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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive loss of cognitive functions. Today the
diagnosis of AD relies on clinical evaluations and is only late in the disease. Biomarkers for early detection of the underlying
neuropathological changes are still lacking and the biochemical pathways leading to the disease are still not completely
understood. The aim of this study was to identify the metabolic changes resulting from the disease phenotype by a
thorough and systematic metabolite profiling approach. For this purpose CSF samples from 79 AD patients and 51 healthy
controls were analyzed by gas and liquid chromatography-tandem mass spectrometry (GC-MS and LC-MS/MS) in
conjunction with univariate and multivariate statistical analyses. In total 343 different analytes have been identified.
Significant changes in the metabolite profile of AD patients compared to healthy controls have been identified. Increased
cortisol levels seemed to be related to the progression of AD and have been detected in more severe forms of AD. Increased
cysteine associated with decreased uridine was the best paired combination to identify light AD (MMSE.22) with specificity
and sensitivity above 75%. In this group of patients, sensitivity and specificity above 80% were obtained for several
combinations of three to five metabolites, including cortisol and various amino acids, in addition to cysteine and uridine.
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Introduction

Alzheimer’s disease (AD) is a progressive and devastating

neurodegenerative disorder of the brain characterized by loss of

neurons and synapses, particularly in regions related to memory

and cognition. AD is the most common form of dementia and its

prevalence increases dramatically with age, from1% at the age of

around 60 and up to 30% at the age of 85 or older [1].

Two main brain cortical lesions characterize AD: the accumu-

lation of abnormally phosphorylated tau protein into paired helical

filaments, known as neurofibrillary tangles (NFTs) within the

neuronal cell and accumulation of beta amyloid outside the

neurons in form of amyloid plaques and in the wall of cerebral

blood vessels [2].

Diagnosis of AD relies on a combination of neuropsychological

testing and the exclusion of other neurological, psychiatric or

systemic diseases by the means of physical, neurological and

laboratory examinations. The most often used neuropsychological

criteria to diagnose AD were developed by the National Institute of

Neurologic and Communicative Disorders and Stroke (NINCDS)

and the Alzheimer’s diseases and Related Disorders Association

(ADRDA) workgroup in 1984 [3]. Because the clinical diagnosis of

AD happens at a late stage of the disease, i.e. several years after the

onset of the neuropathological alterations, there was an urgent need

to revise these criteria in order to characterize the disease at a pre-

dementia stage. It was proposed to take into account neuroimaging

biomarkers and cerebrospinal fluid (CSF) analysis of amyloid beta

or tau proteins in addition to the presence of deterioration in specific

cognitive domains such as episodic memory [4]. In vivo imaging of

amyloid deposits in the brain using specific PET ligands have made

strong progress in the last few years and provide valuable tools for

diagnosis, patient stratification and monitoring disease progression

[5,6]. Main drawbacks of PET are its high cost and restriction to

highly specialized centers. Today, molecular CSF analyses appear

as more promising, simpler and less expensive than imaging

methods. The currently best CSF candidates are the amyloid-b (1–

42) fragment and the Tau protein. Combinations of these markers

reach sensitivity of about 90 to 95% and specificity about 85% (for

review see [7]). However, using these CSF markers there is still huge

overlap with other forms of dementia. and the capacity of these

parameters to identify the therapeutic efficacy of new disease-

modifying treatments has not yet been proven [8]. Taking into

account the multifactorial nature of AD, it is likely that the same

clinical manifestations are underlain by different neuropathological

mechanisms. Thus, combination of several biological markers

acting at different physiological levels can bring complementary

information for diagnostics of various disease phenotypes and for

monitoring biological drug effects.

High-density ‘‘Metabonomics/Metabolomics’’ approach offers

the prospect of efficiently distinguishing individuals with particular
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disease or toxic states on the basis of their metabolite profile in

biofluids. Emerging specific analytical technologies, including

nuclear magnetic resonance (NMR) and liquid chromatography-

tandem mass spectrometry (LC-MS) are particularly relevant to

produce unbiased metabolic signatures of biofluids and tissues (for

a review see [9]). In particular for CSF the situation is especially

favorable since many endogenous metabolites in this compartment

are known and have spectroscopically been assigned [10].

Here we show the metabolic profile in human CSF samples of

AD patients and age-matched healthy controls. This approach

attempts to identify candidates for biomarkers traced to particular

metabolites or pathways specific for AD or the underlying

neurodegenerative process and is used as a starting point for

further validation in independent sample sets.

Materials and Methods

Participants and ethics
Subjects of both sexes aged of 40 years or above were recruited

in five different clinical centres in Europe: One in Germany, one

in France, one in Switzerland, and two in Sweden, after approval

of the protocol by the ethics committee of the corresponding

countries: University Clinic Munich, CCPPRB Alsace I Stras-

bourg, Ethikommission beider Basel, University Clinic Huddinge

and Uppsala. All procedures were conducted according to the

principles expressed in the declaration of Helsinki and all subjects

gave their written informed consent. In case patients were

considered not to have the capacity, inform consent was given

by relatives.

Diagnosis of AD was made according to the NINCDS-ADRDA

and DSM IV criteria. The Hachinski ischemia scale was used to

exclude dementia of the vascular type. Controls were age-matched

cognitively normal persons. For all subjects, the following drugs

were prohibited: anticoagulants or anti-inflammatory (COX-2

inhibitors) for at least 3 months, symptomatic treatment for

cognitive disorders within 30 days, treatments for depression,

schizophrenia or anxiety if not stabilized for at least 30 days.

Details on demographic and clinical characteristics are given in

Table 1.

Study procedures
A MRI examination or PET scan was performed in patients if

these examinations were not realized within the last 12 months.

CSF samples were taken according to standard procedures in both

patients and healthy subjects for metabolite profiling and

determination of the concentrations of Abeta42 and tau protein.

Samples were collected using the same type of tubes, labeled by

Roche and shipped to the different clinical centers.

Metabolite Profiling. Three types of mass spectrometry

analysis were applied to all samples: GC-MS (gas chromatography-

mass spectrometry) and LC-MS/MS (liquid chromatography-MS/

MS) were used for broad profiling, as described elsewhere [11]. SPE-

LC-MS/MS (solid phase extraction-LC-MS/MS) was applied for the

determination of catecholamine and steroid levels. Proteins were

removed from CSF samples by precipitation. Subsequently polar and

non-polar fractions were separated for both GC-MS and LC-MS/

MS analysis by adding water and a mixture of ethanol and dichloro-

methane. For GC-MS analysis, the non-polar fraction was treated

with methanol under acidic conditions to yield the fatty acid methyl

esters derived from both free fatty acids and hydrolyzed complex

lipids. The non-polar and polar fractions were further derivatized

with O-methyl-hydroxyamine hydrochloride and pyridine to convert

oxo-groups to O-methyl-oximes and subsequently with a silylating

agent before analysis [12]. For LC-MS analysis, both fractions were

reconstituted in appropriate solvent mixtures. HPLC was performed

by gradient elution using methanol/water/formic acid on reversed

phase separation columns. Mass spectrometric detection technology

was applied which allows target and high sensitivity MRM (multiple

reaction monitoring) profiling in parallel to a full screen analysis

(Patent: WO2003073464). For GC-MS and LC-MS/MS profiling,

data were normalized to the median of reference samples which were

derived from a pool formed from aliquots of all samples to account for

inter- and intra-instrumental variation. Steroids, catecholamines and

their metabolites were measured by online SPE-LC-MS/MS [13].

Absolute quantification was performed by means of stable isotope-

labelled standards.

Statistical analysis
Simple (t-test) and multi-factor ANOVA models capturing the

factors gender and age in addition to disease status were estimated

for log10-transformed relative concentrations (Ratios) of all semi-

quantitative SQ-metabolites (see ‘‘Types, number and quality of

analytes measured’’) and absolute CSF concentrations of (p-)Tau

and amyloid beta proteins (Analysis conducted by the statistics

software R) [14]. ANOVA models were applied to correct

metabolic data for age and gender and to select metabolites with

high diagnostic potential. The resulting gender- and age-corrected

metabolites were combined (pairs to quintets) and the combinations

examined by binary disease status classification using penalised

logistic regression (PLR) [15] and receiver operating characteristics

(ROC) analysis [16]. Metabolite combinations were evaluated by

area under curve (AUC) values of their corresponding PLR

classifier. AUC values indicate the extent to which samples can be

correctly classified without specifying a classification threshold.

Multivariate statistics is a form of statistics encompassing the

simultaneous observation and analysis of more than one statistical

variable. Multivariate statistics was performed by using Simca P+
software (Umetrics, Umea, Sweden). The data analysis included

PCA (principal component analysis) and OPLS-DA (orthogonal

projections to latent structures-discriminant analysis). Prior to

PCA and OPLS-DA, data were scaled to unit variance introducing

a common scale for all metabolites independent of their absolute

amount of variance. Thereby, the resulting models obtained

robustness, i.e. they could not be dominated by a single or few

Table 1. Characteristic of study and participants for all
centers and core centers.

CHARACTERISTIC
Light to mild AD
(MMSE.22)

Moderate to
Strong AD
(MMSE 14–22) Control

No of participant1 (all)2 53 26 51

Participant (core)3 47 24 30

Gender M/F (all) 23/30 12/14 24/27

Gender M/F (core) 21/26 11/13 13/17

Age in years (all) 69.7 (69.5) 69.6 (610.1) 63.1 (67.7)

Age in years (core) 68.5 (69.3) 68.2 (69.3) 65.1 (68.8)

MMSE (all) 25.8 (61.7) 19.7 (62.6) na

MMSE (core) 25.8 (61.6) 19.7 (62.6) na

1sample volume: 500 ml CSF; for 4 patients with MMSE.22 ,500 ml were
available leading to incomplete data sets.

2‘‘all’’ means from five different clinical centers in Europe, two of them
providing only samples from controls (21) and AD (8), resp.

3‘‘core’’ includes only three from five centers which provided both control and
AD samples.

doi:10.1371/journal.pone.0031501.t001

Metabolite Profiling of Alzheimer’s Disease CSF
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high-variance metabolites. PCA is an explorative unsupervised

multivariate analysis method used for the detection of trends,

patterns and groupings among samples and variables. In addition,

it is also useful for the detection of biological outliers ( = deviating

samples that are extremely different from the rest of the data set).

Therefore, PCA was used both at the level of quality control as

well as to obtain an unbiased overview of the metabolite profiling

dataset. In order to focus on differences between specific sample

groups, i.e. AD patients and healthy controls, OPLS-DA as a

supervised multivariate approach was used for prediction and

classification purposes. Hereby, specific prior knowledge is

incorporated by assigning samples to the respective classes. The

principle of OPLS-DA is to well approximate metabolic data and

class assignments, and at the same time to maximize their

correlation. Abeta 42 and tau/pTau were measured using

commercially available ELISA assays (Innogenetics, Belgium).

Results

Study and sample details
Two of the participating centers provided only samples from

healthy controls (n = 21) and from AD patients (n = 8), respective-

ly. The samples were collected at various time points between

2000 and 2005. Disease samples originated from AD patients with

varying degree of dementia as indicated by different scores from

the MMSE: light or mild AD (MMSE.22), or strong AD (MMSE

14–22). In total 79 CSF samples from AD patients and 51 CSF

samples from healthy subjects were analyzed. In addition the

concentration of the AD protein biomarkers amyloid beta 42, p-

Tau 181, and Tau were known for a subset of 43 samples, 19 of

which were from the control group, 17 belonged to the group of

light AD patients and 7 to the group of strong AD patients. The

distribution of the samples over the various patient groups is

summarized in Table 1.

Types, number and quality of analytes measured
An overview of the various analytical methods that were applied

for metabolite profiling of the CSF samples is schematically shown

in Figure 1. In order to gain maximum information, the polar

phase was subjected to different liquid chromatographic separa-

tion conditions as well as different ionization techniques for mass

spectrometric detection. In LC-MS/MS, a targeted profiling

technology was applied which allowed for high sensitivity Multiple

Reaction Monitoring (MRM) in parallel to untargeted full screen

profile analysis [11]. For the lipid fraction, tandem-MS experi-

ments made the observation of specific transitions possible that are

typical for certain lipid classes, especially phospholipids.

A list of all structurally assigned metabolites with their relative

change in the different groups is provided in Table S1.

In addition, a number of catecholamines and steroids that are

discussed in the context of AD and are present in CSF at very low

concentration levels (ng/ml) were analyzed (Table S2). These

analytes are hardly accessible with standard metabolite profiling

techniques. In order to get access, two on-line SPE-LC-MS/MS

were applied that allow for absolute quantification by use of

calibration standards. The experimental details of all the

separation and metabolite profiling techniques have been

documented in the previous section.

Statistical analysis is confined to 343 analytes which were

measured at concentrations being well above the limit of

quantification (LOQ) allowing SQ analysis. This is to make sure

that results based on SQ-analyte data are analytically reliable, i.e.

SQ-analytes are used to detect quantifiable differentiating features

between sample collectives. The group of SQ analytes comprised

80 known metabolites, i.e. structurally assigned (target) metabo-

lites, including 15 hormones/neurotransmitters (steroids, catechol-

amines and related) for which absolute quantification was

provided, and 260 known-unknowns. The latter are those found

in each sample with a defined retention time and mass spectrum

but the identification via chromatopraphic comparison or isolation

and structural elucidation has not yet been accomplished.

Typically the number of known-unknowns is very much higher

in biological samples than the knowns.

Univariate statistical evaluation
Univariate statistical t-test analysis of the SQ-analytes was

carried out for females and males. The results are shown in table 2

for two different significance thresholds depending on gender and

disease status: light AD with MMSE.22, strong AD with MMSE

14–22 and all AD patients. Detailed statistical analysis data for all

structurally assigned metabolites is shown in Table S1.

The univariate statistical analysis revealed that female AD patients

show a higher number of significant metabolic changes than male

AD patients compared to healthy controls. This observation is in line

with larger sample groups yielding higher test power and larger age-

imbalance for females than for males. Furthermore, females

diagnosed with light AD (MMSE.22) exhibit more alterations than

those diagnosed with advanced AD (MMSE 14–22).

The intersection of significantly changed analytes (p,0.05;

ADall vs. controls) for females (29) and males (27) comprises 8

metabolites of which 7 are knowns, namely cysteine, uridine and

five hormones/neurotransmitters: cortisol, 3-methoxy-4-hydroxy

phenylglycol (MHPG), dopamine, noradrenaline and normeta-

nephrine. In general, the AD related metabolic changes are light

to moderate, e.g. increase by up to ,40% in the case of cortisol

(figure 2) or increase by 20–25% primarily in light AD patients for

cysteine (figure 3). Further examples are uridine and MHPG

which both are slightly decreased by ,10–20% in AD patients

compared to healthy subjects. In the case of cortisol the degree of

change seems to be related to the severity of AD, i.e. alterations

compared to controls are higher in the group of AD patients

exhibiting an MMSE score of 14–22 than in patients with

MMSE.22 (figure 2).

Most metabolite changes were particularly observed in the light

AD groups (table 2). Interestingly, the combination of cysteine

elevation and uridine decrease is best suited for distinguishing

these AD patients from healthy controls (figure 4).

Multivariate statistical analysis of SQ-analytes
Principal component analysis (PCA) for all 130 samples based on

the 343 SQ-analytes showed partial separation of gender in the score

Figure 1.The metabolite profiling techniques applied to the
analysis of CSF samples.
doi:10.1371/journal.pone.0031501.g001
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plot, mostly along principal component 2 (data not shown). Further,

samples from males and females exhibit an influence of age and/or

disease on the metabolite profile. In the PCA score plot AD patients,

especially the elder ones, are shifted approximately orthogonal to the

gender related segregation, i.e. primarily along principal component 1.

Analytes contributing significantly to separation between AD

patients and healthy controls were determined by O-PLS-DA of the

CSF data set (see material and methods). The resulting score plot,

involving all 343 SQ-analytes in the calculation, is shown in figure 5a

where separation between AD patients (MMSE.22) and healthy

controls was observed (cross-validation performed; Q2 = 0.23).

The relative contribution to class separation is visualized for the

343 analytes in the corresponding O-PLS coefficient plot (figure 5b).

The prominent role of cysteine and uridine for discriminating both

groups, a result which was already deduced from univariate

statistics, is confirmed. A similar comparison of the SQ-analyte

profile of patients exhibiting strong AD with those of healthy

subjects by O-PLS-DA leads to an equally good class differentiation

in the score plot (data not shown). Again cortisol was found to be the

most prominent analyte contributing to separation in addition to

dopamine, sorbitol and several unknowns.

Linear modeling of systematic differences in age, gender
and disease status

Systematic differences such as age, gender and center between

AD patients and healthy controls are inherently present in this

data set (table 1),Therefore, systematic age- and gender-related

effects were corrected by applying linear modeling employing the

relative concentrations (ratios) of all 343 SQ-analytes (see material

and methods for details). In addition to metabolite profiling data,

Table 2. Number of semi-quantitative analytes significantly altered in patients diagnosed with Alzheimer’s disease obtained from
t-test analysis in dependency of gender and significance threshold p (in grey: number of significant changes equal or below
expected false-positive rate).

significance threshold p Females AD MMSE.22 vs. controls AD MMSE 14–22 vs. controls AD all vs. controls

,0.05 All Centers 33 23 29

Core Centers only 20 15 17

,0.01 All Centers 9 4 13

Core Centers only 3 0 3

significance threshold p Males ADMMSE.22vs. controls ADMMSE 14–22vs. controls ADallvs. controls

,0.05 All Centers 24 21 27

Core Centers only 13 19 13

,0.01 All Centers 4 6 11

Core Centers only 1 6 4

doi:10.1371/journal.pone.0031501.t002

Figure 2.Increase of cortisol concentration observed for AD patients compared to healthy controls.
doi:10.1371/journal.pone.0031501.g002

Metabolite Profiling of Alzheimer’s Disease CSF
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total Tau, p-Tau, and amyloid beta 42 concentrations were

included as far as available; however center correction was not

reasonable in view of the limited availability of protein data in this

study. The result of the calculation for all centers with respect to

the influencing factors age, gender and disease status (light; strong

AD) is given in figure 6. The relative changes and significance level

for the 343 SQ metabolites and the proteins Tau, p-Tau 181 and

amyloid beta 42 are shown. The most significant metabolic effects

Figure 3.Increase of relative cysteine levels observed for AD patients compared to healthy controls: most prominent changes
detected in AD patients with MMSE 22.
doi:10.1371/journal.pone.0031501.g003

Figure 4. CSF cysteine and uridine levels of patients (females and males) exhibiting light AD (MMSE.22) compared to healthy
controls: ,75% of all samples can be correctly assigned to the respective patient group by using relative ratios for both metabolites.
doi:10.1371/journal.pone.0031501.g004
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are related to sex (blue) and age (green): increased levels of

testosterone and, to a lesser extent, elevated levels of 1,5-

anhydrosorbitol, phenylalanine, valine, choline, carnitine and uric

acids in males, and increased levels of uric acid and several

unknowns with respect to age. The most significant disease related

effects pertain to the proteins Tau/p-Tau (increase) and amyloid

beta42 (decrease) as well as several analytes identified by

metabolite profiling, particularly cysteine, several unknowns,

cortisol and ornithine, including minor components arginine and

citrulline, most of which are best correlated with light AD.

Almost 50% of healthy control samples from males originated

only from one center which did not contribute any AD sample to

the study. On the other hand there was also one center providing

only AD samples and no controls. To account for center effects

due to providing either no control or no AD samples a similar

calculation was done employing only the data from the three core

centers which provided samples from both, healthy controls and

AD patients (result not shown). This calculation included only

metabolite profiling data and not protein data because protein

data was insufficient for this sample subset (5 female and 2 male

values). The most prominent disease effects on metabolites were

identified for cysteine (increase), taurine (increase) and for uridine,

mannose and several unknowns which all decreased.

Potential markers from metabolite profiling by
discriminant analysis

In order to identify the most promising AD-related parameters

corrected for age- and gender-related effects according to their

univariate performance in linear modeling, the significance levels

for all center calculation (fig. 6) were related to those obtained for

core center results, both for correlation with light AD status and

strong AD status, respectively. Then, the set of analytes exhibiting

sufficient univariate performance, i.e. having p values ,0.1 in the

‘all’ center and ,0.2 in the ‘core’ center models, was selected. In

case of light AD the metabolites fulfilling these criteria were 5

unknown and 11 known analytes, namely cysteine, tyrosine,

phenylalanine, methionine serine, pyruvate, taurine, creatinine,

cortisol, dopamine and uridine. Much less analytes showed

comparably strong correlations with later stages of AD (MMSE

14–22), namely 9 unknowns with two of them also appearing in

the light AD model above, and two knowns, ornithine and cortisol.

The subsequent discriminant analyses focused on light AD

(MMSE.22), i.e. on the 16 analytes selected after correction of age-

and gender-related effects (see above). The rationale for this lies in

the limited number of samples from patients exhibiting strong AD

(MMSE 14–22) and the substantial interest in diagnosing AD

particularly at early stages, combined with the fact that metabolite

alterations were more prominent in the group of light AD patients.

The most powerful metabolite pairs, triplets, quartets and quintets

from the 16 identified metabolites were evaluated from all possible

metabolite combinations by applying multivariate classification

(PLR). The top five metabolite combinations with highest ROC

AUC values are depicted in table 3 for each number of metabolites.

The ROC AUC values are biased upwards by the selection of best

metabolite combinations from the large set of all metabolite

combinations of given dimension. Unbiased ROC AUC perfor-

mance estimates for the biomarker nominations of Table 3 require

ROC analysis of new samples from an additional validation study.

The best metabolite pair (cysteine+uridine) allows AD predic-

tion with e.g. ,75% sensitivity and ,75% specificity. In general,

.80% sensitivity with .80% specificity is observed for quite a few

metabolite combinations, mainly quartets and quintets, e.g. the

quartet uridine, cortisol, cysteine and unknown U096 (figure 7). In

comparison, AUC values between 0.85 to 0.97 are obtained for

single to combinations of all three proteins Tau, P-T and amyloid

beta42. However, the predictive potential might be overestimated

in the case of proteins, as no center corrections could be applied

due to the limited number of cases. That center dependence seems

to exist was concluded from a PCA on total Tau, pTau and

amyloid beta42 for 17 patients with light AD and 19 controls,

where 12 of the controls came from the one center which provided

only control samples. Controls originating from this center

appeared to be more different compared to AD samples than

observed for the controls from the other centers.

Aside from the combinations shown in Table 3 which are

dominated by cysteine, uridine and cortisol, further combinations

Figure 5. Determination of analytes contributing significantly to separation between AD patients and healthy controls by O-PLS-
DA of the CSF data set. (A) OPLS-DA score plot for light AD patients (MMSE.22) vs. controls. (B) OPLS-DA coefficient plot for light AD patients
(MMSE.22) vs. controls. Cysteine and uridine are the most relevant analytes for separating light AD patients (MMSE.22) from healthy subjects.
doi:10.1371/journal.pone.0031501.g005

Metabolite Profiling of Alzheimer’s Disease CSF

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e31501



with slightly lower AUC values exist and which are thus less

dependent on the performance of these three metabolites, e.g. the

quartets cortisol, serine, unknown U528 and either unknown U096

or dopamine with AUC values 0.806 and 0.804, respectively. The

amino acid focused quintet cysteine, serine, phenylalanine and

tyrosine together with uridine has an AUC value of 0.799.

Discussion

Alzheimer’s disease (AD) is characterized by progressive

neurodegeneration – large scale atrophy of brain tissue in many

brain regions. It is evident that different brain structures are

affected differentially during progression starting with hypotha-

lamic structures before progressing to the cortex. It can be

assumed that these changes in neuronal integrity as well as the

underlying pathology lead to changes in brain metabolism which is

reflected in the composition of metabolites in CSF.

In the current study we applied very sensitive and quantitative

analytical tools to detect these changes in brain metabolism. We

show that using metabolite profiling; statistically significant

differences in CSF between AD patients and controls can be

detected. In general these differences are moderate, the increase is

only up to around 40% (for cortisol, see below) and in addition

there is a considerable overlap between the sample groups.

However, the data strongly suggest that chronic neuronal changes

in the brain of AD patients result in changes in brain metabolism

which can be detected in CSF.

It is particular interesting to look into neurotransmitter systems,

since these directly reflect activity and integrity of neuronal networks.

Acetylcholinesterase inhibitors are currently used in AD therapy

to address cognitive symptoms. As early as in the mid-70s, it had

been established that choline acetyltransferase activity is much more

reduced in brain tissue from AD patients than in age-matched

controls – an observation commonly known as cholinergic deficit in

AD [17]. Due to its rather low concentration, a direct confirmation

of resulting lowering of acetylcholine in CSF could be demonstrated

only in the mid-90s [18]. Observed acetylcholine concentrations in

normal patients reach 30610 nM, compared to 864 nM in AD

patients. Acetylcholine is a highly charged small molecule that was

could not be included in our metabolite panel, therefore we have no

estimate of this difficult to analyze established marker.

However, while cortical cholinergic neurons suffer most

pronounced losses, other types of neurons are progressively

affected as well and this is reflected in changes in the concentration

of norepinephrine (NE) and its major metabolite 3-methoxy-4-

hydroxy phenylglycol (MHPG) as we have observed in our study.

It has been established that up to 80% of the neurons located in

the locus coeruleus are lost in AD [19]. As a result, the

Figure 6. Significance levels and relative changes with respect to influencing factors gender, age and disease status (light AD;
strong AD) are shown. All SQ 343 analytes measured by metabolite profiling, and the proteins TAU, p-TAU 181 and amyloid beta 42 were included
in the linear modeling calculation. In the case of gender-related correlations (blue circles) relative changes .1 indicate increased levels in males
compared to females (logarithmic scale for both axes; relative change for age-related effects are not-to-scale).
doi:10.1371/journal.pone.0031501.g006

Metabolite Profiling of Alzheimer’s Disease CSF
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concentration of norepinephrine (NE) at the sites of locus

coeruleus neuronal projections in the frontal and temporal cortex

is substantially lowered [20]. It appears that increased NE

concentrations in CSF as we have observed in our study are a

reflection of compensatory effects, connected with higher activities

per neuron and higher secretion into the CSF. Paradoxically, the

majority of studies find different results in CSF – ranging from

unchanged levels to a marked increase of NE or its major

metabolite 3-methoxy-4-hydroxy phenylglycol (MHPG). Loss of

neurons in the locus coeruleus occurs progressively with increasing

age, but older subjects have commonly higher levels of NE in CSF

than young adults. However, NE concentrations in CSF of AD

patients can be much higher than those seen in cognitive normal

elderly patients. It appears that noradrenergic neurons can re-

innervate de-innervated cholinergic brain regions [21]. Moreover,

NE concentrations in CSF due to apparent NE- dependent

compensation can be induced by factors such as insulin and can

lead to improved mental control and memory recall [22].

Finally, in normal aging, tyrosine hydroxylase and aromatic

acid decarboxylase enzyme activities decrease but monoamine

oxidase activity increases. Therefore, dopamine and its metabolic

product HVA are expected to be lowered in CSF of the elderly,

and AD disease progression should add to the deficit. Indeed, AD

patients have slightly (18–27%) lowered dopamine levels in cortical

tissues and the hippocampus [20,23]. Compensation mechanisms

can increase the activity of the remaining neurons to an extent that

the levels of dopamine or HVA in CSF appear unchanged until

late into the course of the disease [24]. However, slightly lowered

levels are observed with appropriate selection of the patient

population [25]. Our study identifies dopamine as one of the few

catecholamines differentiating AD from controls, which is

consistent with the described observations in literature.

Hyperactivity of the HPA axis and increased cortisol levels in

CSF and serum of AD patients has been described previously in AD

patients in several studies [26,27,28]. Here we confirm these earlier

finding. Interestingly, there is no significant difference between

mean cortisol levels in the light dementia group compared to the

more severe demented patients. This argues that cortisol may reflect

early pathological changes in the brain. It has been shown that

cortisol undergoes circadian rhythm and could be also induced by

the stress of the lumbar puncture itself [29]. In our study there was

no systematic bias in the time point of CSF sampling between AD

patients and controls. However it could well be that AD patients are

more responsive to stress than healthy control and this again would

argue for deregulation of the HPA axis.

Uridine is a nucleoside and as such part of RNA. In addition, it

is besides choline and DHA also one of the precursor of

phosphatidylcholine (PC) which is synthesized via the Kennedy

Table 3. Metabolite combinations with highest predictive potentials according to ROC AUC values starting with most promising
metabolite combination (‘‘rank’’) for each combination type (pairs, triplets, quartets, quintets). Multivariate classification was based
on PLR with combinations of the 16 metabolites selected from and gender- and age-corrected by univariate statistical ANOVA
modeling.
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pairs 1 x x 0.793

2 x x 0.770

3 x x 0.770

4 x x 0.763

5 x x 0.763

triplets 1 x x x 0.825

2 x x x 0.816

3 x x x 0.813

4 x x x 0.806

5 x x X 0.805

quartets 1 x x x x 0.836

2 x x x x 0.833

3 x x x x 0.832

4 x x x x 0.831

5 x x x X 0.831

quintets 1 x x x x x 0.845

2 x x x x x 0.843

3 x x x x x 0.841

4 x x x x x 0.840

5 x x x x x 0.839

doi:10.1371/journal.pone.0031501.t003
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cycle. PC is the major component of cellular membranes. It has

been reported that dietary supplementation of these precursors

increase the synthesis of phosphatides in the brain, the number of

synapse and also promotes the formation of dendritic spines in the

hippocampus (for review see [30]). The observed reduction of

uridine in the CSF of AD patients could reflect the reduced

synaptic plasticity and neuronal deficits.

There have been many reports that metabolic dysfunction is

linked to the pathology AD. The incidence of diabetes is increased

in AD and it has been hypothesized that Insulin resistance in the

brain contributes to AD pathology (for review see [31]).

Interestingly in our data set we do not see any significant

differences in glucose in CSF of AD patients or metabolites linked

to insulin resistance. It might well be that these proposed

metabolic abnormalities are not reflected in CSF.

Homocysteine as well as cysteine have been reported to be

elevated in plasma and serum of AD patients [32]. Many studies

have shown that increased homocysteine is associated with an

increased risk of cognitive impairment and dementia, however this

is still discussed controversially (for review see [33]). Homocysteine

levels are not changed in the CSF of AD patients [34]. However,

in the present study we detect a significant increase of cysteine in

CSF of AD patients. Homocysteine can be metabolized to cysteine

and the observed increased levels of cysteine could reflect a

misbalance in the homocysteine metabolic system. Further studies

in possibly larger patient cohorts are needed to confirm these

findings. One clinical study has shown that lowering of

homocysteine in plasma by Vitamin B12 slows the rate of brain

atrophy, however without effect on cognitive parameters [35].

These data argue again that the increase in cysteine levels in AD

patients as observed in our study is a marker of neurodegeneration

in the brain of AD patients.

Our study complements efforts to detect changes in CSF protein

composition caused by the neurodegenerative alterations. Indeed,

there have been numerous studies (reviewed in [36] [37] using

novel proteomics approaches that include not only unbiased

analysis of CSF using protein separation techniques and mass

spectroscopy, but also targeted approaches with multiplex panels

of specific analytes. While these studies have found a number of

candidate combinations that could improve on the ‘‘core’’ protein

biomarkers phospho-tau and amyloid beta 42, none has been

validated enough to be included in clinical practice. Many of the

new protein biomarker candidates seem to reflect late degenerative

mechanisms (gliosis or inflammation).

When compared to the published proteomics literature, our

metabolomics approach has a number of distinct advantages:

protein content of the CSF is highly variable and dominated by a

number of abundant plasma proteins that mask a small

contribution of neurons, the number of proteins to be measured

(.5000 species) is much larger than the potential number of

metabolites (a few hundreds), which has implications on the

dimensionality of the experiment and the multiple testing

corrections that need to be applied, and finally, the exchange of

many small molecules between CSF and other body fluids is

restricted and reflects the unique metabolic situation in the brain.

It should be noted, that the data we present here are by no means

biomarkers to be used in clinical practice. In particular, since the

marker performance even of the best metabolite combinations is not

exceeding the performance of the known protein markers Abeta 42

and Tau in CSF. Furthermore, statistical tools (metabolite selection,

classification, ROC analysis) were applied to find metabolite

combinations with highest diagnostic performance on the current

datasets. The ROC AUC values should not be regarded directly as

performance estimates because of a selection bias that can be quite

strong especially for -omics datasets with many features (‘‘trap of

overfitting’’). A natural next analysis step would be to test the listed

metabolite combinations on new data to get real estimates of their

performance. In any case, the data set has shown that metabolite

profiling technology can be applied to analyze the signature of brain

metabolism in humans during chronic disease and that changes can

be detected reflecting chronic disease processes in the brain such as

Alzheimer’s disease pathology.

Figure 7. Receiver operating characteristics (ROC) curves with AUC values for best analyte pair (top left), triplet (top right), quartet
(bottom left) and quintet (bottom right). Sensitivity (true positive rate) and 1 – specificity (false positive rate) relate to correct prediction of AD
(MMSE.22).
doi:10.1371/journal.pone.0031501.g007
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Supporting Information

Table S1 Table of all structurally assigned metabolites
with their relative change in the different groups shown as
Fold difference between the groups and the results of the
statistical analysis of each data set showing the p-value.
(PDF)

Table S2 The table S2 shows the results as mean of the
group values of the metabolites measured in CSF with
absolute quantification. All values are in ng/ml.
(PDF)
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