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Resistance to apoptosis and chemotherapy is a hallmark of cancer cells, and it is a critical factor in cancer recurrence and patient
relapse. Extracellular matrix (ECM) via its receptors, the integrins, has emerged as a major pathway contributing to cancer cell
survival and resistance to chemotherapy. Several studies over the last decade have demonstrated that ECM/integrin signaling
provides a survival advantage to various cancer cell types against numerous chemotherapeutic drugs and against antibody therapy.
In this paper, we will discuss the major findings on how ECM/integrin signaling protects tumor cells from drug-induced apoptosis.
We will also discuss the potential role of ECM in malignant T-cell survival and in cancer stem cell resistance. Understanding how
integrins and their signaling partners promote tumor cell survival and chemoresistance will likely lead to the development of new

therapeutic strategies and agents for cancer treatment.

1. Introduction

Integrins are «/f heterodimeric membrane receptors that
mediate cell-cell interactions and cell attachment to extracel-
lular matrix (ECM). In addition to their role as cell adhesion
molecules, ligation of integrins with ECM ligands induces a
variety of intracellular signals and regulates several cellular
responses including migration, differentiation, and prolifer-
ation [1-3]. Moreover, integrins also modulate programmed
cell death or apoptosis. Most notably, many types of normal
cells are absolutely dependent on proper ECM-integrin
ligation for their survival. In cell culture experiments, lack
of attachment of endothelial and epithelial cells to a proper
matrix protein has been shown to induce a form of apoptosis
that was termed anoikis [4, 5]. Since these ground-breaking
studies, the role of integrin-ECM interactions in regulating
cellular life and death has been the focus of extensive studies
in the last decade. An intense area of research includes
the understanding of integrin prosurvival function in the
modulation of the chemotherapeutic response of cancer
cells. Anticancer drugs used in chemotherapy are thought
to exert their cytotoxic effects partially via induction of
apoptosis [6]. Thus, a prevailing hypothesis is that cancer

cell’s resistance to apoptosis contributes to the development
of drug resistance, which is an important factor in clinical
relapse of cancer patients treated with chemotherapy. Initial
studies have reported that integrin-ECM interactions can
protect small cell lung cancer cells [7], multiple myeloma
cell lines [8], and glioma cell lines [9] from drug-induced
apoptosis. Further studies have extended the role of integrins
in chemoresistance to other cancer cell types including
various hematological malignancies and to several different
classes of chemotherapeutic agents [10-14]. Integrins also
provide survival advantage against death receptor-mediated
apoptosis suggesting that they can promote cancer immune
escape [15-19].

Herein, we will briefly review the role of integrins in
apoptosis signaling and will discuss the major findings as to
how the integrins may play a key role in the resistance of
cancer cells to apoptosis and chemotherapy.

2. Programmed Cell Death (Apoptosis)

There are two major cellular death pathways that transduce
the effects of various death inducers, including anticancer
chemotherapeutic drugs. The extrinsic death pathway is
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mediated through cell death receptors of the TNF receptor
family, such as the Fas receptor, whereas the intrinsic
death pathway proceeds through the mitochondria [20—
22]. Ligation of Fas with its ligand Fas-L induces Fas
receptor aggregation, which in turn recruits the cytosolic
adapter protein FADD to form the death inducing signaling
complex (DISC). Caspase-8 is then recruited to the DISC
and gets activated through aggregation and proteolytic
cleavage. Activated caspase-8 in turn leads to the activation
of executioner caspases such as caspase-3 [20, 22].

The mitochondrial cell death is regulated by a balance
between pro- and antiapoptotic Bcl-2 family of proteins
[23-25]. Apoptotic stimuli that activate the mitochondrial
death pathway lead to the activation of Bcl-2 proapoptotic
proteins and inactivation of the Bcl-2 antiapoptotic proteins.
Consequently, proapoptotic Bcl-2 proteins such as Bax/Bak
become activated, which will cause the permeabilization
of the mitochondria. This in turn leads to the release
of apoptotic factors from mitochondria, among which is
cytochrome c. Following its release, cytosolic cytochrome ¢
binds to the adaptor protein Apaf-1, which in the presence
of dATP recruits procaspase-9, thereby forming the apop-
tosome complex and leading to the activation of caspase-9.
Activated caspase-9 then activates executioner caspases [20—
25].

In the so-called type II cells, activation of caspase-8 at
the DISC is weak upon engagement of the extrinsic death
pathway, and the apoptotic signal becomes amplified by
the mitochondrial death pathway. In type II cells, activated
caspase-8 at the DISC cleaves the proapoptotic Bcl-2 protein
Bid, which then translocates to the mitochondria and
activates Bax, leading to mitochondria permeabilization and
subsequent activation of caspase-9. Caspase-9 then functions
in concert with caspase-8, activating the executioner caspases
[20-22].

Initial studies have indicated that both of these apoptotic
pathways can be important for the induction of apoptosis
by chemotherapeutic agents. However, it is now clear that
the mitochondrial death pathway is involved in the apoptotic
action of most of the chemotherapeutic agents [6, 26, 27]. As
it will be discussed below, integrins are able to modulate both
the intrinsic and extrinsic apoptotic pathways.

3. Integrins and Cell Signaling

Integrins are cell surface membrane receptors composed of «
and f chain heterodimers with short cytoplasmic tails devoid
of any enzymatic activity. There are 18 different a chains
and 8 f3 subunits in humans, which associate in pairs to give
rise to at least 24 distinct /3 integrin heterodimers [28].
The 1 integrin subfamily is composed of 12 members as
defined by the participating « subunit («l-a12), is widely
expressed, and constitutes a major class of integrins that
mediate cell interactions with matrix proteins. The a1f1 and
a2f31 integrins are major collagen receptors, whereas a4f1
and a5p1 integrins bind fibronectin, and a331 and a6p1 are
receptors for laminins [28].

Upon ligand binding, integrins form clusters on the cell
surface at cellular sites termed focal adhesions that act not
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only as structural links between the ECM and the actin
cytoskeleton but also as sites of signal transduction from the
ECM to intracellular signaling pathways [1, 29, 30]. Focal
adhesion kinase (FAK), integrin-linked kinase (ILK), and Src
kinases have all been shown to be activated by integrin ligand
binding [1, 29-31]. The ability of integrins to regulate apop-
tosis is likely due to their capacity to activate the cell survival
signaling pathways further downstream of these cytoplasmic
protein kinases, composed of phosphatidylinositol 3’-kinase
(PI 3-kinase) and the serine/threonine kinase AKT, as
well as the mitogen-activated protein kinase/extracellular
regulated kinase (MAPK/ERK). The signaling events by
which integrins activate these survival pathways are complex
and may be tissue specific, but the dual kinase complex of
FAK/Src has been shown to be involved in the activation of
these survival pathways [1, 32].

4. Role of Integrin Signaling in Drug Resistance

Cultured cancer cells of epithelial origin typically are able
to survive when denied attachment, suggesting that integrin
ligand binding is no longer required to protect cancer cells
from anoikis [33, 34]. Accordingly, resistance to anoikis
contributes to anchorage-independent growth properties of
cancer cells. Integrin-mediated cell attachment, however, has
been shown to be required for cancer cell invasion and
metastasis [2, 35, 36], and survival under various death-
inducing conditions [34]. Most notably, the implication of
integrin-ECM interactions in cell survival and resistance to
chemotherapy seems to be a general phenomenon and occurs
in multiple types of solid cancers including breast, lung,
prostate, ovary, pancreatic and colon cancers, as well as in
hematological malignancies, as reviewed below.

4.1. Solid Tumors

4.1.1. Breast Cancer. We have shown in breast cancer
cell lines MDA-MB-231 and MDA-MB-435 that ligation
of 1 integrins inhibits apoptosis induced by paclitaxel
and vincristine, two microtubule-directed chemotherapeutic
agents widely used in the therapy of breast cancer [37].
We showed that attachment of MDA-MB-231 cells to
fibronectin and to type I collagen via a5B1 and a2f1
integrins, respectively, significantly reduced drug-induced
apoptosis. However, neither of these integrins/ligands had
any effect on the survival of the MDA-MB-435 cells. In
contrast, we found that it is the laminin-1-binding integrin
a6f31 that mediates the protective effect against drug-induced
apoptosis in these cells. It is noteworthy that more recent
studies have found that the MDA-MB-435 originates from
melanoma rather than from breast cancer [38] suggesting
that fB1 integrin can also protect melanoma cells from
drug-induced apoptosis. Our results further indicated that
the protective effect of 1 integrin in these cancer cells is
mediated via activation of the PI 3-kinase/AKT pathway,
which prevented the downregulation of Bcl-2 protein levels
and inhibited drug-induced cytochrome c release upon drug
treatment. These results indicate that 1 integrins inhibit
drug-induced apoptosis at the level of the mitochondria.
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Importantly, laminin and fibronectin have also been shown
to protect MDA-MB-231 cells and A549 lung cancer cells
from radiation-induced apoptosis and from the cytotoxic
drug ukrain [39].

More recently, the Hemler laboratory reported that
resistance of ErbB2-positive breast cancer cells to anti-
Erb2 agents can be overcome by disrupting cell adhesion
[40]. ErbB2 is an oncogene associated with higher grades
of breast carcinomas. It is a member of the epidermal
growth factor receptor family, also known as the human
epidermal growth factor receptor 2 (HER2) [41]. Hemler
and coworkers showed that adhesion of human Erb2-
positive breast cancer cells to laminin-5 provided significant
resistance to trastuzumab and lapatinib, an antibody and a
small-molecule, respectively, that target ErbB2. The laminin-
5 effect is mediated via @31 and a6p4 integrins and the
associated tetraspanin CD151 receptor, and via downstream
signaling through AKT, ERK1/2, and FAK. Another study
reported that expression of 1 integrins is inversely corre-
lated with the sensitivity of HER-2-positive breast cancer cells
to trastuzumab treatment, suggesting that the f1 integrin
is a potentially novel independent prognostic biomarker of
trastuzumab response in HER-2-positive metastatic breast
cancer patients [42]. ErbB-2 also mediates transcriptional
upregulation of the a5f1 fibronectin receptor, and adhesion
to fibronectin promotes cell survival in several conditions
including hypoxia, serum starvation, and chemotherapy
[43]. Furthermore, by using human breast cancer cell
lines and a series of breast cancer biopsies from patients
undergoing tamoxifen therapy, it was found that a6f4
integrin contributes to tamoxifen resistance via induction
of ErbB-3 expression, which leads to an increase in AKT
activation [44]. This seems to occur mainly in the estrogen-
receptor-beta-1- (ERbetal-) negative breast carcinomas. The
authors found that, in these tumors, ErbB-3 inactivation
inhibits AKT phosphorylation and induces apoptosis, thus
favouring tamoxifen response. The analysis of human
tumor biopsies revealed a significant correlation between
a634 integrin/ErbB-3/phosphorylated-AKT signaling axis in
ERbetal-negative breast cancers derived from patients with
lower disease-free survival. Together these studies indicate
that ErbB oncogenic function in breast cancer cells is
tightly regulated by integrin signaling, further supporting
the role of integrins in breast cancer chemoresistance and
survival. Furthermore, these studies show that in addition
to DNA-damaging agents and microtubule-directed drugs,
integrins in breast cancer cells also regulate resistance to
drugs targeting specific oncogenes and steroid receptors.

Fibronectin, collagens, and laminins are important ma-
trix proteins of the breast cancer tumor microenvironment.
The a2f1 integrin seems to be important for integrin-
mediated attachment to collagen type I during metastasis
of breast cancer cells to the bone [45, 46]. Of note,
however, a recent study suggested that a2f1 integrin might
suppress metastasis of breast cancer cells to the lymph
nodes [47]. Gene expression analysis of drug-resistant MCF-
7 breast cancer cells revealed that 25 genes encoding various
ECM proteins (collagen, fibronectin, syndecan, laminin) and

integrin subunits were upregulated in drug-resistant MCF-
7 cells [48]. A clinical study also reported that increased f1
integrin expression is associated with decreased survival in
invasive breast cancer [49], and inhibition of 1 integrin
enhanced radiotherapy in human breast cancer xenografts
[50].

The studies described above indicate that the integrin-
ECM signaling is a critical pathway in breast cancer resistance
to chemotherapy. The role of a specific 1 integrin molecule
is likely to be dependent on the differentiation status of the
breast tumor (i.e., whether tumor is ErbB positive, invasive,
etc.) and on the nature of the drug utilized. In this regard,
laminin receptors are emerging as major integrins mediating
breast cancer chemoresistance. A scheme summarizing the
prosurvival role of laminin-binding integrins in breast cancer
is depicted in Figure 1.

4.1.2. Other Solid Tumors. Sethi et al. reported that adhesion
of small cell lung cancer cells to fibronectin, collagen IV, and
laminin inhibited apoptosis induced by chemotherapeutic
agents including etoposide, cis-platinum, and daunorubicin
as well as radiation [7]. The effect is mediated via f1
integrins among which a2f1, a3f1, a61, and avf1 are the
most expressed on these cells. Furthermore, the protective
effect of f1 integrins is mediated through activation of the
PI 3-kinase/AKT pathway, which inhibited drug-induced
cell cycle arrest and caspase-3 activation [51]. The authors
further showed that integrin-mediated activation of PI 3-
kinase/AKT survival pathway overrides apoptosis by reduc-
ing the levels of p21 and p27 cell cycle inhibitors and by
preventing downmodulation of cyclins E, A, and B. Conse-
quently, chemotherapeutic agents are unable to induce G2/M
cell cycle arrest, which is a necessary step in drug-induced
apoptosis. In addition, the protective role of 1 integrin
signaling did not occur at the level of DNA repair, indicating
that the integrin-PI 3-kinase/AKT signaling pathway allows
small cell lung cancer cells to survive chemotherapy despite
DNA damage. Immunohistochemistry analysis of small cell
lung cancer biopsies has revealed that these tumors produce
large amounts of collagen IV, which could bind to a2f51 or
a3f1 integrins, and fibronectin, which is a ligand for the
avf31 integrin [52, 53].

A clinical study performed with transbronchial biopsies
found that increased expression of 1 integrins correlates
with chemoresistance and is a poor prognostic factor in small
cell lung cancer [54]. Moreover, high levels of 51 expression
and p53 were found to be a greater poor prognostic
factor than clinical stage in small cell lung cancer [55].
Overexpression of $1 integrins has also been associated with
the resistance of non-small-cell lung cancer to the tyrosine
kinase inhibitor gefitinib, which targets the epidermal growth
factor receptor tyrosine kinase [56]. Together these studies
emphasize the critical role of f1 integrins in the malignancy
and chemoresistance in lung cancer.

Additional solid tumors also use attachment to ECM
to escape apoptosis and chemotherapy. Thus, fibronectin
inhibits ceramide- and docetaxel-induced apoptosis in the
prostate cancer cell line DU145 via 1 integrins and
insulin-like growth factor [57]. Parathyroid hormone-related
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FiGure 1: Laminin and fibronectin-mediated resistance to drug-
induced apoptosis in breast cancer. Ligation of a3f1, a6f4, and
a5f31 integrins with laminins and fibronectin, respectively, protects
breast cancer cells from several cytotoxic agents via the activation of
the PI 3-kinase/AKT and MAPK/ERK survival pathways.

protein in turn protects C4-2 and PC-3 prostate cancer cells
from doxorubicin-induced apoptosis through integrin «634-
mediated activation of the PI 3-kinase/AKT survival pathway
[58]. Here, the parathyroid hormone-related protein/a634
integrin/PI 3-kinase/AKT signaling axis leads to an increase
in the ratio of antiapoptotic to proapoptotic members of
the Bcl-2 family and to activation of the transcription factor
NF«B, which is known to upregulate the expression of several
antiapoptotic proteins.

Interactions of pancreatic cancer cells with ECM includ-
ing fibronectin, collagen type I, and collagen type IV
decreased their sensitivity to cytotoxic drugs and promoted
cell proliferation [59]. Furthermore, intrinsic chemore-
sistance to gemcitabine in these tumors correlates with
constitutive laminin-induced FAK activation [60]. Activated
FAK was shown to be required for activation of AKT, which
mediates an increase in the expression of the anti-apoptotic
protein survivin, and the inactivation of the Bcl-2 pro-
apoptotic factor Bad via phosphorylation. A recent study also
reported that pancreatic stellate cells can protect pancreatic
cancer from radiotherapy-induced apoptosis through f1
integrin signaling involving FAK [61]. In addition, collagen
I binding to a2f1 integrin has been shown to promote the
malignant phenotype of pancreatic ductal adenocarcinoma
and to protect from 5’-fluourouracil (antimetabolite drug)-
induced apoptosis by upregulating the antiapoptotic protein
Bcl-2 family member Mcl-1 [62]. Cell coculture models
and human biopsies analysis have revealed that pancreatic
tumors are enriched in the expression of several ECM pro-
teins including collagens, fibronectin, and laminin [63]. The
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fibronectin receptor a5f1 also transduces the antiapoptotic
effect of the adhesion molecule LICAM (CD171) [64], and
L1CAM/CD171 is associated with poor prognosis in several
cancers such as colon and ovarian cancers [65]. Treatment of
pancreatic cancer cells with chemotherapeutic drugs induces
the expression of LICAM, which binds to a541 integrin thus
favoring chemoresistance. The prosurvival effect of LICAM
binding to the a5f1 integrin seems to be associated with
activation of NFxB and production of IL-1p [66].

The studies above point to a major role of PI3
kinase/AKT pathway in the chemoresistance of solid tumors.
A scheme summarizing the mechanisms by which activation
of PI3 Kinase/AKT promotes integrin-mediated chemoresis-
tance is depicted in Figure 2.

4.2. Hematological Malignancies. Integrin-ECM signaling is
also important for the survival of malignant cells of the
hematopoietic origin. Several studies over the last decade
have pointed to the a4f1 integrin as the principal ECM
receptor involved in the survival and chemoresistance of
multiple myeloma, myeloid, and B lymphoid malignancies.
The role of the w4fl integrin in these hematological
malignancies has been outstandingly reviewed [11-14] and
will not be the focus here. However, the a4f31 integrin does
not seem to be as important for the survival of malignant T
cells. The role of ECM in the survival and chemoresistance
of T-cell neoplasms, which also grow in sites rich in ECM,
remains poorly addressed. Several recent studies point to
collagen-binding integrins as the major molecules involved
in both normal and malignant T-cell survival. Below, we will
discuss the expression and function of the 1 integrins in the
T-cell lineage and how they contribute to the resistance of
malignant T cells.

4.2.1. Expression of ECM Receptors in the T-Cell Lineage.
Normal T cells express several 1 integrins, which mediate
their adhesion to fibronectin, laminin, and collagens [67].
Previously, 81 integrins and especially fibronectin receptors
have been proposed to play an important role in T-cell
adhesion and in T-cell costimulation and activation [68—
70]. However, the collagen-binding integrins «131 and a2f31
have recently gained more attention as putative regulators of
T-cell-mediated immunity and inflammation [67, 71, 72].
They are expressed only on effector T cells, which home
to the inflamed tissues, whereas other 1 integrins such as
fibronectin and laminin receptors are also found on naive
T cells. In addition, collagen is a more potent costimulatory
molecule of human effector T cells than fibronectin [73], and
we have shown that «2f31 integrin enhances the production
of IFNy and IL-17 in effector T cells [74, 75], two cytokines
that play a crucial role in autoimmunity and tissue damage.
T cells infiltrating inflamed sites in arthritis and other
chronic inflammatory diseases can also express alf1 and
a2f1 integrins [76, 77]. Animal studies with mutant mice
and blocking antibodies have demonstrated a critical role for
the a2f1 integrin in the development of multiple sclerosis
[78] and for both «wlfl and a2f1 integrins in delayed-
type hypersensitivity and in arthritis [79, 80]. Together,
these studies indicate that collagen-binding integrins can be
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(1) Upregulation of Bcl-2, Mcl-1 and inhibition of Bad
(2) Upregulation of survivin
(3) Upregulation of cyclin A, B, E and downmodulation of p21 and p27

(4) Activation of NF«B (and transcription of various antiapoptotic genes)

FIGURE 2: Role of PI 3-kinase/AKT in integrin-mediated drug
resistance. Integrin/ECM interactions lead to the activation of
PI 3-kinase/AKT which can regulate various downstream targets
including proteins of the Bcl-2 family and of the IAP family,
as well as cell cycle regulators. It also activates the transcription
factor NFxB, which is known to increase expression of several
antiapoptotic proteins.

crucial mediators of T-cell activation that is associated with
the development of autoimmune diseases.

Malignant T cells also express several 1 integrins. A
number of T-cell acute lymphoblastic leukemia (T-ALL) cell
lines such as Jurkat, HSB-2, and CEM express receptors
for collagens, fibronectin, and laminins [81-84]. Previous
reports have indicated that the collagen-binding integrin
alp1 is a predominant integrin expressed in cutaneous T-
cell lymphomas and was proposed to be the major receptor
mediating adhesion of these lymphomas to collagen I and
collagen IV [85, 86]. Malignant cells such as T-ALL or T cell
lymphoma also develop and grow in tissues rich in ECM such
as the bone marrow, which is a privileged site for all hemato-
logical malignancies [12—14, 87, 88]. The niches for leukemia
proliferation in the bone marrow are found in the epiphysial
region [89], which consists of trabecular bone with spaces
containing the red bone marrow. Immunohistochemical
analysis has shown that collagen I is widely distributed in
the trabeculae as well as throughout the marrow [90, 91],
suggesting that collagen I, a major ECM component, could
directly regulate interactions and anchorage of leukemia
cells in their microenvironment. Clinical and experimental
studies have shown that leukemia/lymphoma T cells can
disseminate to organs such as liver, kidneys, and lungs [92—
95], which are rich in ECM. Thus, ECM present in the
microenvironment of lymphoid tumors is likely to regulate
their survival.

4.2.2. ECM/B1 Integrin in the Survival of Malignant T Cells.

(1) Regulation of Death Receptor-Mediated Apoptosis in
T Cells. The findings that anoikis can be mediated via

activation of the death receptor pathway [96, 97] prompted
us to examine if ECM can protect T cells from Fas-induced
apoptosis, which is a major apoptotic pathway activated
during immune response. Fas-induced apoptosis is critical
in the maintenance of T-cell homeostasis at the end of
immune response, and resistance to Fas-mediated death
can contribute to inflammatory diseases and autoimmunity.
Activation of the Fas pathway occurs in response to T
cell-receptor- (TCR-) dependent stimulation also known as
activation-induced cell death (AICD) [20, 98]. Restimulation
of activated T cells through the TCR results in the tran-
scriptional activation of Fas and its ligand (Fas-L) genes.
Subsequently, ligation of Fas receptor with Fas-L induces
apoptosis via DISC formation and caspase-8 activation.

Using the leukemic Jurkat T-cell line, which is sensitive to
AICD and which constitutively expresses several $1 integrin
members, we have demonstrated that engagement of the
a2f31 integrin with collagen I inhibits AICD [15]. Ligation
of a2f1 with collagen I or with an activating anti-a2
integrin monoclonal Ab (mAb) significantly reduced TCR-
dependent apoptosis as well as PMA+Ionomycin-induced
apoptosis, which is also partially mediated by the Fas-L/Fas
death pathway. However, other matrix proteins such as
fibronectin and laminin had no effect. Similarly, ligation
of alpBl with collagen IV also protected Jurkat T cells
from AICD (our unpublished observations). The prosurvival
effect of collagen-binding integrins observed in Jurkat T-
cells also occurs in normal effector T cells [17, 99]. These
observations indicate that collagen-binding integrins could
promote autoimmune diseases by enhancing effector T cell
survival and they could also promote T-cell malignancies.

Activation of Jurkat T cells with collagen I did not
affect the expression of Fas receptor, which is expressed
constitutively at high levels in these cells, but significantly
reduced the transcriptional activation of the Fas-L gene
upon TCR stimulation. Jurkat T cells activated with anti-
TCR/CD3 mAb-+collagen I are less efficient than Jurkat T
cells activated by TCR/CD3 alone in killing the Fas-sensitive
Hut-78 lymphoma used as target cells [15].

As noted above, focal adhesion kinase (FAK) has been
shown to be central in integrin-mediated signaling and cell
survival [100]. We have found that FAK is activated by
both anti-CD3 mAb and collagen I, and expression of a
dominant-negative form of FAK known as FRNK abrogated
the protective effect of collagen I on Fas-L expression and
AICD. These studies indicate that a2f81 integrin-mediated
inhibition of AICD is dependent on the activation of FAK
and inhibition of Fas-L. The potential role of integrin-
mediated adhesion in the regulation of death ligands of the
TNF family is also underscored in studies performed with
adherent cells and could be one mechanism that regulates
anoikis. We and others have demonstrated that the culture of
endothelial and intestinal epithelial cells in suspension results
in the transcriptional increase of death receptor ligands
such as Fas-L and TRAIL, which subsequently triggers
the activation of death receptor apoptotic cascades, thus
contributing to the execution of anoikis [101-103].

We have subsequently investigated if activation of the
a2f1 integrin with collagen I can directly regulate Fas



signaling, thereby contributing to the inhibition of AICD.
This was investigated in Jurkat T cells stimulated with
the agonistic anti-Fas antibody CH11 to induce apoptosis
directly through Fas receptor and independently from TCR
stimulation [17]. In these conditions, we have found that col-
lagen I significantly reduced Fas-induced apoptosis of Jurkat
T cells. Interestingly, matrix proteins such as fibronectin and
laminin that did not inhibit TCR-dependent apoptosis also
had no effect on Fas-induced apoptosis [17]. Furthermore,
inhibition studies with dominant negative forms and chem-
ical inhibitors demonstrated that a281-mediated inhibition
of Fas-induced apoptosis proceeds through activation of
the MAPK/ERK survival pathway and inhibition of caspase-
8 activation [17]. It is unclear whether the inhibition of
caspase-8 was due to a reduction in DISC formation or
to the reduction of proteolytic cleavage of procaspase-
8. Along these lines, Eriksson’s group demonstrated that
activation of MAPK/ERK can block Fas-induced apoptosis
by inhibiting the autoproteolytic activation of procaspase-8
[104], whereas Kaufmann’s group showed that FADD, which
is essential for DISC formation and caspase-8 activation, can
be phosphorylated by MAPK/ERK, thereby contributing to
the inhibition of DISC formation [105]. Collagen I may also
modulate the localization of c-Flip, an endogenous inhibitor
of caspase-8 activation at the DISC. This mechanism has
been proposed to be downstream of the a4f31 integrin in
the inhibition of Fas-induced apoptosis in monocytic U937
cells [19]. In addition, we found that collagen I also reduces
TRAIL-induced apoptosis of Jurkat T cells [17]. Notably, the
modulation of death receptor-mediated apoptosis by ECM
also occurs in solid tumors. Fibronectin protects prostate
cancer cells from TNF-induced apoptosis by activating AKT
and upregulating the antiapoptotic protein survivin [16].
Ovarian cancer ascites inhibits TRAIL-induced apoptosis of
ovarian cancer cells through avf5 integrin-mediated FAK
and AKT activation [18]. Together these studies indicate
that, by protecting tumor cells from death receptor-mediated
apoptosis, integrins can also contribute to tumor immune
escape.

The findings that only collagen but not fibronectin or
laminin receptors regulate death-receptor-induced apoptosis
in malignant T cells is likely due to the differential ability
of 51 integrin members to activate the MAPK/ERK survival
pathway. Indeed, only collagen I was able to activate the
MAPK/ERK pathway [17, 106]. We found that collagen I
activates the MAPK/ERK pathway by activating Ras and
protein phosphatase 2A (PP2A), which were both essential
for collagen-mediated survival [17, 106]. Activation of PP2A
is essential in the activation of c-Raf. The process by which
PP2A activates Raf-1 seems to be exerted at the level of the
Ser 259 inhibitory site [107, 108]. Dephosphorylation of this
site by PP2A contributes to the release of Raf-1 from 14-
3-3 inhibitory proteins and facilitates Raf-1’s translocation
to the membrane and interaction with active Ras, leading
to Raf-1 activation. Interestingly, fibronectin also activates
Ras in malignant T cells, but, unlike collagen I, it is unable
to activate PP2A and c-Raf-1 [106]. Together these studies
indicate that the differential ability of 31 integrin members to
protect malignant T cells from Fas-induced apoptosis could
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at least partially be due to their ability to activate the PP2A/c-
Raf/ERK pathway. Collagen-I-mediated activation of the
MAPK/ERK pathway in Jurkat T cells also involves FAK
[109]. A model summarizing how a2f1 integrin signaling
inhibits Fas-induced apoptosis of the leukemic Jurkat T cells
is depicted in Figure 3.

(2) Role of ECM/Integrin Signaling in the Chemoresistance
of Malignant T Cells. In addition to Fas-induced apoptosis,
evidence suggests that integrin signaling can also promote
chemoresistance of malignant T cells. It has been reported
that bone marrow stromal cells enhance the survival of
T-ALL cell lines and blasts partially through the LFA-1
(B2 integrin)/ICAM-1 adhesion signaling system [110]. In
addition, adhesion of Jurkat T cells to bone marrow stromal
cells also provides them with a survival advantage against
dexamethasone-induced apoptosis [111]. Given the func-
tional role of a231 on death receptor-mediated apoptosis,
we have studied if 251 integrin signaling modulates drug-
induced apoptosis in malignant T cells. We showed that
ligation of a2f31 integrin with collagen I significantly reduced
doxorubicin-induced apoptosis of T-ALL cell lines Jurkat,
HSB-2, and CEM [112]. We demonstrated that collagen
I inhibited doxorubicin-induced apoptosis by inhibiting
the expression of the receptor-activator of NFxB-ligand
(RANKL) [112]. RANKL is a cytokine of the TNF family,
which binds to its receptor RANK as initially documented
in osteoclast precursors and dendritic cells [113]. RANKL
is expressed on osteoblasts and other mesenchymal cells
as well as on activated T cells. During cognate cell-cell
interactions, RANKL expressed on activated T cells induces
the activation and survival of dendritic cells and osteoclast
precursors [113]. Although RANK does not possess death
domains [114] and thus is not coupled to DISC formation
and caspase-8 activation, it has nevertheless been implicated
in cell apoptosis [115]. Activation of RANK signaling in the
absence of serum induces apoptosis of RAW macrophages
[116]. Moreover, we and others have shown that RANKL
is implicated in doxorubicin-induced apoptosis of leukemia
T-cell lines [112, 117]. RANKL/RANK pathway participates
in doxorubicin-induced apoptosis by contributing to the
release of cytochrome ¢ from the mitochondria [117].
Thus, by inhibiting the expression of RANKL, collagen
I/a2f31 integrin signaling can contribute to reduced drug-
induced cytochrome c release and protect the cells from
chemotherapy.

Ligation of different 1 integrins with ECM proteins
including collagen I and fibronectin was also shown to confer
resistance to Ara-C- and radiation-induced apoptosis [118].
This was demonstrated upon overexpression of 51 integrins
in HL-60 and Jurkat leukemia cell lines. The mechanism
accounting for fibronectin/B1 integrin-dependent survival,
at least in HL-60 cells, involves activation of the PI 3-
kinase/AKT pathway, which inhibits caspase-8 activation. In
our studies, we found that collagen I did not activate AKT in
Jurkat T cells, and it was the collagen-mediated activation of
MAPK/ERK that inhibited caspase-8 activation [17]. Further
observations suggested that collagen-mediated MAPK/ERK
also inhibited doxorubicin-induced RANKL expression and
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Collagen

PP2A

MEK1/2

ERK1/2

Caspase-9

Caspases-3, -7

l

Apoptosis

F1GURE 3: Model for collagen I/a2f1-dependent inhibition of AICD in T cells. Ligation of the a21 integrin in the context of TCR/CD3
activation leads to the synergistic activation of FAK, which leads to the reduction of TCR-induced Fas-L expression. Ligation of a2f31 with
collagen T also induces the activation of the MAPK/ERK through the activation of Ras, protein phosphatase 2A (PP2A), and Raf-1. Active
ERK inhibits Fas-induced signaling cascade by inhibiting caspase-8 processing and activation.

fibronectin, which is a weak activator of MAPK/ERK, did
not protect from doxorubicin-induced apoptosis and had
no effect on RANKL expression (our unpublished data).
A model by which collagen inhibits doxorubicin-induced
apoptosis of T-ALL cells is depicted in Figure 4.

The studies reviewed in this section indicate that
collagen-binding integrins can protect malignant T cells
from chemotherapy. Along these lines, Cleaver et al. recently
reported that a2f81 integrin mRNA expression levels corre-
lated with the resistance of pediatric T-ALL to the treatment
with glucocorticoids [119]. Collagen I also protected Jurkat
T cells from serum starvation-induced apoptosis by a mech-
anism involving activation of FAK/MAPK/ERK pathway
[109]. Thus, it appears that collagen and its receptors via
the activation of the MAPK/ERK pathway constitute a major
survival pathway in malignant T cells. These findings are in
contrast to those made in other hematological malignancies
in which the @41 integrin is the main molecule mediating
survival and drug resistance. This suggests that, depending
on the cell type, hematological tumors could respond dif-
ferently to their tissue microenvironment depending on the
integrin expression profile and on the signaling events that
become active in the cells upon integrin-ECM interaction.

Caspase activation
and apoptosis

FIGURE 4: Model for collagen I/a2fB1-mediated inhibition of
drug-induced apoptosis in malignant T cells. Ligation of a2f1
integrin activates the MAPK/ERK, which blocks doxorubicin-
induced RANKL expression. In turn, this leads to the reduction of
cytochrome c release from the mitochondria and to the subsequent
reduction of caspase activation and apoptosis.



5. Cooperation between Integrin and
Growth Factor and Cytokine Receptors in Cell
Survival and Chemoresistance

In addition to ECM, tumor cells also interact with soluble
factors such as growth factors and cytokines that are present
in their microenvironment. Integrins signal both indepen-
dently and in collaboration with growth factor receptor
signaling. The crosstalk signaling between integrins and
growth factor and cytokine receptors has been investigated in
a number of cell types and has been outstandingly reviewed
[3, 120]. Integrins provide help to growth factor receptors
by organizing signaling platforms for growth factor signaling
and can directly activate growth factor receptors in a ligand-
independent manner. In turn, activation of growth factor
receptors can lead to increased integrin expression and
avidity leading to enhanced cell adhesion and signaling. Inte-
grins and growth factor receptors activate similar signaling
pathways and likely cooperate regarding activation of the
survival pathways MAPK/ERK and PI3 kinase/AKT [1, 3].
Growing evidence indicates that the chemokine recep-
tor CXCR4 cooperates with B1 integrins in mediating
drug resistance of tumor cells. CXCR4 is the receptor for
the stromal cell-derived factor-1 (SDF-1/CXC12), which is
widely expressed in numerous tissues. It has been reported
that small cell lung cancer cells express functional CXCR4
receptors and their activation with SDF-1 increases lung
cancer cell adhesion to collagen I and fibronectin via a2f1,
a4B1 and a5f1 integrins, respectively [121]. In addition,
SDF-1 simulation enhances 1 integrin-mediated resistance
against etoposide-induced apoptosis [121]. Mantle cell lym-
phomas also express high levels of chemokine receptors
CXCR4, CXCRS5, and integrin a4f81. These receptors were
shown to be critical in adhesion of lymphoma cells to
bone marrow stromal cells and also in their resistance
against fludarabine-induced apoptosis [122]. Thus, CXCR4
inhibitors coupled with anti-a4f1 integrin antibodies were
shown to abrogate both adhesion and chemoresistance of
mantle cell lymphoma. Recently, it has been demonstrated
that bone marrow stromal cell-induced chemoresistance of
acute B-cell lymphoblastic leukemia (B-ALL) is mediated
via a signaling complex composed of integrin a4f51, the
chemokine receptor CXCR4, and the human ether-a-go-go-
related gene channel (hERG1) [123]. Coculture of B-ALLs
with bone marrow stromal cells induced the expression of
the three receptors at the cell surface. The use of specific
inhibitors indicated that all three receptors were neces-
sary to protect B-ALLs from chemotherapy (doxorubicine,
methotrexate, prednisone). This protective effect involves
activation of both MAPK/ERK and PI 3-kinase/AKT survival
pathways, which were shown to be activated by the assembled
signaling complex. Interestingly, the use of hEGR-1 channel
blockers was able to reverse drug resistance both in B-ALL
blasts and in NOD/SCID mice engrafted with B-ALLs [123].
Chemokine receptor (CXCR4) and integrin a4f1-
mediated cooperative signaling seems also to involve acti-
vation of the Spleen tyrosine kinase (SYK) in chronic lym-
phocytic leukemia (CLL) [124]. In these studies, activation
of SYK was reported to be essential for the inhibition of
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fludarabine-induced apoptosis, and the protective effect of
SYK was found to be mediated through the phosphorylation
of AKT and increased expression of the prosurvival Bcl-2
family member Mcl-1.

Crosstalk between integrin receptors and the Wnt sig-
naling pathway has also been shown to modulate the
chemosensitivity of acute myeloid leukemia cells (AMLs)
[125]. Adhesion of AMLs to fibronectin and Wnt antagonists
induced independently AMLs’ resistance towards daunoru-
bicin. The protective effect of both pathways seems to require
activation of the glycogen synthase kinase 3 beta (GSK3p)
and NFxB. These studies also established a link between
adhesion and Wnt signaling in a coculture of the myeloid
leukemic U937 cells and osteoblastic cells. Adhesion of U937
cells to osteoblastic cells was shown to induce the release
of Wnt antagonist sFRP-1 from osteoblastic cells, which
supported resistance to daunorubicin.

Taken together, these studies indicate that several mem-
brane receptors are likely to regulate integrin prosurvival
function. Identification of these receptors will offer new
possibilities for drug targeting and inhibition of integrin-
mediated drug resistance.

6. Other ECM Receptors and Mechanisms in
Tumor Cell Survival and Drug Resistance

Although not discussed above in great detail, several non-
Bl integrins can also mediate drug resistance in tumor
cells. For example, vitronectin through avf3 and avf5
integrins protects glioma cells from chemotherapy [9], and
the angiogenic inducer CYR61, via avf33, mediates resistance
of breast cancer cell lines to taxol-induced apoptosis through
activation of the MAPK/ERK pathway [126].

Apart from the integrin-family of adhesion receptors,
additional receptors expressed on mammalian cells also
bind ECM. Herein, we will discuss the discoidin domain
receptors (DDRs), which serve as receptors for several types
of collagens. Originally, the DDR was described in breast
cancer cells as an orphan tyrosine kinase receptor that has
an extracellular discoidin-I-like domain similar to that found
in the lectin of Dictyostelium discoideum [127]. DDRs are
transmembrane tyrosine kinase receptors which are activated
by various forms of collagens [128-130]. Two major related
receptors, namely, DDR1 and DDR?2, have been described,
with DDR1 expressed as five isoforms (a—e) [131]. Ligation
of DDRs with collagens leads to the dimerization of the
receptor, which triggers the activation of the tyrosine kinase
domain that leads to the autophosphorylation of tyrosine
residues and to subsequent intracellular signaling [128-
130]. The mechanism(s) of the crosstalk signaling between
DDRs and integrins are unclear, but DDRs can bind and
be activated by collagens independently from f1 integrins
[132]. DDRs regulate several cellular functions including cell
adhesion and migration, and proliferation.

Growing evidence indicates that DDRI is associated with
tumorigenesis. DDRI has been shown to be expressed in
various human tumors including lung [133, 134], breast
[127, 135], ovary [136, 137], and brain [138, 139] and
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to be associated with the production of metalloproteinases
and cancer cell invasion of stroma tissues during metastasis
[138, 140, 141]. DDRI is one of the several tyrosine kinase
genes that carries somatic mutations in small cell lung cancer
and acute myeloid leukemia [142, 143]. In addition, DDR1
has been identified as a target for the Abl kinase inhibitor
imatinib [134]. DDRI also promotes cell survival in response
to genotoxic stress. Irradiation treatment of p53-positive
cancer cells induces in a p53-dependent manner the expres-
sion of DDRI1, which activates the MAPK/ERK pathway
leading to increased expression of p21, p19, and Bcl-xL and
to cell survival [144]. In addition, DDR1 activation with
collagen I also inhibits DNA-damage response in lung cancer
cells via activation of Notch-1 signaling pathway [145].
Activation of DDRI also protects breast cancer cells from
DNA damage-induced apoptosis by inducing the expression
of cyclooxygenase-2 through activation of NFxB [146].
Although DDRI signaling and physiological functions are
still not well understood, these studies underscore the notion
that these collagen receptors can also be important mediators
of cancer cell invasion, survival, and chemoresistance.

The use of three-dimensional (3D) cell culture models
has revealed that, in addition to intracellular signaling
activated by ECM receptors, resistance of tumor cells to
chemotherapy can also be regulated by the physical barrier
that the ECM presents to the tumor tissue, which could limit
the penetration of the drugs into tumor cells. Several studies
have reported that cell-adhesion-mediated drug resistance
in various tumor cell spheroids models is more profound
than that seen in tumor cells grown on 2D matrices [147—
152]. The 3D form of collagen I has been appreciated
as a major barrier contributing to chemoresistance [153—
157]. However, care should be taken when interpreting
these results, as 3D architecture, compared to 2D culture
conditions, may also contribute to differences in intracellular
signaling that can in turn affect tumor cell survival and drug
responsiveness.

The tumor tissue in vivo is characterized by a high
interstitial fluid pressure, which is due in part to tumor-
stromal production and organization of collagen I. This high
interstitial fluid pressure is a major factor in the formation
of tumor barrier to transcapillary transport [158], and has
been shown to exist in several types of tumors such as breast
and colorectal cancers [159, 160], metastatic melanoma
[161, 162], and head and neck carcinoma [163]. It is
inversely correlated with intratumoral uptake of various
molecules such as antibodies [164] and chemotherapy
[165]. In this regard, the intratumoral collagen I of human
ovarian cancer xenografts (SKOV-3 and OVCAR-3) reduces
the transport of intraperitoneally injected antibody into
the tumor parenchyma, and treatment with collagenases
has been shown to enhance antibody penetration in the
tumors [166]. Targeting tumor-associated fibroblasts also
improves cancer chemotherapy by increasing intratumoral
drug uptake [167]. These studies suggest that the interstitial
matrix barrier may need to be overcome before effective drug
or antibody delivery can take place and that such barrier
contributes to the complex role that cell adhesion and ECM
play in tumor chemoresistance.

7. Integrins in Cancer Stem Cells

Cancer stem cells also defined as tumor-initiating cells are
a minor subpopulation of tumor cells that are critical for
tumor maintenance, metastasis, and therapeutic resistance.
Recent studies have shown that adhesion to ECM can also
regulate the tumorigenesis of these cancer subpopulations by
regulating their homing to their niches, their maintenance
in the niche and by regulating their proliferation and
self-renewal [168]. One important molecule that has been
described in this process is the CD44; the receptor for
hyaluronic acid. CD44 is expressed on several types of cancer
stem cells including breast, prostate, glioma as well as on
leukemia initiating cells [169]. CD44 can regulate cancer
stem cell tumorigenesis by promoting matrix assembly,
allowing the local concentration of glycosaminoglycan-
associating proteins such as FGF2 and VEGF and promoting
migration and the epithelial-mesenchymal transition, which
is a critical step in invasion and metastasis [169]. The
a6 integrin also regulates self-renewal and proliferation of
glioblastoma stem cells [170], and CD44 and a2f1 integrin
regulate tumorigenesis of prostate cancer stem cells [171,
172]. Expression of integrin av is also required for the
acquisition of a metastatic stem/progenitor cell phenotype
in human prostate cancer [173], and vitronectin/avf3
interaction also induces breast and prostate cancer stem cell
differentiation and tumor formation [174].

Although the mechanisms accounting for the resistance
of cancer stem cells are not yet clear, the rapid drug elim-
ination by drug transporters could explain their resistance
to chemotherapy [175, 176]. CD44 can also contribute to
this process. Indeed, CD44 has been reported to upregulate
the expression of the Pg-p drug transporter by a positive
feedback involving hyaluronan, PI3 Kinase, and ErbB2 [177].
CD44 can also regulate drug resistance by modulating
glucose metabolism in cancer cells [178]. In addition, it
has been reported that the Y-box binding protein-1 (YB-
1), an oncogenic transcription/translation factor, which is
expressed in more than 40% of breast cancers, induces
the expression of CD44 and of a6 integrin, which led to
enhanced self-renewal, mammosphere growth, and resis-
tance to paclitaxel treatment [179]. The 33 integrin has been
involved in the survival of breast tumor-initiating cells [180].
These studies suggest that adhesion of cancer stem cells to
ECM is likely to contribute to their drug resistance as well.
However, additional studies are required to understand the
role and the underlying mechanisms of integrins in drug
resistance of cancer stem cells.

8. Concluding Remarks

It is recognized that the tumor microenvironment plays a
critical role in cancer cell survival and progression. The
studies reviewed here support a general function of ECM/
integrin signaling in tumor cell survival and in the develop-
ment of chemoresistance. ECM/integrin signaling pathway
can, therefore, constitute a major pathway contributing to
minimal residual disease and patient relapse, and its targeting
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could significantly improve anticancer therapy and patient
survival.

Because of their known role in angiogenesis and migra-
tion, several integrin inhibitors are being developed as
therapeutic agents for cancer [181]. A humanized anti-
avf33 antibody and cyclic peptide inhibitors of integrin
avf33/avp5 as well as a humanized anti-a5f81 antibody are
currently in clinical trials in several types of cancer such as
glioblastoma, breast cancer, and melanoma. An additional
approach to alleviate cell-adhesion-mediated drug resistance
is the development of new drugs of which the cytotoxic
effects are not modulated by ECM/integrin signaling. In this
regard, the proteosome inhibitor bortezomib, the 1 integrin
antagonist HYD1, and statins can represent promising
drugs. These three agents overcome cell-adhesion-mediated
drug resistance in multiple myeloma either through the
downmodulation of w4f1 integrin expression, or in the
case of statins, via geranylgeranylation of Rho protein
and activation of Rho kinase [182-184]. Future studies
should also investigate if anti-integrin antagonists used in
combination with current chemotherapeutic drugs can be
beneficial in preventing drug resistance and patient relapse.
Further understanding of tumor-stroma interactions, the
contribution of integrins to cancer stem cell survival and
drug resistance as well as the determination of the complete
integrin “signalosome” may lead to the identification of
novel therapeutic targets.
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