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Chronic infection is one of the major causes of cancer, and there are several

mechanisms for infection-mediated oncogenesis. Some pathogens encode gene

products that behave like oncogenic factors, hijacking cellular pathways to pro-

mote the survival and proliferation of infected cells in vivo. Some of these viral

oncoproteins trigger a cellular damage defense response leading to senescence;

however, other viral factors hinder this suppressive effect, suggesting that cooper-

ation of those viral factors is important for malignant transformation. Coinfection

with multiple agents is known to accelerate cancer development in certain cases.

For example, parasitic or bacterial infection is a risk factor for adult T-cell leuke-

mia-lymphoma induced by human T-cell leukemia virus type 1, and Epstein-Barr

virus and malaria are closely associated with endemic Burkitt lymphoma. Human

immunodeficiency virus type 1 infection is accompanied by various types of infec-

tion-related cancer. These findings indicate that these oncogenic pathogens can

cooperate to overcome host barriers against cancer development. In this review,

the authors focus on the collaborative strategies of pathogens for oncogenesis

from two different points of view: (i) the cooperation of two or more different

factors encoded by a single pathogen; and (ii) the acceleration of oncogenesis by

coinfection with multiple agents.
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1 | INTRODUCTION

Infection is an important cause of human malignant diseases. It is

estimated that approximately 15% of cancer cases worldwide are

attributable to infection with oncogenic pathogens.1 The IARC has

classified 7 viruses, 1 bacterium, and 3 parasites as well estab-

lished (Group 1) carcinogenic agents based on sufficient evidence

in humans: HBV, HCV, HPV (high-risk types), EBV, KSHV, HIV,

HTLV-1, Helicobacter pylori, Opisthorchis viverrini, Clonorchis sinensis,

and Schistosoma haematobium (Table 1).2 These pathogens con-

tribute to oncogenesis by several distinct actions. Pathogens that
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productively replicate in vivo, such as HBV, HCV, H. pylori, and

the parasites, cause tissue inflammation, leading to the accumula-

tion of damage in host cells.3-7 In contrast, EBV, KSHV, HPV, and

HTLV-1 establish latent infection, and most individuals infected

with these viruses are asymptomatic.8-11 Each of these latent

viruses encodes its own oncogene(s); however, these oncogenes

are tightly regulated and selectively expressed in cancer cells

in vivo. Finally, HIV is unique among the pathogens categorized in

IARC’s Group 1, as it doesn’t have oncogenic potential itself, but

it increases cancer risk by allowing other oncogenic agents to

propagate in coinfected subjects.1,12 Collectively, infectious agents

are thought to cause cancer by one or more of the following

mechanisms: persistent inflammation, potent oncogenic activity,

and promoting escape from host immunity. The first mechanism

(inflammation) is reviewed elsewhere.13,14 We will begin this dis-

cussion by focusing on the second mechanism (oncogenic factors

produced by pathogens), and then we will discuss how various

pathogens (including HIV) can interact with one another to further

increase the risk of cancer.

2 | COLLABORATION OF VIRAL FACTORS
ALLOWS PROLIFERATION OF INFECTED
CELLS WITH DNA DAMAGE: POSSIBLE
MECHANISM OF MALIGNANT
TRANSFORMATION

Viral oncogenes play important roles in the persistent proliferation

and survival of infected cells, resulting in malignant transformation. It

is known that the potent activity of any of several viral oncoproteins

would normally induce the cellular DDR, leading to apoptosis or OIS.

Subversion of the OIS pathway15 by the collaboration of two or

more viral factors is a common mechanism that drives the increase

in infected cells with genetic abnormalities.

2.1 | HTLV-1 Tax and HBZ

Human T-cell leukemia virus type 1 is a retrovirus that induces a malig-

nant disease of CD4+ T cells, ATL.16 The HTLV-1 provirus is integrated

into the host genome and encodes several regulatory and accessory

TABLE 1 Infectious agents categorized as Groups 1 and 2 by the International Agency for Research on Cancer (IARC) Monograph2

IARC Group Biological agent Main malignant diseases

1 Virus Hepatitis B virus HCC

1 Hepatitis C virus HCC, NHL

1 HIV-1 NHL, KS, HL, MCC

1 HTLV-1 ATL

1 EBV BL, NHL, HL, NK/T lymphoma,

nasopharyngeal ca, gastric ca

1 KSHV KS, PEL

1 HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 Cervical ca, anogenital ca,

head and neck ca

1 Bacterium Helicobacter pylori Gastric ca, MALT lymphoma

1 Parasite Schistosoma haematobium Bladder ca

1 Opisthorchis viverrini Cholangiocarcinoma

1 Clonorchis sinensis Cholangiocarcinoma

2A Virus HPV type 68 Cervical ca

2A Merkel cell polyomavirus (MCPyV) MCC

2A Parasite Malaria (Plasmodium falciparum) BL

2B Virus HIV-2

2B HPV 26, 30, 34, 53, 66, 67, 69, 70, 73, 82, 85, 97

2B HPV 5 and 8 of genera beta

2B BK polyomavirus (BKV)

2B JC polyomavirus (JCV)

2B Parasite Schistosoma japonicum

IARC has classified 7 viruses, 1 bacterium, and 3 parasites as Group 1, and another 7 viruses and 2 parasites as Group 2. Group 1, oncogenic to humans;

Group 2A, probably oncogenic to humans; Group 2B, possibly oncogenic to humans.

ATL, adult T-cell leukemia-lymphoma; BL, Burkitt lymphoma; ca, cancer; EBV, Epstein-Barr virus; HCC, hepatocellular carcinoma; HIV, human immunode-

ficiency virus; HL, Hodgkin lymphoma; HPV, human papillomavirus; HTLV-1, human T-cell leukemia virus type 1; IARC, International Agency for

Research on Cancer; KS, Kaposi’s sarcoma; KSHV, Kaposi’s sarcoma-associated herpesvirus; MALT, mucosa-associated lymphoid tissue; MCC, Merkel cell

carcinoma; NHL, non-Hodgkin lymphoma; NK/T lymphoma, natural killer/T-cell lymphoma; PEL, primary effusion lymphoma.
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genes that regulate viral replication.17,18 Among them, Tax and HBZ

(Figure 1A) are important for the persistence of HTLV-1 in vivo,

although they have different roles in its propagation. Viral replication

depends on Tax, and Tax is thus crucial to de novo infection by the

virus. In contrast, HBZ is critical for clonal proliferation of infected

cells.19,20 Both Tax and HBZ possess oncogenic potential;18,21 however,

they have opposite functions in many signaling pathways (Figure 1B).

Tax strongly activates both the canonical and non-canonical NF-jB

pathways mainly through activation of IKK complex,17,22-24 whereas

HBZ specifically suppresses the canonical NF-jB pathway by inhibiting

p65/RelA;25 Tax activates the CREB pathway and HBZ suppresses it by

competitive binding to CREB family proteins;26 and Tax activates the

Wnt/b-catenin cascade, but HBZ inhibits this signaling pathway by sup-

pressing the downstream transcription factors TCF1 and LEF1.27 These

findings suggest that Tax and HBZ can fine-tune the regulation of these

pathways by counteracting one another.

As Tax is a potent oncoprotein, it triggers an oncogenic stress

response in the expressing cells and, consequently, induces cell cycle

arrest and senescence in a way that is similar to OIS triggered by

Ras28 and c-Myc (Figure 2A).29 Kinjo et al30 reported that Tax

induces DNA damage through the generation of intracellular ROS

and, consequently, leads to senescence in primary human cells. It

has also been shown that hyper-activation of NF-jB by Tax induces

cellular senescence.31,32 Importantly, HBZ can release Tax-expressing

cells from cell cycle arrest, probably by inhibition of canonical NF-jB

signaling.25,31 In addition, both Tax and HBZ have a potential to inhi-

bit DNA repair.11,17 These observations suggest that these two viral

factors facilitate the clonal expansion of infected cells even in the

presence of genetic aberrations.

Tax is a highly immunogenic protein, and therefore it is a main tar-

get of CTL.33-35 In addition, Tax might be involved in the emergence

of neoantigens in ATL cells, as it has clastogenic and genotoxic poten-

tial.17,30,36 Thus, Tax evokes a host immune reaction against HTLV-1-

infected and ATL cells. In contrast, HBZ is closely associated with

immune-suppressive phenotypes of infected cells. HBZ potently

enhances transcription of Foxp3, which is a master gene of Treg and,

indeed, the number of Treg is significantly increased in HBZ-transgenic

mice and primary HTLV-1-infected and ATL cells.21,37,38 A recent

study demonstrated that HBZ induces a co-inhibitory receptor, TIGIT,

on the surface of T cells, and suppresses the immune response

through induction of IL-10 from dendritic cells.39 In addition, vaccina-

tion with Tax protein is less efficient in HBZ-transgenic mice than in

wild-type littermates.39 These results suggest that HBZ expressed in

infected cells can suppress anti-Tax immunity in vivo. Anti-HBZ CTL

are less frequent than anti-Tax CTL in HTLV-1-infected subjects

despite the constant expression of HBZ, implying that the immuno-

genicity of HBZ is low.40 In addition, HBZ suppresses the intracellular

inhibitory signal through TIGIT by inactivation of SHP-2 and, conse-

quently, enhances cell proliferation upon TCR stimulation.41 Taken

together, these reports indicate that Tax stimulates many oncogenic

pathways while HBZ counterbalances the negative effects of Tax,

leading to malignant transformation of infected cells.

2.2 | HPV E6 and E7

High-risk types of HPV are etiological agents of cervical, anal, and

head and neck cancers. The IARC has classified 12 types of HPV

(HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 59) as Group 1

F IGURE 1 Human T-cell leukemia virus type 1 (HTLV-1) Tax and HTLV-1 bZIP factor (HBZ) counteract one another. (A) HTLV-1 Tax and
HBZ are encoded in the plus and the minus strand of HTLV-1 provirus, respectively. (B) These two factors counteract one another in many
signaling pathways. Representative examples of cellular proteins targeted by Tax and/or HBZ are shown. NF-jB, nuclear factor kappa B;
TGF-b, transforming growth factor beta
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carcinogenic agents.1 The products of two early genes encoded in

HPV, E6 and E7, are constitutively expressed in HPV-positive tumor

cells and play major roles in oncogenesis by HPV. It is well known

that E6 and E7 inactivate the cellular tumor suppressors p53 and

retinoblastoma tumor suppressor protein (pRb) respectively (Fig-

ure 2B).42 The transforming activity of E7 is strongly increased in

the presence of E6. E7 triggers a carcinogenic cascade by binding to

pRb and inactivating it; the resulting activation of E2F transcription

factors promotes cell proliferation. Overactive E2Fs would normally

cause p53 activation and induce apoptosis or senescence as a cellu-

lar defense response; however, the E6/E6-associated protein (E6AP)

complex ubiquitinates p53 for proteasomal degradation. Thus, the

sequential effects of E7 and E6 trigger oncogenesis in HPV-infected

cells. It has also been reported that high-risk, but not low-risk, HPV

E7 causes p16INK4A induction in a pRb-independent way – a phe-

nomenon that is also observed in Ras-mediated OIS.43,44 A recent

genomic sequencing study showed that the sequence of HPV16 E7

is strictly conserved in precancerous and cancerous tissues,

suggesting its importance in carcinogenesis.45 Collectively, these

studies show that persistent replicative stresses from E7 and inhibi-

tion of cell cycle arrest and senescence by E6 induce the accumula-

tion of genetic aberrations and, consequently, increase the

probability of malignant transformation by HPV. It is also known that

HPV E5 protein has oncogenic properties; it promotes cell prolifera-

tion by stimulation of EGFR, and suppresses TRAIL- and FasL-

mediated apoptosis.46,47 In addition, E5 downregulates expression of

MHC class I, class II, and CD1d on the surface of infected cells,

enabling them to escape from CTL and NKT cells.46 Thus, E5 plays

important collaborative roles in HPV-mediated carcinogenesis, espe-

cially by modulation of host immune systems.

2.3 | EBV oncoproteins

Human herpesviruses including EBV and KSHV establish latent infec-

tion in the host by expressing a limited number of gene products.48

This latency is reversible – the virus can resume productive viral

F IGURE 2 Induction of viral oncogene-induced senescence and its subversion by multiple viral proteins. (A) Human T-cell leukemia virus
type 1 (HTLV-1) Tax and HTLV-1 bZIP factor (HBZ). (B) Human papillomavirus (HPV) E6 and E7. (C) Epstein-Barr virus (EBV) EBNA-2, EBNA-
LP, and EBNA-3c. (D) Kaposi’s sarcoma-associated herpesvirus (KSHV) v-cyclin and vFLIP. DDR, DNA damage response; NF-jB, nuclear factor
kappa B; ROS, reactive oxygen species
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replication (the so-called lytic phase) – and, in both phases, HHV

induce DDR to remodel the infected cells.49 After B cells become

infected with EBV, the viral nuclear antigens EBNA2 and EBNA-LP

are immediately expressed, and they upregulate cellular growth-pro-

moting genes such as c-Myc and CD23 (Figure 2C).50 Hyper-prolif-

eration of B cells induced by these viral factors triggers replication-

mediated DNA damage and, consequently, the cellular DDR would

suppress cell proliferation. However, another EBV oncoprotein,

EBNA3C, inhibits DDR signaling and promotes proliferation and

immortalization of the infected cell, suggesting that EBNA2,

EBNA-LP, and EBNA3C cooperate with each other in cellular

transformation.

Two latent membrane proteins, LMP-1 and LMP-2A, are major

EBV-encoded oncoproteins, and mimic CD40 and BCR signaling,

respectively.51 LMP-1 stimulates several oncogenic signaling path-

ways such as the NF-jB and MAPK pathways.52 LMP-2A constitu-

tively activates the Ras/PI3K/Akt pathway, and mediates cellular

transformation.53 Interestingly, a transgenic mouse model, which co-

expresses LMP-1 and LMP-2A in B cells, showed that LMP-2A

reduced hyperactivation of B cells induced by LMP-1.54 It is possible

that LMP-2A curbs overstimulation of oncogenic signals by LMP-1

to establish persistent infection in vivo.

2.4 | KSHV v-cyclin and vFLIP

Kaposi’s sarcoma-associated herpesvirus v-cyclin and vFLIP are

encoded in the same viral mRNA and expressed in latently infected

cells.48 v-cyclin accelerates cell cycle progression, triggers the DDR,

and finally induces autophagy and senescence in primary human

foreskin fibroblasts (Figure 2D). In contrast, a potent viral anti-apop-

totic factor, vFLIP, suppresses v-cyclin-induced senescence, con-

tributing to the expansion of KSHV-infected cells with DNA

damage.55 vFLIP also induces G1 arrest/senescence in HeLa cells

through hyperactivation of NF-jB that is reminiscent of Tax-

mediated senescence. In this setting, v-cyclin prevents cell cycle

arrest by vFLIP.56 It is suggested that these two proteins work in

concert to accelerate the transformation of KSHV-infected cells.

In summary, investigations of a variety of oncogenic viruses have

shown a common scheme: viral gene products collaborate to induce

proliferation while blocking senescence.

3 | ENHANCEMENT OF CANCER
DEVELOPMENT BY COINFECTION WITH
MULTIPLE AGENTS

Collaboration of viral gene products in oncogenesis is not limited

to gene products that all come from the same virus. In some

cases, coinfection with two or more pathogens is associated with

a higher cancer risk than infection with either of the pathogens

alone. Recent studies have shown a variety of molecular mecha-

nisms for this enhanced oncogenesis. Here, we summarize several

examples.

3.1 | Strongyloidiasis and infective dermatitis as
risk factors for ATL

Two types of superinfections are associated with an increased risk

of ATL in people already infected with HTLV-1. The first, strongy-

loidiasis, is a chronic parasitic infection of humans caused by

Strongyloides stercoralis. HTLV-1 proviral load is higher in S. sterco-

ralis-positive carriers than in non-coinfected subjects,57 and the inci-

dence of ATL is high in such superinfected subjects,58 suggesting

that S. stercoralis facilitates the clonal proliferation of HTLV-1-

infected cells. The second type of superinfection associated with

increased ATL risk is IDH: a refractory skin infection with Staphylo-

coccus aureus and/or beta-hemolytic Streptococci observed in HTLV-

1-infected children in developing countries.59 In IDH patients, HTLV-

1 proviral load is also higher60 and clonal expansion occurs at a

higher rate than in subjects infected with HTLV-1 only.61 A recent

study showed that clonal expansion and turnover of HTLV-1-

infected cells are increased in patients coinfected with S. sterco-

ralis.61 These observations suggest that coinfection with S. stercoralis

or IDH promotes both de novo infection and cell proliferation, which

depend on Tax and HBZ, respectively. This idea is compatible with

the fact that T-cell activation enhances the activities of Tax and

HBZ on cell proliferation in primary T cells.19,41,62 Thus, inflammation

and T-cell activation caused by the coinfective agent may increase

the risk of ATL development in HTLV-1 positive individuals.

3.2 | HIV-associated cancers

Human immunodeficiency virus 1 is rated a Group 1 oncogenic

agent by the IARC.2 HIV-1 induces AIDS and indirectly causes can-

cers by allowing other oncogenic pathogens to express. It is note-

worthy that HIV-1 infection is particularly closely associated with

several subtypes of NHL. Most AIDS-related NHL are of B-cell ori-

gin; it is suggested that depletion of CD4+ T cells by HIV-1 permits

dysregulation of B-cell expansion and the expression of B-lympho-

trophic viruses.63 EBV is detected in almost all cases of central ner-

vous system lymphoma, ~40% of diffuse large-cell lymphoma, and

~30% of BL. HL is also associated with coinfection by HIV-1 and

EBV. It has been reported that HIV-1-infected people have an

approximately 10-fold higher risk of developing HL than uninfected

people.64 The rate of EBV-positive HL is higher in HIV-1 infected

cases than in the general population,65 suggesting that EBV is closely

involved in the genesis of HIV-mediated HL. Importantly, the stan-

dard incidence rate of HL in HIV-infected subjects has increased

despite entering the era of combination antiretroviral therapy,

whereas that of NHL has dropped.66 These findings suggest that

there are distinct mechanisms of lymphomagenesis by EBV in the

presence of immune modulation by HIV, and that these mechanisms

vary between HL and NHL. KSHV67 and Merkel cell polyomavirus

(MCPyV)68 were first identified from cancer cells of AIDS-related

Kaposi’s sarcoma and Merkel-cell carcinoma respectively, and are

now recognized as causative agents of each cancer. KSHV is also

associated with a rare subtype of B-cell lymphoma, primary effusion
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lymphoma (PEL), which occurs predominantly in the pleural or peri-

toneal cavity. The risk of HPV-associated cancers, such as cervical

cancer, anal cancer, and oropharyngeal cancer, is also elevated

among persons with AIDS.69

It is not surprising that immunosuppression by HIV allows malig-

nant transformation of host cells infected with other oncogenic

pathogens. However, a recent case study reported a rare “cancer-

like” malignant disease developed in an AIDS patient; tumors were

derived from cells of the tapeworm Hymenolepis nana.70 Characteris-

tics of this non-human origin tumor fulfilled the working definitions

of cancer: invasion and metastasis, hyperproliferative and monomor-

phic features, and genetic alterations (in H. nana’s genes). This case

demonstrated a novel mechanism for HIV-related tumorigenesis trig-

gered by another pathogen.

HIV-1 is also associated with several cancers that have not been

linked to other oncogenic pathogens. The risk of lung cancer is

higher in HIV-infected subjects than in the general population, and

the higher smoking rate in the HIV-infected population is one of the

factors explaining this trend.71 In addition, recent studies show that

immunosuppression by HIV and chronic inflammation are involved in

oncogenesis.72 It is known that HIV infection is a risk factor for can-

cers of the conjunctiva and the lip.12 Impairment of anti-cancer

immunity by HIV is a possible mechanism for the emergence of

these malignancies.

3.3 | EBV and malaria

Burkitt lymphoma (BL) is an aggressive B-cell malignancy originating

from a GC, and it can be classified into three subtypes according to

clinical features: endemic BL, sporadic BL, and HIV-associated BL.73

eBL is the most common childhood cancer in Africa, and more than

95% of cases are associated with EBV. In addition, it occurs at

higher incidence in areas in which malaria is endemic; therefore an

additional role of malaria in the etiology has long been suspected.74

Malaria is caused by several species of Plasmodium. A recent study

demonstrated that chronic infection with Plasmodium in mice pro-

motes clonal expansion of GC cells and induces expression of AID,

which is associated with genetic mutations and chromosomal

translocations.75 It is suggested that Plasmodium superinfection pro-

motes EBV-mediated oncogenesis by inducing genomic aberrations,

leading to the distinct B-cell malignancy, eBL.

3.4 | Helicobacter pylori and EBV

Most gastric cancers are associated with infection of gastric epithe-

lial cells with H. pylori.12 Helicobacter pylori is a highly heterogeneous

bacterium with a large genomic diversity. Helicobacter pylori strains

possessing the cagA gene are more virulent than cagA-negative

strains, and the CagA protein is closely linked to severe diseases

such as peptic ulcers and gastric cancer.76 EBV is also causally asso-

ciated with gastric carcinoma, and approximately 10% of cases con-

tain EBV in tumor cells.53 Recently, the mechanism of cooperative

oncogenesis by these two pathogens was clarified.77 CagA is

injected into gastric epithelial cells and interacts with the host tyro-

sine phosphatase SHP2, resulting in activation of SHP2, which is

important for oncogenesis by H. pylori. However, the SHP2 homo-

logue SHP1 inactivates CagA and thus prevents SHP2 activation.

EBV infection reduces the expression of SHP1 by inducing DNA

F IGURE 3 Schema of oncogenic processes mediated by collaboration of multiple pathogens. Cooperation of several pathogens can produce
malignant transformation by four processes: cell proliferation promoted by oncogenic factors in infected cells, chronic inflammation, coinfection
with certain combinations of pathogens, and immunodeficiency. EBV, Epstein-Barr virus; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV,
human immunodeficiency virus; HPV, human papillomavirus; HTLV-1, human T-cell leukemia virus type 1; KSHV, Kaposi’s sarcoma-associated
herpesvirus
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hypermethylation in the SHP1 promoter region. Thus, EBV cancels

the negative effect of SHP1 on gastric carcinogenesis by H. pylori.

This may be a distinct mechanism of gastric cancer induced by dual

agents.

3.5 | Schistosoma haematobium and bacterial
infection

Schistosoma haematobium is endemic in sub-Saharan Africa and the

Middle East, and induces urinary bladder cancer.7,78 Bacterial superin-

fection is suggested to be a risk factor for S. haematobium-associated

bladder cancer. Schistosoma haematobium migrate into the bladder tis-

sue and cause chronic granulomatous inflammation in the mucosal

and submucosal layers of the bladder. The inflammation leads to the

development of squamous metaplasia and urine stasis, resulting in

bacterial infection. Some of the bacteria are thought to be associated

with the endogenous formation of carcinogenic N-nitrosamines in the

urinary tract. It is suggested that coinfection with S. haematobium and

these bacteria thus initiates oncogenic processes in the bladder.

4 | CONCLUDING REMARKS

In the present review, we summarized the mechanisms by which mul-

tiple pathogens can cooperate to cause cancer (Figure 3). Viral onco-

proteins encoded by HTLV-1, HPV, EBV, and KSHV promote cell

proliferation and subvert senescence within each infected cell (Fig-

ures 2 and 3). Chronic inflammation triggered by persistent infection

induces an accumulation of damage to tissue and DNA, and coinfec-

tion with certain pathogens accelerates oncogenesis. HIV infection

modifies the immune status of hosts coinfected with other oncogenic

agents, allowing malignant diseases to emerge. Thus, host immunity

plays a critical role in controlling infection-mediated cancers.

Understanding and appreciating the role of infectious agents in

oncogenesis is important for public health, as certain cancers are

theoretically preventable by infection control and prevention. The

majority of infection-mediated cancers occur in developing countries

(1.5 million in 1.9 million cases),12 suggesting that the number of

cancer cases can be reduced by appropriate medical strategies, such

as vaccination, antiviral treatments, antibiotics, antiparasitics, and

health education. Future research is needed to clarify the molecular

functions of the factors encoded in each pathogen, and to under-

stand their interactions with factors from other pathogens. It will be

beneficial to establish novel therapeutic/prophylactic strategies

against both infection-related cancers and chronic inflammatory dis-

eases caused by their etiological agents.
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