiotherapy and chemotherapy, and patients are generally
younger with better performance status [2].

Persistent infection with high-risk HPV (especially type 16) has been demonstrated to
be the cause of virus-associated OPSCC. The virus exclusively infects basal keratinocytes
and replicates only in fully mature epithelial cells, which are intrinsically programmed
for death, and therefore, their death does not alert the immune system [52]. Hence, viral
antigens are detectable only in superficial epithelial cells destined for desquamation and
remote from immunological surveillance [53], enabling the virus to be undetected for long
periods [54]. HPV-associated oncogenesis is controlled by the E6 and E7 oncoproteins [55].
The former promotes p53 degradation, upregulates telomerase activity, and maintains
telomere integrity during repeated cell divisions, while E7 binds to retinoblastoma protein
(pRb), allowing uncontrolled cell division. E7 can bind and degrade proteins that control
cell-cycle entry in the basal and upper epithelial layers and thus is able to stimulate host
genome instability through the deregulation of the centrosome cycle [56].

In previous clinical studies, the E6 and E7 long peptides showed their immunogenicity
in being able to induce HPV-specific CD4+ and CD8+ T-cell proliferation and activity. From
these findings, vaccines for the immunotherapy of HPV16-induced progressive infections,
lesions, and malignancies have been developed [57].

Viral E6 and E7 oncoproteins are also known to be the main drivers of the immune
escape mechanism in HPV-associated HNSCC [58], deregulating multiple immunity-related
pathways to avoid recognition and clearance by the host immune system. E6 and E7 are
able to downregulate activating chemokines such as CCL20, CCL2, and IL-8, leading to
a reduction in dendritic cell (DC), monocyte, and neutrophil recruitment [59]; moreover,
E6 and E7 enhance the release of inhibitory cytokines, such as: (a) IL-10, one of the most
important immunosuppressive cytokines, which is able, among other functions, to initiate
CD8+ cell exhaustion via activation of the transcriptional factor TOX, which contributes to
the upregulation of PD1, TIGIT, TIM3, and LAG3 [60]; (b) TGF-β, which induces CD8+ T-
cell and NK cell inhibition and the switch of CD4+ cells to CD4+ FOXP3+ (Tregs), eventually
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resulting in tumor tolerance and immune evasion [61]; (c) CXCL12, which contributes to
Treg and Th2 cell recruitment [59].

The secretion of extracellular vesicles (EVs) is another important mechanism of im-
mune escape [62] in HPV-positive cancers, based on cell–cell and cell–environment interac-
tions between cancer and immune cells. It has been reported that HPV-positive cells release
EVs that modify the microenvironment, enhancing tumor development and chemoresis-
tance [58,63]. The role of EVs in the immune response was first described in 1996 [64]. In
the last three decades, several studies have been conducted to explore EVs’ mechanism
and influence on immune escape [65]. EVs harbor immunosuppressive molecules such as
Fas-Ligand or tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL), checkpoint
receptor ligands (PD-L1), or inhibitory cytokines (IL-10, TGF-β, and prostaglandin E2) [66].

E6 and E7 oncoproteins are also involved, in a dose-dependent manner, in interfering
with the transcriptional activity of NF-KB [67], with a crucial negative switch on the
inflammation triad, composed of IL-1 [68], TNF-α [69], and IL-6 [70].

Toll-like receptor 9 (TLR9) and stimulator of interferon genes (STING) are specific
sensor proteins that are able to recognize DNA from viruses or bacteria within the cell
cytosol or endosomal compartments and activate a type I IFN response [71]. Recently,
Wang S et al. [72] showed that TLR9 was more often underexpressed in HPV-positive
HNSCC tumors compared to their HPV-negative counterparts, and it is associated with a
relatively poor prognosis. The HPV E7 oncoprotein can antagonize the STING pathway
via NLRX1, which is a critical intermediary partner for STING turnover. In a preclinical
model, the depletion of NLRX1 resulted in significantly improved type I IFN–dependent
T-cell infiltration profiles and tumor control [73].

The TIME of HPV-positive HNSCC is considered “inflamed” by definition [43], en-
riched with CD8+ cells, CD4+ cells, Tregs, B cells, NKs, and M1-phenotype macrophages,
with high expression of PD-L1 [10].

A recent study established a spectrum of differences between immune lineages in
carcinogen-related versus HPV-positive HNSCC: besides CD8+ cells and Treg cells, similar
lineages in both types of HNSCC, CD4+ T cells, B cells, and myeloid cells display different
immune lineages, so it may require more tailored therapies [74]. These differences between
HPV-positive and HPV-negative HNSCC TIMEs might be due to the presence of viral
antigens (episomal or integrated components) [55], which may prime HPV-positive patients
for enhanced antitumor immunity [74].

Using an RNA-seq analysis of 84 HPV-positive HNSCC tumors, Koneva et al. [55]
explored the presence of HPV integration sites in cancer transcriptomes. They showed that
integration-negative tumors (defined by the absence of the expression of viral–host fusion
RNA transcripts) have better OS and higher levels of immune-related genes than those
with integration-positive tumors [55]. Moreover, they found that the OS of integration-
positive patients was similar to that of HPV-negative patients. Integration-negative tumors
were characterized by strongly heightened signatures for immune cells, including CD4+,
CD3+, regulatory, CD8+ T cells, NK cells, and B cells, compared with integration-positive
tumors [55].

4.4. How EBV Affects Nasopharyngeal Cancer (NPC) TIME and Its Influence on
Escape Mechanisms

Non-keratinized undifferentiated NPC is closely related to EBV infection [4]. Although
this tumor originates from squamous cells of the nasopharyngeal mucosa, due to its
outcome, it may be considered separately. NPC has a low incidence rate worldwide (just
0.7% of all cancers globally in 2018 [1]), but it is endemic in Southeast Asia with a high
mortality rate [75]. Advanced disease contributes to high mortality rates in these endemic
regions [75]. EBV infection in the epithelium of the nasopharynx can progress from lytic
to latent infection, which is strongly associated with the carcinogenesis of NPC [76]. EBV
is able to maintain the expression of various viral proteins, such as EBV nuclear antigen 1
(EBNA1), latent membrane protein 1 (LMP1), LMP2A, and LMP2B, during latent infection
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inside NPC cells [76]; all of these proteins are important in balancing viral replication and
protein expression in order to prevent the presentation of viral antigens to the immune
system [77], resulting in an oncogenic but weakly immunogenic nature.

The previously mentioned ethnic differences in NPC incidence suggest a major influ-
ence of genetic susceptibility, which is strongly linked to the immune escape mechanism
underlying this disease. Epidemiological studies and recent large-scale genome-wide as-
sociation studies have strongly demonstrated the association between HLA class I genes
and NPC risk. Since HLA class I genes encode proteins that identify and present foreign
antigens for the initiation of the host immune response against infected or malignant cells,
it is hypothesized that high-risk populations with specific HLA haplotypes may be less
efficient in mounting immune responses against latent EBV infection in the nasopharyngeal
epithelium [78].

The knowledge of the role of EBV latent genes in immune evasion by NPC is yet
to be completely achieved. Nevertheless, growing evidence shows several mechanisms
that protect NPC cells from the host immune system. EBV-positive NPC cells are able to
secrete cytokines and exosomes that drive the TIME toward immune suppression [79]:
data from whole-exome sequencing and single-cell sequencing studies have progressively
shown tumor infiltration by dysfunctional and exhausted CD8+ T cells and effector T
(Teff) cells that overexpress inhibitory immune checkpoints, such as PD-L1, LAG3, galectin
9–TIM3, TIGIT, and CTLA4; moreover, other immunosuppressive cells, such as Tregs,
TAMs-M2, and MDSCs, and various inhibitory cytokines have been identified to contribute
to immunosuppression [79].

T-cell exhaustion represents one of the most important ways to block antitumor
immune responses; unfortunately, the underlying mechanisms of this process are still
largely unknown [80]. Recently, two different single-cell sequence analyses of CD8+ T cells
from the TIME and the peripheral blood of EBV-positive NPC identified high numbers of
exhausted CD8+ T cells, together with a significantly more restricted T-cell receptor (TCR)
repertoire in both compartments, which explains the reduction in cytotoxic activity [32,81].
EBV-positive tumors are able to induce a highly variable pattern of TIME with increased
numbers of different immune cell subsets, in particular, high frequencies of effector T
cells, Tregs, and TAM-M2 cells. Of special interest, NPC cells can induce Tregs, suppress
effector T cells, and regulate HLA class I expression, producing the so-called EBV-associated
BamHI-C fragment rightward reading frame 1 (BCRF1) protein, which can encode viral
IL-10 (vIL-10). vIL-10 has a very high sequence similarity to its human counterpart, IL-
10 [82], exerting immunosuppressive effects on T cells but lacking the immunostimulatory
effect of IL-10, which may contribute to the progression of tumors [83]. Furthermore,
EBNA1 expression, for example, can upregulate CCL20, which recruits Treg cells that
inhibit cytotoxic T-cell activities [84]. LMP1 can induce PD-L1- and galectin-9-containing
exosomes, which enhance T-cell apoptosis and inhibit the functions of immune cells [85].
LMP2A and LMP2B are able to downregulate the antiviral response to interferon, inducing
an increase in the turnover of interferon receptors [86]. Moreover, the abundant presence of
a particular group of EBV-encoded microRNAs, named miR-BARTs, encoded by specific
intronic regions of NPC, can activate the evasion of cell-surface major histocompatibility
complex class I–related chain B for immune cell recognition, reducing the transcriptional
activation of IFNγ and inhibiting NLRP3 inflammasome activation [87–89].

In NPC, the persistent activation of NF-kB pathways by somatic gene alterations
or viral oncoproteins has been shown to play a crucial role in NPC tumorigenesis [90].
NF-kB is a family of five transcription factors: NF-kB1 (p105/p50, encoded by Nfkb1),
NF-kB2 (p100/p52, Nfkb2), RelA (Rela), RelB (Relb), and c-Rel (Rel); in the resting state,
NF-kB subunits are retained in the cytosol by IkB proteins and by unprocessed p105 and
p100, which function as inhibitors. The activation of diverse receptors leads to the nuclear
translocation of homo- or heterodimers of NF-kB subunits, which can then activate or
repress gene transcription [91]. NF-kB signaling is key for immune function, and it is likely
necessary for antitumor immunity [90]. Li YY et al. [92] showed that the majority of NPCs
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display the activation of the NF-kB signaling pathway as a result of somatic inactivating
mutations in negative regulators of NF-kB. Previous studies have suggested a role for the
non-canonical NF-kB pathway in Treg development and maintenance. Additionally, chronic
inflammation recruits myeloid-derived suppressor cells (MDSCs), which promote NF-KB-
controlled Treg cells to stimulate tumor angiogenesis and immune evasion [93]. In EBV-
positive NPC cells, activated NF-kB regulates a number of chemokines (CXCL9, CXCL10,
CX3CL1, and CCL20), which recruit tumor-infiltrating T lymphocytes and modulate the
NPC tumor environment [78].

5. How Different HNSCC Risk Factors Influence the Response to Immunotherapy in
Clinical Trials

There have been conflicting results on the response to immunotherapy in HPV-positive
and HPV-negative patients from published HNSCC clinical trials (see Table 2). On the one
hand, some clinical trials, such as KEYNOTE-012 [94,95] (pembrolizumab) and HAWK [96]
(durvalumab), showed greater benefits and response rates in HPV-positive OPSCC patients
compared to HPV-negative patients. On the other hand, the CheckMate 141 study [5,90]
found an OS advantage in individuals treated with nivolumab compared to the investi-
gator’s choice, irrespective of HPV status. However, patients positive for both HPV and
PD-L1 expression presented the greatest OS benefit from nivolumab (HR 0.39; 95% CI
0.18–0.81). In KEYNOTE-040 [97], the median OS in the pembrolizumab cohort was
8.4 months (95% CI 6.4–9.4) vs. 6.9 months in the investigator’s cohort (95% CI 5.9–8.0).
HPV-positive subjects had a similar OS benefit to the overall cohort in stratified analysis.
More recently, KEYNOTE-048 [7] demonstrated that pembrolizumab +/− chemother-
apy is superior to the standard first-line EXTREME regimen (cetuximab plus platinum-5-
fluorouracil) in OS in a PD-L1 combined positive score (CPS) of ≥1 patient. As KEYNOTE-
048 included both HPV-positive and HPV-negative patients, with a balanced proportion
across arms, the new first-line standards of care for R/M HNSCC remain agnostic to
HPV status.

In an effort to better understand the impact of HPV status on the response to anti-PD1
immunotherapy, a meta-analysis has recently been published: Galvis MM et al. [98], as-
sessing data collected from 11 clinical trials including 1860 R/M HNSCC patients treated
with immunotherapy, reported that HPV-positive tumors were more responsive to im-
munotherapy than HPV-negative tumors for all outcome parameters they analyzed. In-
deed, HPV-positive patients were numerically more likely to respond to immunotherapy
than HPV-negative patients (risk ratio 1.29; 95 % CI = 0.85–1.96 I2 = 0%; overall effect
p = 0.24). Moreover, when the authors simply compared the average OS of HPV-positive
and HPV-negative tumors, they found that it was 11.5 months vs. 6.3 months, respectively
(no statistical analysis reported) [98].

In 2021, a meta-analysis conducted on seven studies including 814 R/M HNSCC
patients treated with PD-1 or PD-L1 inhibitors as single agents found that HPV-positive
HNSCC patients displayed significantly longer OS than HPV-negative HNSCC patients.
The objective response rate (ORR) of patients with HPV-positive HNSCC was significantly
greater than that of their HPV-negative counterparts (OR = 1.77; 95% CI = 1.14–2.74;
p = 0.01). Interestingly, the benefit was greater for the pooled anti-PD-L1 trials (OR = 2.66;
95% CI = 1.16–6.11; p = 0.02) compared to the pooled anti-PD-1 trials (OR = 1.51; 95%
CI = 0.90–2.54; p = 0.12) [99]. The authors explained this last finding by the possibility that
the blocking of PD-L1 on dendritic cells, abundant in the HPV-positive TIME, might relieve
the cis sequestration of CD80 (this receptor can be induced by the HPV16 E7 oncoprotein),
which allows the CD80/CD28 interaction to enhance T-cell priming [100] and, consequently,
might represent a mechanism of the increased benefit in the HPV-positive population.
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Table 2. Clinical trials using ICIs in HNSCC.

Clinical Trial
and

Authors
Study Design Setting Intervention

Drugs and ICIs Population ORR PFS OS

Keynote-012 [94]
Seiwert, T.Y.;
et al., Lancet
Oncol. 2016

1b,
nonrandomized,

open-label

R/M HNSCC
2◦line Pembrolizumab

84 pts
-23 (38%) HPV+

vs. 37 (62%)
HPV-

-61 (78%) PD-L1
> 1

-51 (85%) with
tobacco use

18% (8 of 45; 95%
CI 8–32);

25% in HPV + vs.
19% in HPV-

2 m (95% CI 2–4);
4 m in HPV+

and 2 m in HPV-

13 m (95% CI 5-
not reached),

not reached in
HPV+ vs. 8 m in

HPV-

Hawk Study [96]
Zandberg, D.P.

et al., Eur J
Cancer, 2018

Phase II,
single-arm

R/M HNSCC
2◦line Durvalumab

112 pts with
PD-L1 > 25%

-34 (34.3%) HPV+
vs. 65 (65.7%)

HPV-
-69 of 102 (61.8%)
with tobacco use

16.2% (95% CI
9.9–24.4);

29.4% in HPV +
vs. 10.8% in

HPV-.

2.1 m (95% CI
1.9–3.7);

3.6 m in HPV+
and 1.8 m in

HPV-

7.1 m (95% CI,
4.9–9.9);

10.2 m in HPV+
vs. 5 m in HPV-

CheckMate 141
[6]

Ferris, R.L.; Oral
Oncol. 2018

Phase III,
randomized,
open-label

R/M HNSCC
2◦line

Nivolumab vs.
standard care 2:1

240 pts received
Nivolumab, and

121 received
standard care
-113 (26.2%)

HPV+ in
Nivolumab

group and 65
(24.0%) in

standard care
-148 (57.3%)
PD-L1 > 1

-191 (79.6%) with
tobacco use in

Nivolumab
group and 85

(70.2%) in
standard care

13.3% (95% CI,
9.3–18.3),

including 6 CR
and 26 PR, in
Nivolumab

group vs. 5.8%
(95% CI,
2.4–11.6),

including 1 CR
and 6 PR, in

standard care

ORR in HPV+:
15.9% in

Nivolumab
group vs. 3.4%

in standard care
(OR: 5.28; 95% CI

0.64–43.4);
ORR in HPV-:

8% in
Nivolumab

group vs. 11.1 in
standard care

(OR: 0.70; 95% CI
0.16–2.99)

ORR in PD-L1 >
1: 17% in

Nivolumab
group vs. 1.6%

in standard care
(OR: 12.33; 95%
CI 1.58–96.04)

2 m (95% CI,
1.9–2.1) in

Nivolumab
group vs. 2.3 m
(95% CI, 1.9–3.1)
in standard care

7.5 m (95% CI,
5.5–9.1) in

Nivolumab
group and 5.1 m
(95% CI, 4–6) in
standard care

OS in HPV+: 9.1
m in Nivolumab
group vs. 4.4 in
standard care

(HR: 0.56; 95% CI
0.35–0.99);

OS in HPV-: 7.5
m in Nivolumab
group vs. 5.8 in
standard care

(HR: 0.73; 95% CI
0.42–1.25, p: 0.55)

OS in PD-L1 > 1:
8.7 m in

Nivolumab
group vs. 4.6 in
standard care

(HR: 0.55; 95% CI
0.36–0.83)
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Table 2. Cont.

Clinical Trial
and

Authors
Study Design Setting Intervention

Drugs and ICIs Population ORR PFS OS

Keynote-040 [97]
Cohen, E.E.W.

et al.
Lancet (2019)

Phase III,
randomized,
open-label

R/M HNSCC
2◦line

Pembrolizumab
vs. standard care

247 pts received
Pembrolizumab,
and 248 received

standard care
-61 (25%) HPV+

in
Pembrolizumab

group and 58
(23%) in

standard care
-196 (79%) PD-L1

CPS > 1 in
Pembrolizumab
group and 191

(77%) in
standard care

-179 (72%) with
tobacco use in

Pembrolizumab
group and 182

(73%) in
standard care

14.6 (95%CI
10.4–19.6) in

Pembrolizumab
group vs. 10.1%
(95% CI 6.6–14.5)
in standard care

ORR in PD-L1 >
1: 17.3% in

Pembrolizumab
group vs. 9.9%

in standard care

2.1 m (95%CI
2.1–2.3) in

Pembrolizumab
group vs. 2.3 m
(95% CI 2.1–2.8)
in standard care

(HR: 0.96; 95% CI
0.79–1.16)

PFS in PD-L1
CPS > 1;
2.2 m in

Pembrolizumab
group vs. 2.3 in
standard care

(HR: 0.86; 95% CI
0.69–1.06)

8.4 m (95%CI
6.4–9.4) in

Pembrolizumab
group vs. 6.9 m
(95% CI 5.9–8.0)
in standard care

OS in PD-L1 CPS
> 1;

8.7 m in
Pembrolizumab
group vs. 7.1 in
standard care

(HR: 0.74; 95% CI
0.58–0.93);

OS in PD-L1 CPS
> 50;

11.6 m in
Pembrolizumab
group vs. 6.6 in
standard care

(HR: 0.53; 95% CI
0.35–0.81)

Keynote-048 [7]
Burtness, B. et al.

Lancet (2019)

Phase III,
randomized,
open-label

R/M HNSCC
1◦st line

Pembrolizumab
alone vs.

Pembrolizumab
plus platinum
and 5-FU vs.
EXTREME

301 pts received
Pembrolizumab

alone, 281 pts
received

Pembrolizumab
with

chemotherapy,
and 300 pts

received
EXTREME

-63 (21%) HPV+
in

Pembrolizumab-
alone group, 60

(21%) in
Pembrolizumab

with
chemotherapy
group, and 66

(22%) in
EXTREME group
-257 (85%) PD-L1

CPS > 1 in
Pembrolizumab-
alone group, 242

(86%) in
Pembrolizumab

with
chemotherapy
group, and 255

(86%) in
EXTREME group
-239 (79%) with
tobacco use in

Pembrolizumab-
alone group, 224

(80%) in
Pembrolizumab

with
chemotherapy
group, and 234

(78%) in
EXTREME group

-16.9% in
Pembrolizumab-
alone group vs.

36% in
EXTREME group

in all pts
-19.1% in

Pembrolizumab-
alone group vs.

34.9% in
EXTREME group

in CPS > 1
-23.3% in

Pembrolizumab-
alone group vs.

36.1% in
EXTREME group
in CPS > 20 (HR:

0.99; 95% CI
0.76–1.29)

-35.6% in
Pembrolizumab

with chemo
group vs. 36.3%
m in EXTREME
group in all pts

-36.4% in
Pembrolizumab

with chemo
group vs. 35.7%
m in EXTREME
group in CPS > 1

-42.9% in
Pembrolizumab

with chemo
group vs. 38.2%
m in EXTREME
group in CPS >

20

-2.3 m in
Pembrolizumab-
alone group vs.

5.2 m in
EXTREME group

in all pts (HR:
1.29; 95% CI

1.09–1.53)
-3.2 m in

Pembrolizumab-
alone group vs.

5.0 m in
EXTREME group
in CPS > 1 (HR:

1.13; 95% CI
0.94–1.36)
-3.4 m in

Pembrolizumab-
alone group vs.

5.3 m in
EXTREME group
in CPS > 20 (HR:

0.99; 95% CI
0.76–1.29)

-4.9 m in
Pembrolizumab

with chemo
group vs. 5.2 m

in EXTREME
group in all pts

(HR: 0.93; 95% CI
0.78–1.11)
-5.1 m in

Pembrolizumab
with chemo

group vs. 5.0 m
in EXTREME

group in CPS > 1
(HR: 0.84; 95% CI

0.69–1.02)
-5.8 m in

Pembrolizumab
with chemo

group vs. 5.3 m
in EXTREME

group in CPS >
20 (HR: 0.76; 95%

CI 0.58–1.01)

-11.5 m in
Pembrolizumab-
alone group vs.

10.7 m in
EXTREME group

in all pts (HR:
0.83; 95% CI

0.70–0.99)
-12.3 m in

Pembrolizumab-
alone group vs.

10.3 m in
EXTREME group
in CPS > 1 (HR:

0.74; 95% CI
0.61–0.90)
-14.8 m in

Pembrolizumab-
alone group vs.

10.7 m in
EXTREME group
in CPS > 20 (HR:

0.58; 95% CI
0.44–0.78)

-13.0 m in
Pembrolizumab

with chemo
group vs. 10.7 m

in EXTREME
group in all pts

(HR: 0.72; 95% CI
0.60–0.87)
-14.7 m in

Pembrolizumab
with

chemotherapy
group vs. 11 m
in EXTREME

group in CPS >
20 (HR: 0.60; 95%

CI 0.45–0.82)
-13.6 m in

Pembrolizumab
with

chemotherapy
group vs. 10.4 m

in EXTREME
group in CPS > 1
(HR: 0.65; 95% CI

0.53–0.8)
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Recently, a small but intriguing study analyzing circulating immune cells using flow
cytometry and gene expression profiling in [24] HNSCC patients treated with ICIs showed
that HPV-positive HNSCC had a higher content of plasma B cells and a more robust B-cell
signature than HPV-negative HNSCC. In this limited series, elevated B-cell and plasma cell
numbers were correlated with more favorable outcomes in terms of PFS. These findings,
taking into account the small sample size of the study and its intrinsic limitations, suggest
that B cells and plasma cells have beneficial roles in antitumor immunity within the TIME
and are associated with favorable responses to immunotherapy [101].

Several clinical trials studied the use of ICIs in NPC; most of them were phase II trials
of anti-PD-1 or anti-PD-L1 monotherapies in treatment-refractory populations (see Table 3).
The results of these trials were pooled in a meta-analysis, which revealed an ORR of 27%, a
1-year PFS of 25%, and a 1-year OS of 61% for patients receiving anti-PD-1 antibodies [102].

Table 3. Clinical trials in NPC.

Clinical Trial
and

Authors
Study Design Setting Intervention:

Drugs and ICIs Population Response PFS OS

NCI-9742 [103]
Ma, B.B.Y. et al. J.

Clin. Oncol.
(2018)

Multicenter,
phase II

R/M NPC
previously

treated
Nivolumab

45 pts received
Nivolumab:

-24 (53.3%) pts
had PD-L1 in

tumor cells < 1%,
18 pts (40%) had
PD-L1 > 1, and 3

(6.7%) pts
unknown

-31 (68.9%) pts
had PD-L1 in
immune cells
<1%, 10 pts
(22.2%) had

PD-L1 > 1, and 4
(8.9%) pts
unknown

-26 (57.8%) pts
had HLA-A

expression, 15
pts (33.3%) had

HLA-A loss, and
4 (8.9%) pts
unknown

-21 (46.7%) pts
had HLA-B

expression, 20
pts (44.4%) had

HLA-A loss, and
4 (8.9%) pts
unknown

Trend of EBV
DNA in cycle 1:
not detectable in

1 (2.2%) pt,
increasing in 19
(42.2%) pts, and
decreasing in 25

(55.6%) pts.

Confirmed
response rate:
20.5% (95% CI

9.8–35.3):
-CR in 1 (2.3%)

pt, PR in 8
(18.2%) pts, SD

in 15 (34.1%) pts,
PD in 18 (40.9%)
pts, and 2 (4.5%)

pts NA

13% RR in 3 of 23
pts with PD-L1

tumor cells <1%,
29% RR in 2 of 7
pts with PD-L1

tumor cells
<10%, and

33% RR in 4 of 11
pts with PD-L1

tumor cells >
10%

2.8 m (95% CI
1.8–7.4)

PFS:
-4.8 m (95% CI
2.7–14) in pts
with loss of

HLA-A and/or
HLA-B

-1.8 m (95% CI
1.7–7.4) in pts

expressing
HLA-A and/or

HLA-B

17.1 m (95% CI,
10.9-NR)

OS:
-NR (95% CI

59.2%−96.8%) in
pts with loss of
HLA-A and/or

HLA-B

-10.9 m (95% CI
9.7-NR) in pts

expressing
HLA-A and/or
HLA-B, p = 0.08
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Table 3. Cont.

Clinical Trial
and

Authors
Study Design Setting Intervention:

Drugs and ICIs Population Response PFS OS

Keynote-028
[104]

Hsu C. et al.,
J. Clin. Oncolo,

(2017)

Phase 1b,
nonrandomized,

open-label

R/M NPC
previously

treated
Pembrolizumab

27 pts with
PD-L1 > 1%

received
Pembrolizumab

-10 (37%) pts had
nonkeratinizing

differentiated
histology of

NPC, 8 (29.6%)
had

undifferentiated
histology, 6
(22.2%) had
keratinizing

squamous cells,
and 3 (11.1%)

were unclassified

25.9% (95% CI
11.1–46.3):

-no CR 0% (95%
CI, 0–12.8); PR in
7 (25.9%) pts, SD
in 14 (51.9%) pts,

and PD in 6
(22.2%)

In 7 pts with PR,
the DOR was

17.1 m (4.8 to >
22.1+1m), and all

7 of these pts
had PD-L1

expression in the
tumor only

6.5 m (95% CI,
3.6–13.4).

50% and 33.4%
PFS rate at 6 and

12 months,
respectively

16.5 m (95% CI,
10.1-NR)

85.2% and 63%
OS rate at 6 and

12 months,
respectively

CAPTAIN-1ST

[105]
Yang, Y. et al.
Lancet Oncol.

(2021)

Multicenter,
Phase III,

randomized,
double-blind

R/M NPC
In 1◦st line

Camrelizumab
plus cis-gem

(cam group) vs.
placebo plus

cis-gem (place
group)

134 pts in cam
group; 129 pts in

place group

- Positive
baseline plasma
EBV DNA level

in 95 (71%) pts in
cam group and

86 (67%) in place
group; negative
baseline plasma
EBV DNA level
in 39 (29%) in

cam group and
43 (33%) in place

group

-
Nonkeratinizing

differentiated
histology of NPC
in 21 (16%) pts in
cam group and

21 (16%) in place
group,

undifferentiated
histology in 110

(82%) in cam
group and 106
(82%) in place

group,
keratinizing

squamous cells
in 1 (<1%) in cam

group and 1
(<1%) in place

group, and other
types in in 2 (1%)

in cam group
and 1 (>1%) in

place group

87.3% (95% CI
80.5–92.4) in cam
group and 80.6%

(95% CI,
72.7–87.1) in
place group

-CR in 7 (5%) in
cam group and 4

(3%) in place
group, PR in 110

(82%) in cam
group and 100
(78%) in place

group, SD in 12
(9%) in cam

group and 18
(14%) in place
group, PD in 2

(1%) in cam
group and 4 (3%)

in place group,
and NA in 3 (2%)

in cam group
and 3 (2%) in
place group

9.7 m (95%, CI
8.3–11.4) in cam
group vs. 6.9 m

(95% CI, 5.9–7.3);
HR: 0.54 (95% CI,

0.39–0.76)

-9.9 m (95%, CI
8.1–12.3) in EBV

DNA + cam
group and 6.8 m
(95%, CI 5.7–7.1)

in EBV DNA+
place group

-15.1 m (95%, CI
9.5-NR) in EBV

DNA- cam
group and 9.5 m
(95%, CI 6.6–12.2)

in EBV DNA-
place group

-11.4 m (95% CI
7-NR) in

nonkeratinizing
differentiated

histology of NPC
in cam group

and 7.8 (95% CI
5.4–10.9) in place

group,
10.2 m (95% CI

8.3–13.7) in
undifferentiated
histology in cam
group and 6.9 m
(95% CI 5.7–7.6)
in place group,

and 12.4 (95% CI
9.7–13.9) in other

types in cam
group and 7.1

(95% CI 5.8–8.3)
in place group

NR in cam group
and 22.6 m in

place group (HR:
0.67, 95% CI

0.41–1.11)

The NCI-9742 phase II trial [103], which assessed the antitumor activity of nivolumab
in R/M NPC patients who progressed to platinum-based chemotherapy, found that 9 out
of 45 patients (ORR 20.5%) achieved an objective response after a median follow up of
12.5 months (1-year OS 59%). The authors did not identify any associations among PD-L1
expression, plasma EBV-DNA clearance, and survival.

KEYNOTE-028 [104] was a multicohort, nonrandomized, phase Ib trial that enrolled
PD-L1-positive relapsed/metastatic NPC patients after chemotherapy progression. The
results revealed that 7 of 27 patients (ORR 26%) achieved an objective response with
pembrolizumab after a median follow-up of 20 months (1-year OS 63%).
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Significant results were achieved in a recent randomized, double-blind, phase 3 trial
(CAPTAIN-1st) [105] comparing camrelizumab plus chemotherapy versus placebo plus
chemotherapy as first-line treatment in patients with R/M NPC. The authors found that
PFS was significantly prolonged in the experimental arm (9.7 months, 95% CI 8.3–11.4)
compared to the placebo group (6.9 months, 5.9–7.3; HR 0.54, 95% CI 0.39–0.76; one-
sided p = 0.0002). In a very recent real-world study enrolling 46 patients with R/M NPC
treated with immunotherapy in two nonendemic regions, the ORR was 26.2%, and durable
responses were observed. A low disease burden could serve as a biomarker for the response
to ICIs.

Last year, a “Real-World” study carried out in two nonendemic regions [106] with
46 patients affected by R/M NPC and treated with ICIs showed an ORR of 26.2% with a
median OS of 19.1 months (95%CI: 11.37−26.76) and a median PFS of 5.6 months (95% CI:
0.56−10.74). The researchers observed a negative association between aggressive disease
features (i.e., more than three metastatic sites, metastatic disease at initial diagnosis, and
positive pretreatment plasma EBV DNA) and the response to ICIs.

6. Conclusions

Immunotherapy constitutes an important weapon in medical oncologists’ arsenal
against HNSCC. Unfortunately, currently approved immune checkpoint inhibitors (i.e.,
pembrolizumab and nivolumab) achieve positive clinical results in a minority of treated
patients [6,7]. One way to overcome primary resistance to immune checkpoint inhibitors
and enhance the therapeutic response consists of analyzing the HNSCC TIME, looking
for new targets and/or immune axes to be pharmacologically modulated. Based on their
etiology, carcinogen-associated HNSCC (mostly tobacco-associated) and virus-associated
HPV-positive OPSCC or EBV-related NPC have distinct TIMEs, resulting in different
immune escape mechanisms [13,23].

Active HNSCC smokers display an immunosuppressed TIME because of direct T-cell
inhibition by CSE [33], the suppression of T-cell chemotaxis, and a consequent reduction
in T-cell tumor infiltration [11]; moreover, the IFNα and IFNγ axis is downregulated,
which, among other effects, leads to low PD-L1 and PD-L2 expression with a low re-
sponse to immune checkpoint inhibitors [107]. One of the main factors that characterize
the carcinogen-related HNSCC TIME and make it immunosuppressed and excluded is
hypoxia [47]. Carcinogen-related HNSCC enhances VEGF production and consequently
M2-cell migration and stabilization within the tumor, with TGF-β secretion [45], which pro-
motes the epithelial–mesenchymal transition (EMT), angiogenesis, and cancer-associated
fibroblast (CAF) activation, which in turn produces more TGF-β and angiogenic factors,
leading to an immunosuppressive loop mechanism [108,109].

Although the HPV-associated OPSCC TIME is “hot” [43] because of the richness
of activated immune cells, it can exploit viral E6 and E7 oncoproteins to overcome host
immune system control [58]. In fact, E6 and E7 promote the release of inhibitory cy-
tokines/chemokines, the downregulation of activating cytokines/chemokines, the secretion
of immunosuppressive EVs, and the inhibition of an important pathway, namely, NF-KB,
directly negatively affecting the inflammation triad [59–61]. Recently, E6 and E7 have been
found to be involved in the inhibition of TLR9 and STING, external DNA sensor proteins,
resulting in IFN immune-mediated response reduction [72,73].

Single ICIs still display marginal activity on advanced EBV-related NPC [79,110].
Better results are obtained when anti-PD1 treatment is associated with chemotherapy [105].
In NPC cells, a major immune escape mechanism is the existence of EBV in a state of type
II latency, which limits the expression of non-coding RNAs and oncogenic EBV-related
proteins, maintaining a low immunogenic profile, which favors evasion from host immune
surveillance [79]. Although the NPC TIME is heavily infiltrated by immune cells around
and within tumor lesions [111], it is characterized by the overexpression of inhibitory
immune checkpoints, such as PD-L1, LAG3, galectin 9–TIM3, TIGIT, and CTLA4, which
mark exhausted CD8+ T cells and, together with Tregs, M2s, MDSCs, and inhibitory
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cytokines, make it immunosuppressive. New attempts to better understand NPC TIME
biology have already been performed in an attempt to identify specific NPC immune
subsets using new-generation gene expression profiling techniques [112] and single-cell
transcriptomics [111].

Taking into account all of the previously mentioned factors, our opinion is that HNSCC
investigators should study virus-associated and carcinogen-associated HNSCC TIMEs sep-
arately. The differences between these two entities indicate that the exploration of immune
cell infiltration starting from large omics datasets, the spatial interaction between tumor
cells and immune cells, the CAFs in the stromal compartment, and all of the soluble factors
(chemokines and cytokines) involved in the immune response and escape mechanism will
define new clinical subsets, moving the focus from the cancer itself to its microenvironment.

In particular, CAFs, activated by M2 cells via TGF-β, are able to upregulate the ex-
pression of several cytoskeletal regulators that remodel the extracellular matrix (ECM),
increasing the global stiffness and creating a sort of wall between neoplastic cells and im-
mune cells. This represents one of the main etiologies of the immune-excluded phenotype
(see above) [113].

New preclinical and clinical findings will provide answers regarding the prognostic
role of TIME subsets, help in defining patients who are most likely to respond to im-
munotherapy strategies, and create new research hypotheses about how to modulate the
TIME in patients who seem to fit a less favorable profile.
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