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Sinoatrial node (SAN) is the primary heart pacemaker which initiates each heartbeat
under normal conditions. Numerous experimental data have demonstrated that Ca2+- and
CaMKII-dependent processes are crucially important for regulation of SAN cells. However,
specific mechanisms of this regulation and their relative contribution to pacemaker
function remain mainly unknown. Our review summarizes available data and existing
numerical modeling approaches to understand Ca2+ and CaMKII effects on the SAN. Data
interpretation and future directions to address the problem are given within the coupled-
clock theory, i.e., a modern view on the cardiac pacemaker cell function generated by a
system of sarcolemmal and intracellular proteins.
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INTRODUCTION
Under normal conditions, SAN cells (SANC) generate sponta-
neous rhythmic action potentials (AP) that initiate the heartbeat.
The evolution of thought regarding the cardiac pacemaker cell
operation paradigm switched back and forth between intracellu-
lar origin [e.g., a “metabolic” intracellular clock (Bozler, 1943)
or sarcoplasmic reticulum (SR)-based Ca2+-clock (Maltsev et al.,
2006)] and cell membrane origin [voltage membrane clock or
M-clock (Noble, 1960)]. A more recent paradigm shift has been
the realization that both intracellular and sarcolemmal mecha-
nisms are tightly, dynamically coupled to each other and are
indispensable for normal pacemaker function. These ideas have
been summarized within a “coupled-clock” theory of interacting
M-clock and Ca2+-clock (Maltsev and Lakatta, 2009; Figure 1)
that explained numerous experimental findings (Lakatta et al.,
2010; Maltsev and Lakatta, 2012). The key processes of the
coupled-clock system depend on Ca2+, calmodulin (CaM), and
CaMKII signaling (Figure 1, red). Interactions within the system
are extremely complex and their detailed investigation requires
numerical model simulations. The CaMKII function in pace-
maker cells has not been systematically studied using numerical
simulations. Our review summarizes major principles of the
coupled-clock theory, available data, and existing numerical mod-
eling approaches that are important to delineate future numerical
integration and exploration of CaMKII within the pacemaker cell
system.

INTEGRATION OF Ca2+ AND CaMKII SIGNALING WITHIN THE
COUPLED-CLOCK SYSTEM
Operation of the coupled-clock system has been explored in
recent numerical model studies (Maltsev and Lakatta, 2009,
2013; Yaniv et al., 2013a,d), and experimental evidence for the
coupled-clock theory has been summarized (Lakatta et al., 2010;

Maltsev and Lakatta, 2012). The system generates spontaneous,
rhythmic APs separated by a slow diastolic depolarization (DD)
that starts each cycle from the maximum diastolic potential (MDP
∼−60 mV) and brings the membrane potential (Vm) to a cell
excitation threshold of ∼−40 mV. The coupled-clock theory
postulates that the DD is generated by the two coupled oscilla-
tors, Ca2+-clock and M-clock, rather than just by M-clock alone
(Figure 1).

The first numerical model of M-clock was developed by Noble
(1960), by application of Hodgkin–Huxley (HH) theory to car-
diac pacemaker cells. The M-clock-based models generate the DD
via time-dependent kinetics of ion channels upon AP repolar-
ization, e.g., by inactivation of a K+ current (Noble, 1960) or
by activation of a non-selective, “funny” current (DiFrancesco
and Noble, 2012). The SR, a major Ca2+ store in cardiac cells,
can also generate spontaneous oscillations via rhythmic cycles
of SR Ca2+ pumping (via SERCA) and release (via release
channels, RyR; Figure 1). Ventricular muscle cells can sponta-
neously cycle Ca2+ (under conditions of high Ca2+ loading) via
global Ca2+ waves via regenerative Ca2+-induced Ca2+ release
(CICR) propagating by Ca2+ diffusion (Fabiato, 1983). How-
ever, cardiac pacemaker cells generate rhythmic, spontaneous
Ca2+ releases during DD under normal Ca2+ conditions (in the
absence of Ca2+ overload; Huser et al., 2000; Bogdanov et al.,
2001). These releases occur in the form of abrogated waves,
dubbed local Ca2+ releases or LCRs. The synchronous occur-
rence of the LCRs generates a powerful, diastolic, net Ca2+ signal,
dubbed the late diastolic Ca2+ elevation or LDCaE (Figure 2).
The rhythmic LCRs are generated in the absence of M-clock,
e.g., under voltage clamp or in membrane-permeabilized SANC
[when [Ca2+] is normal, ∼100 nM, review (Lakatta et al., 2010)].
The Ca2+-clock in SANC is driven by Ca2+ cycling proteins
(e.g., phospholamban and RyR, Figure 1), whose function is
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FIGURE 1 | Schematic illustration of sinoatrial node cell as a

coupled-clock system of voltage membrane clock (M-clock) and an

intracellular, sarcoplasmic reticulum (SR)-based Ca2+-clock (gray

intracellular area). Interactions of key molecules comprising the system
with Ca2+ and CaMKII signaling are shown in red. Note that common
regulatory factors govern the function of both clocks. These common
factors, including CaMKII, act as nodes within the system to couple the

function of both clocks activities. The system is balanced: signals
accelerating action potential (AP) firing are balanced by signals
suppressing AP firing. This balance determines a given steady-state level
of net Ca2+, cAMP, and protein phosphorylation via PKA, and CaMKII.
G protein-coupled receptors (top left corner) within the cell membrane
modulate both the Ca2+-clock and M-clock function via the same crucial
signaling nodes of the system. Modified from Lakatta et al. (2010).

enhanced by phosphorylation via basal activity of PKA (Vino-
gradova et al., 2006) and CaMKII (Vinogradova et al., 2000). In
turn, the PKA is activated by a high basal level of cAMP pro-
duced by Ca2+-activated adenylyl cyclases (ACs) which are highly
expressed in SANC [particularly types 1 and 8, (Mattick et al.,
2007; Younes et al., 2008)]. The high rate of cAMP produc-
tion and protein phosphorylation is counterbalanced by activities
of phosphatases and phosphodiesterases. Interestingly, a pow-
erful Ca2+-clock generating rhythmic LCRs (similar to that in
SANC) also emerges in ventricular myocytes when the phos-
phorylation of Ca2+ cycling protein increases (e.g., via inhibi-
tion of phosphatases and/or phosphodiesterases; Sirenko et al.,
2014).

The Ca2+-clock and the M-clock are coupled in SANC via
Na+/Ca2+ exchanger (NCX; Figure 2) that senses the LCR ensem-
ble (i.e., LDCaE) and, operating in the forward mode, generates
a substantial inward current (INCX) during DD. M-clock, in
turn, regulates Ca2+-clock via L-type Ca2+ current (ICaL) by (1)
resetting phases of local Ca2+ oscillators that synchronizes LCR
ensemble; (2) supplying Ca2+, i.e., the Ca2+-clock’s oscillatory
substrate. Both clocks are coupled not only directly via Vm

and Ca2+, but indirectly, enzymatically, by coupling factors,
such as PKA and CaMKII, affecting multiple targets within both
clocks (Figure 1). PKA- and CaMKII-dependent phosphorylation
enhances function of the proteins comprising the system and is
required for normal pacemaker function and autonomic modu-
lation. Because of these complex interactions (which define the
Ca2+ balance and enzymatic activity balance), each component
of the system contributes to the LCR spatiotemporal characteris-
tics, especially the LCR period, i.e., the time when LCRs emerge
and accelerate the DD (Figure 2). Thus, the LCR period is con-
tributed not only directly by the Ca2+ release channels RyR, but
also indirectly by L-type Ca2+ channels (LCCh), SERCA, and NCX
regulating Ca2+ fluxes (Maltsev et al., 2013), and even by K+ chan-
nels or “funny” channels via respective Vm changes, also regulating
Ca2+ fluxes (Yaniv et al., 2013a).

EXPERIMENTAL EVIDENCE FOR IMPORTANCE OF CaMKII
SIGNALING IN PACEMAKER CELLS
CaMKII indirectly senses [Ca2+] by binding Ca2+-CaM com-
plex at the CaM region in its regulatory domain, which increases
its activity (Anderson et al., 2011). (Of note, there are two
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FIGURE 2 | Coupled-clock Maltsev–Lakatta numerical model (Maltsev

and Lakatta, 2009) predicts complex synergistic interactions between

cell membrane and Ca2+ cycling proteins within SANC (see

“Integration of Ca2+ and CaMKII Signaling within the Coupled-Clock

System”). Modified from Maltsev and Lakatta (2009).

predominant CaMKII isoforms in the heart: CaMKIIδB local-
izes in nuclei and CaMKIIδC in cytosol). While CaMKII does
not regulate directly cAMP production, reduction in CaMKII
activity is associated with reduction in [cAMP] in rabbit SANC
(Yaniv et al., 2013b), indicating a complex interplay of the CaMKII,
ACs, and PKA signaling (Figure 1). In this special issue Wu and
Anderson discuss in detail experimental evidence for contribution

of CaMKII activity to SAN function during health and heart dis-
ease (Wu and Anderson, 2014). Here we summarize the key facts
with respect to the integration of CaMKII within the coupled-
clock system of SANC (Figure 1) and its future numerical
modeling.

Pharmacological inhibition of CaMKII signaling (using AIP or
KN-93) depresses the basal rate and amplitude of spontaneous APs
in SANC of rabbit (Vinogradova et al., 2000; Yaniv et al., 2013b)
and guinea-pig (Rigg et al., 2003). Confocal imaging of immunola-
beled proteins demonstrates that active CaMKII is highly localized
beneath the surface membrane (Vinogradova et al., 2000). Thus,
CaMKII activity is geographically associated with proteins of both
M- and Ca2+-clocks. CaMKII modulates several membrane ion
channels in the heart: LCCh, K+ channels, and Ca2+-clock pro-
teins: SERCA (directly and indirectly via phospholamban) and
RyR. Studies in isolated rabbit SANC suggested that CaMKII reg-
ulates the pacemaker activity via modulating ICaL inactivation
and reactivation (Vinogradova et al., 2000) and LCR morphology
(Vinogradova et al., 2011). I f is not affected directly by CaMKII
inhibition (Rigg et al., 2003).

Thus, contribution of CaMKII to basal AP generation by SANC
was demonstrated for rabbit and guinea pig [but remains contro-
versial for mice (Zhang et al., 2005; Wu et al., 2009)]. Because
CaMKII is sensitive to the frequency of the Ca2+ transients,
CaMKII is ideally suited to respond to changes in SAN rhythm.
For example, electrical stimulation alone increases CaMKII-
dependent phosphorylation of phospholamban at CaMKII phos-
phorylation site in a frequency-dependent manner in ventricular
myocytes (Hagemann et al., 2000). CaMKII also mediates SAN
response to β-adrenergic receptor stimulation (Wu et al., 2009).
Moreover, SANC and isolated hearts from mice with CaMKII
inhibition (by transgenic expression of AC3-I) were insensitive
to BayK, an LCCh agonist, which increases pacemaker rate in wild
type mice (Gao et al., 2011). New evidence that CaMKII is a key
part of the coupled-clocked system (Figure 1) has been obtained
in studies of specific I f inhibitor ivabradine (Yaniv et al., 2013a;
discussed below).

CaMKII activity can also be enhanced by pro-oxidant condi-
tions (Erickson et al., 2008). Clinical studies show that right atrial
tissue from patients with heart failure who also required artifi-
cial pacemakers have more Oxidize-CaMKII compared to patients
with heart failure alone and patients without heart failure or severe
SAN dysfunction (Swaminathan et al., 2011). Ang II infusion in
mice increases Oxidize-CaMKII and elicits SAN dysfunction that
is prevented by overexpression of a synthetic CaMKII inhibitory
peptide (AC3-I) or by CaMKIIN, an endogenous CaMKII protein
present in neurons, but absent in the heart (Swaminathan et al.,
2011).

CaMKII activity appears to be increased in heart disease (e.g.,
arrhythmia, heart failure, atrial fibrillation; Anderson et al., 2011).
Sinus sick syndrome prevails during heart failure and hyper-
tension conditions (with both conditions exhibiting elevated
angiotensin II levels). Because CaMKII inhibition is sufficient
to protect against angiotensin II-induced sick sinus syndrome
in aforementioned mouse model (Swaminathan et al., 2012),
CaMKII inhibition may be a useful approach to prevent sinus sick
syndrome.
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It was demonstrated that basal AC-cAMP/PKA signaling
directly, and Ca2+ indirectly, regulate mitochondrial ATP pro-
duction (Yaniv et al., 2011, 2013c). As a crucial element of normal
automaticity in rabbit SANC, CaMKII signaling is also involved in
SANC bioenergetics. When ATP demand is reduced by interfering
with CaMKII or CaM activity, SANC become depleted of ATP,
indicating reduction in ATP generation with lower demand (Yaniv
et al., 2013b).

NUMERICAL MODELING STUDIES THAT SHOW IMPORTANCE
OF CaMKII SIGNALING FOR SAN FUNCTION
Although CaMKII signaling, per se, has not been systematically
studied in pacemaker cell models, at least two recent numerical
model studies point to a key functional importance of CaMKII
signaling in pacemaker cells and tissues.

Yaniv et al. (2013a) have recently demonstrated that CaMKII
likely serves as a key functional integrator of M-clock and Ca2+-
clock signals (Figure 1) by testing effects of specific perturbations
of either clock in rabbit SANC. The M-clock was specifically
perturbed by ivabradine that at low concentrations (<3 μM)
specifically inhibits If , i.e., it does not suppress ICaL (Yaniv et al.,
2012a), other membrane ion currents (Bois et al., 1996), or Ca2+
cycling in permeabilized SANC (Yaniv et al., 2013a).

Numerical simulations (Yaniv et al., 2013a) using a modified
coupled-clock Maltsev–Lakatta model (Yaniv et al., 2012b), pro-
vided new insights in ivabradine-induced bradycardia. An initial
I f reduction slows AP rate that, in turn, reduces the number
of ICaL activations/unit time, average Ca2+ influx, and Ca2+
available for SR pumping. This results in lower SR Ca2+ load
and longer LCR period (both effects were also found experi-
mentally). Later activation of diastolic INCX by the LCRs (and
INCX-linked DD acceleration) leads to a delayed activation of
ICaL, i.e., M-clock slowing. Thus, inhibition of the M-clock
inhibits (indirectly) Ca2+-clock that further suppresses the M-
clock, and so on, until the coupled-clock system attains a new
steady-state.

Interestingly, model simulations show that the complex ivabra-
dine effects extend further, beyond “biophysical” entrainment,
and likely include an additional “biochemical” component. The
aforementioned decrease in average Ca2+ influx produced by
ivabradine not only decreases Ca2+ available for SR pump-
ing, but also likely decreases protein phosphorylation signaling
via Ca2+-activated-CaMKII and Ca2+-activated-ACs-cAMP/PKA
pathways. This leads to further reductions in the average Ca2+
influx and, therefore, SR Ca2+ loading and AP firing rate. Simulta-
neously, reduction in cAMP shifts the I f activation curve (effecting
further M-clock slowing). If the “biochemical” crosstalk is lack-
ing, model simulations (Yaniv et al., 2013a) predict only about 50%
of the experimentally measured bradycardia produced by ivabra-
dine. Thus, the entire ivabradine effect is explained by a crosstalk
of equally important biophysical and biochemical mechanisms
(including CaMKII signaling).

According to the coupled-clock theory (Maltsev and Lakatta,
2009) any selective perturbation of either clock will inevitably
affect the function of the other and the entire coupled-clock sys-
tem. In line with this postulate, the bradycardic effect is symmetric:
it does not depend on which clock was initially perturbed. Both

the LCR period and AP cycle length become prolonged by either
perturbations of M-clock (e.g., using ivabradine) or Ca2+-clock
(e.g., using cyclopiazonic acid to selectively inhibit SERCA), with
the LCR period reporting the resultant complex effect (Yaniv et al.,
2013a).

Heart rate reductions produced by ivabradine or HCN4 muta-
tions have been interpreted as a pure result of insufficient I f

function. However, based on the results discussed above, these
effects are likely complex, involving the secondary changes in
Ca2+-clock and the entire coupled-clock system (that includes
CaMKII signaling; Yaniv and Lakatta, 2013). Effects of mutations
of Ca2+ cycling proteins on pacemaker function also likely include
clocks coupling, i.e., secondary effect on I f (via Ca2+-activated-
ACs and cAMP), rate-dependent effects on both clocks, ultimately
resulting in mutual entrainment of the clocks (Yaniv and Lakatta,
2013; Yaniv et al., 2013a).

Luo et al. (2013) numerically modeled a further level of CaMKII
effects related to cell death that is important to approach the
mechanisms of insufficient pacemaker function in disease and
aging. They developed a two-dimensional histologically recon-
structed mathematical model that takes into account SAN cell
death and fibrosis expressed in myocardial infarction by oxidizing
CaMKII. Their simulations predict decreased conduction velocity
and shift of the leading pacemaker site under these conditions.
Thus, changes in CaMKII signaling can result in morphologi-
cal changes of the SAN tissue which can affect cardiac impulse
initiation.

LOCAL Ca2+ AND CaMKII SIGNALING IN PACEMAKER CELLS
The local Ca2+ control theory (Stern, 1992) remains a key in
understanding the mechanisms of cardiac excitation-contraction
coupling. This theory explained graded CICR phenomenon via
statistics of success and failure of an initiating event (such as LCCh
opening) to recruit stochastic Ca2+ release units (CRUs) to fire.
While partially periodic LCRs (comprising Ca2+ clocks) in car-
diac pacemaker cells are generated by the CRUs, they are, in fact, a
product of complex local interactions of proteins residing in both
cell membrane and the SR, i.e., RyR, SERCA, LCCh, and NCX.
These interactions, in turn, are regulated by PKA and CaMKII
signaling (Figure 1).

During the last decade mathematical models have been devel-
oped in ventricular myocytes to describe the CaMKII effects via
regulation of ionic currents (Hund and Rudy, 2004; Grandi et al.,
2007). More recent models describe CaMKII activity as a function
of subspace Ca2+, CaM, and phosphatase activity (Saucerman
and Bers, 2008). These studies have demonstrated that the dif-
ferent affinities of CaM and CaMKII and calcineurin determine
their sensitivity to local versus global Ca2+ signals that regu-
lates excitation-contraction coupling. Hashambhoy et al. (2009)
developed a stochastic model describing the dynamic interactions
among CaMKII, LCCh, and phosphatases as a function of dyadic
Ca2+ and CaM levels.

Local Ca2+ mechanisms have been recently modeled in pace-
maker cells. The LCRs are generated via stochastic recruitment
of the neighboring CRUs (Maltsev et al., 2011) regulated by local
interactions of RyR, SERCA, and NCX (Maltsev et al., 2013). Some
irregularity in RyR spatial distribution is not an imperfection,
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but rather a functional modality of the pacemaker cells [abstract
(Maltsev et al., 2014)]. The irregularity decreases nearest neighbor-
to-neighbor distances among the CRUs and thereby facilitates local
CICR forming wavelet-like LCRs. This new local control mecha-
nism regulates the balance between robustness and flexibility of
pacemaker cell function.

The most advanced SANC model (Stern et al., 2014) fea-
tures stochastic propagated spontaneous diastolic Ca2+ release
in three dimensions. This model describes explicit gating of indi-
vidual Ca2+ channels (both RyR and LCCh), without assuming
either a discrete sub-membrane compartment or an inactivated
state of the RyR. The model succeeded in reproducing observed
propagating local Ca2+ releases and realistic pacemaker rates
only when RyR locations were assigned taking into account
irregular, hierarchical distribution of RyR clusters (small and
large) observed in 3D confocal scan sections of immunofluo-
rescence staining. When the RyR sensitivity is very high or the
NCX density is low, synchronization is lost, causing sympa-
thetic stimulation to reduce (rather than increase) beating rate,
often exhibiting arrhythmias (Maltsev et al., 2013; Stern et al.,
2014). This regime may be important for rhythm abnormalities
caused by heart failure, RyR mutations, or pharmacological NCX
blockade.

Compared to previous models, lacking local Ca2+ dynamics
(i.e., “common pool” models [Kurata et al., 2002; Maltsev and
Lakatta, 2009)], the new models provide mechanistic insights into
local crosstalk of the key molecules of the system: recruitment
of RyRs (generating diastolic LCRs), RyR-LCCh and RyR-NCX
crosstalk, and efficient SERCA operation (Maltsev et al., 2013).
Indeed, Ca2+ signals within LCRs exhibit much higher amplitudes
vs. those predicted by “common pool” models (∼tens of μM vs.
∼1 μM). Thus, the “local” models, predicting the realistic scale
of Ca2+ signals within the inhomogeneous signaling network of
SANC, seem to be a better choice to explore CaMKII effects in
future studies of pacemaker cells.

SUMMARY
In this review we have summarized the present state of exper-
imental and numerical modeling studies on Ca2+ and CaMKII
roles in cardiac pacemaker cells. Taking into account emerg-
ing importance of local Ca2+ control in cardiac pacemaker
cells and also importance of local CaMKII signaling (reported
in ventricular myocytes), accurate interpretation of experi-
mental data on CaMKII effects in pacemaker cells will likely
require integration of local (Saucerman and Bers, 2008) and
molecular (Hashambhoy et al., 2009) mechanisms into new
pacemaker cell models. Another important aspect that needs
numerical integration is CaMKII involvement in SANC bioen-
ergetics (Yaniv et al., 2013b). The new experimental studies
combined with new model simulations will explore CaMKII
interactions (Figure 1, red) with key regulatory molecules
(e.g., ACs, PDEs, phosphatases, PKA, phospholamban), effec-
tor molecules (RyR, SERCA, NCX, LCCh, NCX, etc), and
energy production of the system. This knowledge will con-
tribute greatly to our understanding of cardiac impulse initi-
ation and specific role of CaMKII signaling in the pacemaker
regulation.
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