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Abstract

Objective—The airway epithelium has a number of roles pivotal to the pathogenesis of asthma,

including provision of a physical and immune barrier to the inhaled environment. Dysregulated

injury and repair responses in asthma result in loss of airway epithelial integrity. Inhaled

corticosteroids are a corner stone of asthma treatment. While effective in controlling asthma

symptoms, they fail to prevent airway remodeling. Direct cytopathic effects on the airway

epithelium may contribute to this.

Methods—This study examined the effects of a 4-week treatment regimen of inhaled fluticasone

500 μg twice daily in healthy human subjects. Induced sputum was collected for cell counts and

markers of inflammation. Barrier function was examined by diethylenetriaminepentacetic acid

(DTPA) clearance measured by nuclear scintillation scan, and albumin concentration in induced

sputum.

Results—Steroid exposure resulted in epithelial injury as measured by a significant increase in

the number of airway epithelial cells in induced sputum. There was no change in airway

inflammation by induced sputum inflammatory cell counts or cytokine levels. Epithelial shedding

was associated with an increase in barrier function, as measured by both a decrease in DTPA

clearance and decreased albumin in induced sputum. This likely reflects the normal repair

response.

Conclusion—Inhaled corticosteroids cause injury to normal airway epithelium. These effects

warrant further evaluation in asthma, where the dysregulated repair response may contribute to

airway remodeling.
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Introduction

Asthma is a chronic inflammatory disease of the airways characterized by reversible airflow

obstruction, airway hyper reactivity and airways remodeling [1–4]. Complex interactions

between environmental insults and genetically determined host factors generate abnormal

injury/repair responses in the airway, resulting in persistent inflammation, epithelial damage

and ultimately in the structural changes of airway remodeling. Previously considered a

bystander in what was designated primarily an immunological disorder, the role of the

epithelium in the pathogenesis of asthma is increasingly recognized [5]. The bronchial

epithelium provides chemical, physical, and immunologic barriers to the inhaled

environment [6], and has a critical role in orchestrating the inflammatory response to inhaled

allergens and pathogens [4]. Loss of epithelial integrity is a hallmark of asthma [7–10]. The

potential mechanisms to explain damaged airway epithelium remain unclear and likely are

multifactorial, including repetitive exposure to allergic insults (environmental, infectious,

inflammatory agents), inflammatory processes [11], a predisposing epithelial dysfunction

[5,12] and sub-optimal control with recommended treatment regimens.

Corticosteroids have been the foundation of the pharmaceutical treatment of asthma since

the early 1990’s and are used currently as the first line and initial maintenance treatment

(“controller”) in patients with recurrent symptoms [1,13]. Corticosteroids are powerful anti-

inflammatory agents with a number of cellular targets which reduce recruitment and

activation of inflammatory cells in the airway [14]. The glucocorticoid receptor is expressed

in airway epithelium [15], and recent work has demonstrated a wide range of additional

mechanisms including regulation of epithelial innate and adaptive immune responses [16].

Inhaled corticosteroids have been demonstrated to improve symptoms, exacerbation

frequency, and overall quality of life in most patients with asthma [17,18]. However,

corticosteroid treatment does not reliably reverse or prevent airway remodeling [19] or alter

the natural history of the disease even when therapy is started in childhood [20]. In addition,

there is a substantial subset of asthmatics (10–25%) that are resistant to corticosteroid

therapy with ongoing symptoms and airway inflammation [21].

Th2-mediated inflammation, which is responsive to inhaled corticosteroid (ICS) therapy,

contributes to the pathogenesis and clinical syndrome of asthma, and may have a role in

airway remodeling. Abnormalities in the airway epithelium resulting in dysregulated injury,

inflammation and repair are recognized to be equally important [22], however in the context

of airway remodeling, the anti-inflammatory benefits of corticosteroids may be offset by

direct toxic effects on the airway epithelium. Using a variety of in vitro and animal models

and clinically relevant doses of corticosteroid, we have previously shown that

corticosteroids have adverse effects on airway health, increasing epithelial apoptosis,

slowing repair and impairing immune responses to viral and bacterial pathogens [23–30].

These adverse effects on the epithelium may occur in parallel with the beneficial anti-

inflammatory effects of corticosteroids in asthma, and thus be masked. By studying the

effects of inhaled corticosteroids on healthy adults without asthma/airway inflammation, any

adverse effects of corticosteroids on the epithelium will be more evident.
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The aim of this study was to examine the effect of a 4 week treatment regimen of inhaled

corticosteroids on the airway epithelium in healthy human subjects. Damage to the airway

epithelium was measured by number of epithelial cells shed into induced sputum. We used

two measures of barrier function, examining both bulk diffusive flows as reflected by

albumin concentration in the induced sputum and DTPA clearance, which is thought to be a

more sensitive measure of tight junction integrity [31]. Differential cell counts and cytokine

levels in the induced sputum were measured to reflect airway inflammation.

Materials and Methods

Subjects

Healthy subjects aged 18 years and above with no history of smoking, asthma/allergy or

other respiratory condition were recruited by newspaper advertising. Subjects were excluded

on the basis of abnormal spirometry at baseline screening. The study was approved by the

Research Ethics Board (REB) of University of British Columbia/ Providence Healthcare

REB# P01-0095. All subjects gave written consent to participate in the study.

Study Protocol

This was an uncontrolled before and after observational study (Figure 1). At visit zero [V0]

(screening visit), baseline spirometric lung function was obtained in accordance to the

standards of the American Thoracic Society (ATS). Only the subjects with an FEV1 of >

80% and with normal lung function were eligible for enrollment into the study. At visit one

[V1], a baseline nuclear medicine scintillation scan (DTPA) was performed, and subjects

returned the following day for sputum induction. Each subject was then instructed on the

proper technique for the delivery of fluticasone via a metered dose inhaler (MDI) with a

spacer device. Each subject inhaled fluticasone 250 μg (Flovent, Glaxo SmithKline Inc,

Canada) two puffs twice a day (a daily total of 1000 μg daily) for four weeks. Each subject

was contacted weekly by the research coordinator to monitor compliance and assess for any

adverse events. At visit two [V2] at the conclusion of the inhaled steroid treatment, each

subject returned for assessment including symptom review and spirometry and completed a

nuclear medicine scintillation scan and a sputum induction following the same protocol as

V1.

99mTc-DTPA lung clearance test

Transepithelial clearance of DTPA was measured using a nuclear medicine scintillation scan

[31]. Subjects inhaled an aeorosolized mist of Technetium-labeled

diethylenetriaminepentacetic acid (99mTc-DTPA) via a Fisoneb Ultrasonic nebulizer. Each

subject inhaled a dosage of 185 MBq of DTPA for 5 minutes while lying supine on a

Siemens PHO/gamma scintillation camera. Subjects were instructed to make rapid

inspiratory efforts to ensure central deposition of the particles in the upper airways.

Immediately after the delivery of the aerosolized DTPA 30-second image counts were

performed for a total of 30 minutes. Anterior and posterior images were taken with a dual

headed camera. The region of interest (ROI) was drawn over the central portions of each

lung and time-activity curves were derived from the counts per frame computed in the ROI.

The T½ value (time required for clearance of 50% of the activity from lung fields) was
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calculated with the help of the established formula [32]. Decreased T½ denotes faster

clearance.

Sputum induction and processing

Sputum samples were obtained by inhaling increasing concentrations of hypertonic saline

solutions (3%, 4%, and 5%) using an ultrasonic nebulizer (Univerisal III model, FLAEM

Nuova; Brescia, Italy). The whole sputum sample was collected in a plastic container,

weighed, and incubated in 3 volumes of dithiothreitol (DTT) 5 mmol/L (Sputolysin;

Calbiochem Corp; San Diego, CA) for 15 minutes at room temperature. An equal volume of

phosphate-buffered saline (PBS) was then added to the solution and vortexed for 30

seconds. Cell viability was checked by Trypan blue exclusion. The differential cell count

was performed on cytospin products that were stained (Diff-Quick stain; Fisher Scientific;

Springfield, NJ). Specimens were considered adequate where viability was >80% and

squamous cell contamination was <50%. The bronchial epithelial cells were identified by

their columnar shape, round nucleus and cilia on the broad end of the cell. A total of 300

non-squamous cells were counted by two independent blinded observers. Results were

averaged and bronchial epithelial cells were expressed as percentage of the total non-

squamous cells, and differential counts of inflammatory cells were expressed as a percentage

of total inflammatory cells. Following centrifugation at 800 g for 10 min at 4°C, the

supernatant was separated from the cell pellet and immediately stored at −80°C for batch

analysis.

Measurement of airway inflammation

The concentrations of inflammatory mediators IL-6 and IL-8 and the repair marker Heparin-

binding EGF- like factor (HB-EGF) [33] were measured in induced sputum cell free

supernatant in duplicate by standard ELISA. Induced sputum albumin concentration was

measured in unprocessed sputum by ELISA and expressed as μg albumin/mg sputum.

Statistical analysis

Statistical software Graphpad Prism 5 was used for the analysis. Mann-Whitney U test was

used for comparison of groups (median values) as the sample size was small and normal

distribution could not be assumed. Paired t-test (Wilcoxen) was used to test for effect of

treatment between week 0 and week 4. Statistical significance was defined as p-value <

0.05.

Results

Study population

Thirty-eight patients were enrolled of which 36 completed the study, two subjects failing to

return for the V2 assessment. The 36 consisted of 18 males and 18 females with mean age of

30.9 years (24 – 43) years and average FEV1 of 100 (13.2)% predicted. Paired data for

DTPA clearance are presented for all 36 patients.
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Epithelial cell shedding

Sputum induction was of insufficient quality (poor viability or squamous cell contamination)

at one or both visits for 13 of 36 patients, thus data for epithelial cell shedding, airway

inflammation and albumin influx are presented for 23 subjects (Figure 1).

The percentage of AEC in induced sputum increased from 24.2 (SEM ±2.3) to 31.8 (SEM

±3.6) following fluticasone treatment. There was no significant difference in the means

(p=0.08) (Figure 2C) however the difference by paired analysis was significant at p<0.05

(Figure 2D). All of the shed AECs in our study were apoptotic, as determined by terminal

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining (Figure 2A and

2B).

DTPA clearance

The mean (SEM) half-life of DTPA in the lungs increased from 90.1 (4.3) seconds to 106

(5.4) seconds following 28 days of inhaled fluticasone. The difference between the means

was significant at p<0.05 (Figure 3A), and paired analysis showed a significant increase in

T½ between visit 1 and visit 2 at p<0.02 (Figure 3B).

Albumin influx

Albumin levels in induced sputum decreased from 761 (SEM ±72) μg/ml to 618 (SEM ±64)

μg/ml following 4 weeks of inhaled fluticasone.

There was no significant difference between the means p=0.14 (Figure 4A) however paired

analysis showed a highly significant reduction in albumin levels following fluticasone

treatment at p<0.005 (Figure 4B).

Airway inflammation

There was no significant difference in the levels of pro-inflammatory cytokines IL-6 and

IL-8 following fluticasone treatment (Table 1). HB-EGF levels were similarly unchanged.

There was no difference in the inflammatory differential cell counts in the induced sputum

following fluticasone exposure (data not shown).

Cell free supernatants from induced sputum were analyzed for IL-6, IL-8 and HB-EGF by

ELISA (as described in Material and Methods). No change was observed for IL-6, IL-8 and

HB-EGF after fluticasone exposure. Data are mean (SEM). P- Value refers to paired t-test.

Discussion

The airway epithelium is constantly exposed to inhaled agents that injure the epithelium, and

maintains homeostasis through an efficient and highly regulated cycle of injury,

inflammation and repair [34]. Our results demonstrate that subjects taking regular inhaled

fluticasone for four weeks manifest a degree of airway epithelial injury reflected by a

significant increase in the number of shed apoptotic AECs. Epithelial injury occurred in the

absence of measurable inflammatory response, and was associated with a reduction in
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airway permeability and increased barrier function, likely representing an active repair

response.

Epithelial shedding and desquamation is considered by many to be a hallmark of asthma,

based on post-mortem and biopsy studies [7,9,35,36], along with findings of increased

numbers of epithelial cells in sputum [37] and bronchoalveolar lavage fluid [38]. Epithelial

loss is largely confined to the columnar epithelial cells [39], and is accompanied by

phenotypic changes in the epithelium consistent with the repair process. Persistent repair

mechanisms are also implicated in airway remodeling [40,41]. These include upregulation of

cyclin-dependent kinase inhibitor, p21 (waf) [42], EGFR [43] and CD-44 [44,45]. In asthma,

epithelial shedding is largely attributed to the induction of apoptosis in AECs by infiltrating

T cells and eosinophils along with increased pro-inflammatory cytokines including IFN-

gamma and TNF-alpha [46]. While cell-mediated inflammation is reduced by

corticosteroids, our study was performed in normal individuals without baseline airway

inflammation and we observed no changes in the inflammatory indices in induced sputum

following corticosteroid therapy. Therefore the epithelial shedding observed in this study

likely represents direct apoptotic effect of corticosteroids on AECs as previously

demonstrated in vitro and in animal studies by ours [23–25,30] and other groups [47].

The potential significance of this corticosteroid induced AEC shedding in asthma is unclear.

It might be expected that in asthma, any direct cytopathic effects of corticosteroid would be

offset by the beneficial anti-inflammatory effects. We have previously shown however that

pre-treatment with corticosteroid reduced allergen-induced inflammation but did not reduce

epithelial shedding in an animal model of allergic asthma [23]. Direct corticosteroid-induced

AEC injury may be a factor in airway remodeling and explain at least in part the failure of

steroid therapy to impact on this process. However, the response of asthmatic epithelial cells

to corticosteroids may be different to that of phenotypically normal cells. Vignola and

colleagues previously demonstrated increased levels of the anti-apoptotic molecule Bcl-2 in

asthmatic subjects compared to controls and there was no difference in the number of

apoptotic epithelial cells between corticosteroid-treated and -untreated asthmatic subjects in

their study of bronchial biopsies [40]. It would be important therefore to define these effects

in subjects with asthma.

The airway mucosa exhibits properties of a selective and tightly regulated permeability

barrier that is direction dependent [48], properties which have been used experimentally to

assess the presence of airway damage in response to various epithelial insults. Clearance of

inhaled labeled-DTPA is considered to be an accurate measurement of lung epithelial

permeability, as movement of this molecule into the circulation is limited by the epithelium

rather than the endothelium [31]. DTPA is a small hydrophilic molecule that is believed to

be cleared from the airway in an apical to basolateral direction via paracellular diffusion;

this diffusion is increased following exposure to an allergen or other inflammatory insult

[12,49–51] and is thought to be mediated by alterations in cellular contacts such as tight

junctions and adherents junctions [12,49]. In addition to DTPA clearance, the presence of

serum proteins such as albumin in the airway and measured in induced sputum may reflect

altered barrier function in the basolateral-to-apical direction. Plasma extravasation into the

sub-epithelial tissue occurs rapidly in response to inhaled allergen reflecting an acute
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vascular response, but extravasation into the epithelium is not observed [52]. The sustained

transepithelial exudation of plasma seen in chronic airway inflammation reflects epithelial

injury and repair [53], as almost all (92%) of resistance to albumin flux across the epithelial-

capillary barrier occurs in the epithelium [54]. Passive bulk flow of plasma through a

“leaky” epithelium is regulated by cellular junctions [48,55], or via diffusive vesicular

transport across cells [54].

Intuitively one might expect that epithelial shedding would result in increased permeability

and loss of barrier function. However, the complex structure and repair characteristics of the

airway epithelium are such that this is not the case. In vivo experiments in guinea-pig

trachea demonstrate that epithelial shedding is immediately followed by repair responses

directed towards covering of the basement membrane and epithelial restitution [52,53,56].

The microcirculation exudes a plasma-rich fibrin-fibronectin gel rich in inflammatory cells,

while the cells neighboring the denuded area dedifferentiate, flatten and migrate over the

membrane to fill the gap. Columnar cells are likely more easily shed than basal cells [57],

and the residual basal cells undergo extensive flattening and develop interdigitating

cytoplasmic protrusions observed by electron microscopy [34]. The large flattened cells

again have less junctional area than the shed columnar cells, with less potential for

paracellular transit of proteins. Thus, in the setting of normal repair, desquamative processes

may be accompanied by the apparent paradox of reduced permeability, as a mechanism to

reduce further injury [48]. The observation of reduced clearance of DTPA and decreased

luminal albumin in the context of epithelial shedding in our normal subjects likely represents

initiation of a normal injury repair response.

Corticosteroids have long been known to reduce endothelial permeability, particularly at the

blood brain barrier, where they are used therapeutically to reduce cerebral edema [58]. The

mechanisms of improved barrier function are not fully understood, but include

glucocorticoid mediated induction of junctional proteins including occludin, ZO-1 and

claudin [59–61]. Evidence from lung epithelium is less abundant, but suggests similar

effects. In a co-culture model of immortalized lung epithelial cell lines in monolayer with

primary human pulmonary microvascular endothelial cells, dexamethasone treatment

resulted in increased membrane staining of E-Cadherin and ZO-1 in the NCI H441 epithelial

cells which was associated with increased transepithelial resistance (TER), a surrogate of

reduced permeability [62]. While it is difficult to extrapolate these results to the polarized

pseudo-stratified airway epithelium in vivo, it is possible that modulation of junctional

proteins contributes to the observed reduction in permeability.

Some studies of epithelial permeability have failed to demonstrate a significant difference

between normal subjects and mild stable asthmatics [63–65]. Lemarchand et al. [66]

however showed increased DTPA clearance in asthmatics during acute exacerbations, which

decreased within 4 weeks of the acute attack but still remained increased compared to the

control group. Ilowite et al. [67] adjusted their results for mucociliary clearance, which was

reduced in the asthmatics, and found that while total clearance was the same between

asthmatics and controls, airway permeability was in fact increased in the asthmatics [50].

Another recent study of chronic persistent asthma, which excluded the component of

mucociliary transport by careful exclusion of the hilar regions, found increased permeability
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in asthma compared to control and the degree of permeability was correlated with severity

of asthma [68]. It would appear therefore that epithelial damage in asthma, at least during

acute attacks, is associated with loss of barrier function.

This study was performed in normal subjects in order to isolate the cytopathic effects of

corticosteroids on the epithelium from the anti-inflammatory effects. One limitation of this

approach is in then extrapolating the results to the asthmatic airway, which by definition will

have differences in the injury and repair responses. Asthma is characterized by a cycle of

chronic injury and dysregulated repair [69,70]. Recent studies demonstrate that airway

epithelial cells from asthmatic children express significantly less fibronectin compared to

non-asthmatic controls, resulting in reduced reparative capacity [71]. Thus, while

corticosteroid induced cytopathology and epithelial injury may be inconsequential in the

context of normal repair mechanisms which quickly restore and even improve barrier

function, where these responses are inadequate or abnormal, permeability may increase. The

first studies of inhaled corticosteroids and permeability in asthma used low daily doses (200

μg and 400 μg Beclomethasone) for short duration (1 week), and found no difference in

DTPA clearance rates [72,73]. However, in the only other human study of the effect of

chronic inhaled corticosteroids on airway permeability, treatment with corticosteroids

(budesonide) in atopic asthmatic children did in fact result in increased permeability as

measured by DTPA clearance [74].

Evidence from both biopsy and differentiated culture studies indicate that expression and

assembly of tight junctions is abnormal in asthma [75,76]. This may contribute to the

epithelial “fragility” in asthma, while failure to upregulate tight junctions in response to

corticosteroid may contribute to an altered permeability response in the context of epithelial

shedding. It is unclear whether the direct cytopathic effects of corticosteroids observed in

this study are glucocorticoid receptor-mediated and would occur in the population of steroid

resistant asthmatics. Certainly these effects in the absence of the beneficial anti-

inflammatory effects could be potentially catastrophic with regard to airways remodeling.

This further underlines the importance of early identification of these patients and avoiding

the use of both systemic and inhaled corticosteroids.

The Flovent inhaler used in this study consists of 99.66 – 99.91% 1,1,1,2-tetrafluoroethane

propellant (carrier) and 0.09 – 0.34% fluticasone propionate powder. 1,1,1,2-

tetrafluoroethane (also known as the Glaxo compound HFA134a) was developed in the early

1990s as an alternative propellant to chlorofluorocarbons as it has a far lower ozone-

depleting potential. Inhaled radiolabelled HFA134a is rapidly removed from the body by

ventilation and does not accumulate significantly in any specific region of the body [77].

Multiple other safety studies have demonstrated that HFA134a has no negative impact on

various respiratory and systemic health indices in healthy volunteers [78,79] and in patients

with mild-moderate asthma [80–82]. Even whole body exposure to increasing

concentrations of HFA234a did not trigger any adverse effects, including upper respiratory

tract irritation [83]. There has been a single case of extrinsic allergic alveolitis with

eosinophil infiltration triggered by 1,1,1,2-tetrafluoroethane inhalation [84], but the vast

majority of individuals do not show any adverse health effects. There is little evidence to
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suggest that the effects we observed in patients using the Flovent inhaler were caused by the

propellant.

Conclusions

In summary, our results demonstrate that normal subjects taking inhaled fluticasone at

clinically relevant doses for 4 weeks show evidence of epithelial damage in the absence of

airway inflammation. This is associated with reduced airway permeability and albumin

extravasation, reflecting repair. The airway epithelium in asthma is held in a cycle of

chronic injury, inflammation and dysregulated repair. Inhaled corticosteroids in asthma may

contribute to epithelial injury, while at the same time reducing the accompanying

inflammatory response. Failure of appropriate repair mechanisms may result in increased

permeability and increased susceptibility to inhalational injury. We have no reason to

believe that the observed results are unique to the particular steroid used in this study;

however further studies using other inhaled steroid preparations and carrier only placebo

controls would be of interest.

While the beneficial effects of corticosteroids on cell-mediated immunopathology in asthma

are manifold, our study suggests that the direct toxic effects on the epithelium may not be

inconsequential, particularly in the context of inappropriate repair, and could in fact

contribute to airway remodeling. Care should be taken in extrapolating our findings to

asthmatic subjects recognizing the potential differences in apoptotic susceptibility,

inflammation and repair. Given the widespread use of inhaled corticosteroids and their

failure to prevent airway remodeling, further careful investigation of these effects in

asthmatic subjects is warranted.
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Figure 1.
Flow chart of the study protocol. Thirty-six of total thirty-eight normal subjects were given

1000 μg of Fluticasone for four weeks. Samples were collected at visit 1 and visit 2 for

DTPA analysis, sputum analysis and differential cell count
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Figure 2.
Airway epithelial cell (AEC) shedding into induced sputum is increased after fluticasone

exposure. (A) Representative image of Geimsa stained cytospin demonstrated epithelial cell

shedding (arrows indicate bronchial epithelial cells); (B) Representative image of TUNEL

staining of shed AEC; (C,D) Difference in the % AEC of total cells counted in the sputum

analysis, mean values (C) and paired values (D) at visit 1 and visit 2. (*p<0.05)
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Figure 3.
Diethylenetriaminepentacetic acid (DTPA) clearance is reduced after exposure to inhaled

fluticasone. Subjects inhaled Technetium-labeled diethylenetriaminepentacetic acid (99mTc-

DTPA) at visit 1 and 2 and images were recorded every 30 seconds for a total period of 30

minutes. Analysis done on those scans to calculate T1/2 value at visit 1 and visit 2 (*p<0.05)
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Figure 4.
Albumin levels in induced sputum are reduced following exposure to inhaled fluticasone.

ELISA was performed on unprocessed sputum samples to detect albumin levels at visit 1

and visit 2. Data is represented as mean value (A) and paired value (B) (**p<0.005)
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Table 1

Concentrations of inflammatory mediators (IL-6, IL-8 and HB-EGF) in induced sputum

Concentration (pg/ml) Visit 1 Visit 2 P-value

IL-6 113.9 (139.4) 79.7 (85.9) 0.27

IL-8 755.3 (906.1) 611.8 (757.2) 0.72

HB-EGF 609.6 (298.1) 679.8 (457.2) 0.54
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