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The cannabinoid CB2 receptor was cloned from the promyeloid cell line HL-60 and is
notably expressed in most, if not all leukocyte types. This relatively restricted localization,
combined to the absence of psychotropic effects following its activation, make it an
attractive drug target for inflammatory and autoimmune diseases. Therefore, there has
been an increasing interest in the past decades to identify precisely which immune cells
express the CB2 receptor and what are the consequences of such activation. Herein, we
provide new data on the expression of both CB1 and CB2 receptors by human blood
leukocytes and discuss the impact of CB2 receptor activation in human leukocytes. While
the expression of the CB2 mRNA can be detected in eosinophils, neutrophils, monocytes,
B and T lymphocytes, this receptor is most abundant in human eosinophils and B
lymphocytes. We also review the evidence obtained from primary human leukocytes
and immortalized cell lines regarding the regulation of their functions by the CB2 receptor,
which underscore the urgent need to deepen our understanding of the CB2 receptor as an
immunoregulator in humans.
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INTRODUCTION

The cannabinoid receptors 1 and 2 (CB1 and CB2) are two G protein-coupled receptors that function
through binding a vast array of ligands including phytocannabinoids and endocannabinoids (Di
Marzo et al., 1998; Turcotte et al., 2015). The CB1 receptor, highly expressed in the brain, was the first
cannabinoid receptor identified through its responsiveness to Δ9-tetrahydrocannabinol (Δ9-THC)
and cloned (Devane et al., 1988; Matsuda et al., 1990). Its activation induces psychotropic effects and
its involvement shown in, among others, motor function, cognition and memory (Howlett and
Abood 2017). It is also widely recognized as worsening obesity and related diseases (Di Marzo 2018).
The CB2 receptor was later cloned from HL-60 cells and identified on its 44% aminoacid homology
with the CB1, as well as its similar binding profile to the endocannabinoid N-arachidonoyl-
ethanolamine (AEA) and Δ9-THC (Munro et al., 1993). Soon after, Galiègue et al. documented
that it was expressed by human leukocytes (Galiegue et al., 1995). This consolidated the concept that
the CB2 is the peripheral cannabinoid receptor and, for many, the inflammatory cannabinoid
receptor. In fact, the CB2 receptor has been found in all leukocyte populations tested so far [see
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(Turcotte et al., 2016) for a review]. However, CB2 receptor
expression is not restricted to leukocytes. It has notably been
found in resident immune brain cells (microglia), the kidney,
spleen, tonsil, thymus, lung epithelial cells and testes (Sanchez
et al., 2001; Brown et al., 2002; Van Sickle et al., 2005; Ellert-
Miklaszewska et al., 2007; Zhou et al., 2018; Cakir et al., 2019;
Fantauzzi et al., 2020).

EXPRESSION OF THE CB1 AND CB2

RECEPTORS BY HUMAN BLOOD
LEUKOCYTES
Galiègue et al. paved the way to our understanding of CB2
expression by human leukocytes by showing its mRNA was
expressed in human leukocytes, with the following order of
relative abundance: tonsillar B cells > natural killer cells >
monocytes ~ granulocytes > T4 lymphocytes > T8
lymphocytes (Galiegue et al., 1995). While very informative
and useful, the data from Galiègue et al. did not include
eosinophils while including tissue instead of blood B
lymphocytes. This was somewhat pointed out in following
studies (Turcotte et al., 2016), as it might have led to some
inconsistencies. For example, while some documented the
expression of the CB2 receptor in human granulocytes
(neutrophils and contaminating eosinophils) (Galiegue et al.,
1995; Kurihara et al., 2006), others did not (Oka et al., 2004;
Graham et al., 2010). This raised the possibility that
contaminating cells might have been responsible for the
previously documented CB2 signal in neutrophils, and possibly
other cell types. Noteworthy, it was later reported that eosinophil-
depleted neutrophils weakly expressed the CB2 receptor mRNA,
while eosinophils (the main neutrophil suspension contaminant)
expressed it at high levels, raising the strong possibility that

discrepancies regarding CB2 expression in neutrophils could
be the result of contaminating eosinophils in granulocyte
preparations (Chouinard et al., 2013). CB2 expression was also
reported in human eosinophils in other studies (Frei et al., 2016;
Larose et al., 2017; Freundt-Revilla et al., 2018; Dothel et al.,
2019).

In an attempt to better define CB2 expression in human blood
leukocytes, we revisited its expression by qPCR using mRNA
from leukocytes that were isolated from the blood of healthy
volunteers. CB1 receptor expression was assessed in parallel.
Hypothalamus samples were utilized as positive controls for
the CB1 receptor. In our hands, all tested leukocytes expressed
the CB1 receptor mRNA although to a lesser extent than
hypothalamus samples (Figure 1A). In contrast, while we
detected the expression of the CB2 receptor mRNA in all
leukocyte and hypothalamus samples, human eosinophils and
B lymphocytes displayed the strongest signals (Figure 1B). Thus,
these cell types are likely the origin of CB2 expression found in
mixed populations such as granulocytes (neutrophils and
eosinophils, often abbreviated as PMN) and PBMCs
(monocytes, B and T lymphocytes). This underlines the
importance of separating granulocytes and PBMCs when
studying the CB2 receptor. The small, but detectable levels of
CB2 receptor mRNA in hypothalamus samples are consistent
with other studies reporting its expression in this tissue (Sanchez
et al., 2001; Van Sickle et al., 2005; Ellert-Miklaszewska et al.,
2007).

FACTORS INFLUENCING CB2 RECEPTOR
EXPRESSION IN HUMAN LEUKOCYTES

Some factors were documented as influencing CB2 receptor
expression in human leukocytes. CB2 expression can increase

FIGURE 1 | Expression of the CB1 and CB2 receptors mRNA in human leukocytes isolated from the blood. Human venous blood was collected from healthy
volunteers with the informed consent of all participants in blood collection tubes containing K3EDTA as anticoagulant. Granulocytes (GRAN), eosinophils (EOS) and
neutrophils (NEU) were isolated as in Chouinard et al. (2013). PBMCswere obtained from the PBMC layer and taken as is or otherwise processed for monocyte (MONO),
B and T lymphocytes (LYMP) isolation using the EasySep™monocyte isolation kit, CD19 positive Selection Kit II and CD3 positive selection Kit II respectively, as per
the manufacturer’s protocol. Purity of the different isolated leukocytes was always >97% with the exception of B Lymphocytes (90%) with MONO being the main
contaminant. Hypothalamus (HYPO) samples were obtained from the Douglas-Bell Canada Brain Bank (McGill University, Montréal, Canada). mRNA was next isolated
from the different preparations with TRIzol as per the manufacturer’s protocol. 500 ng of total RNA was reverse transcribed using a High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, CA, USA) as recommended. qPCR analyses were finally performed on aCFX Connect Real-Time PCRSystem, using the following
primers (forward - reverse): GAPDH (5′-ACATCGCTCAGACACCATG-3′–5′-TGTAGTTGAGGTCAATGAAGGG-3′) 18S (5′-CGCACGGCCGGTACAGTGAA-3′–5′-
GGGAGAGGAGCGAGCGACCA-3′) CB1 (5′-TTCCCTCTTGTGAAGGCACTG-3′–5′-TCTTGACCGTGCTCTTGATGC-3′) and CB2 (5′-CAAGGCTGTCTTCCTGCTGA-
3′–5′-CGGGTGAGCAGAGCTTTGTA-3′). Data represent the mean (±SEM) of 4–6 donors and was obtained using the CFX Maestro Software (Bio-Rad).

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8264002

Simard et al. CB2 Receptor vs. Human Leukocytes

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


during inflammation as it is the case in eosinophils from
symptomatic allergic donors compared to healthy controls
(Frei et al., 2016; Larose et al., 2017), in monocytes of patients
after ischemic stroke (Greco et al., 2021), in myeloid and
plasmacytoid dendritic cells of patients with multiple sclerosis
(Chiurchiu et al., 2013; Sanchez Lopez et al., 2015) and in T
lymphocytes of Non-Hodgkin’s lymphomas (Rayman et al., 2007;
Robinson et al., 2013). On the other hand, LPS decreased CB2
receptor expression in isolated dendritic cells and B lymphocytes
(Lee et al., 2001; Do et al., 2004). Finally, the CB2 receptor was not
detected in resting macrophages, was present at high levels in
responsive and primed cells and was greatly diminished in fully
activated cells (Cabral 2010). The latter observation suggests that
the CB2 receptor might have a time-specific function in
macrophages during inflammation.

Numerous CB2 receptor antibodies have been developed but
most (if not all) are failing to provide reliable signals in different
applications (immunohistochemistry, cytofluorometry and
immunoblot), while not always having been characterized with
the appropriate controls (control peptide blockade, CB2 receptor-
devoid cells, cross reactivity). Thus, until a clear consensus is
achieved on which antibodies are sufficiently reliable, data on CB2
protein should be interpreted with caution. With that in mind,
the CB2 receptor protein localization can vary. Indeed, Castaneda
et al. reported that the CB2 receptor protein was found
intracellularly in most leukocytes with only B lymphocytes
expressing it at the extracellular membrane (Castaneda et al.,
2013). CB2-positive B lymphocytes were mainly located in the
mantle of secondary lymphoid follicles, which contain immature
B lymphocytes while some positive cells also appeared in the
germinal centers of secondary follicles, which contain mature B
lymphocytes, suggesting an heterogeneous distribution of the
receptor during B lymphocytes maturation stages (Galiegue
et al., 1995). Immunohistochemical analysis using an
N-terminal specific anti-CB2 antibody revealed high protein
expression in the germinal centers of secondary follicles while
a C-terminal specific anti-CB2 antibody (only recognizing a non-
phosphorylated inactive receptor) showed positivity primary
follicle, the mantle and marginal zones of the secondary
follicles where resting cells reside (Rayman et al., 2004).
Therefore, active CB2 seems mainly present on B lymphocytes
in the germinal centers.

IMPACT OF CB2 RECEPTOR ACTIVATION
IN HUMAN LEUKOCYTES

The early studies investigating the roles of the CB2 receptor,
notably those involving cnr2-deficient mice, led to the idea that it
is mainly anti-inflammatory (Turcotte et al., 2016). However,
recent studies are emerging and indicate that the outcome of CB2
receptor signaling may differ depending on the experimental
model/disease. A good example is experimental asthma. Indeed,
early work indicated that the CB2 receptor agonist WIN 55,212-2
inhibited ovalbumin-induced plasma extravasation in guinea pig
airways (Fukuda et al., 2010). In contrast, the CB2 receptor
agonist JWH-133 aggravated ovalbumin-induced asthma in

mice while having no effect in dinitrofluorobenzene-induced
asthma (Bozkurt et al., 2016; Frei et al., 2016). When house
dust mites were utilized as allergen, cnr2-deficient mice were
resistant to allergic responses (Ferrini et al., 2017) while an innate
lymphoid cell-2 dependent model involving IL-25, IL-33 and/or
Alternaria alternate had lower symptoms, decreased eosinophil
number, and airway resistance (Hurrell et al., 2021). In humans,
CB2 receptor expression was increased in nasal polyps of aspirin-
exacerbated disease patients (Corrado et al., 2018) while being
decreased in epithelial cells of asthmatic patients (Fantauzzi et al.,
2020).

While we address some leukocytes individually below, the
overall impact of CB2 receptor activation on human leukocytes
is summarized in Table 1. However, we underscore that the
selectivity of the pharmacological tools targeting CB2 receptors
(agonists, antagonists, inverse agonists) has been often
questioned, as exemplified by the work of Soethoudt et al.
(2017).

Human Eosinophils
Eosinophils participate in innate immunity against parasites and
in the development/persistence of diverse inflammatory
responses, notably allergies and asthma. Studies involving
human eosinophils and CB receptors are scarce. Their
treatment with either the endocannabinoid 2-AG and/or CB2
receptor agonists stimulated their migration or potentiated their
migration toward other chemoattractants (Oka et al., 2004;
Kishimoto et al., 2006; Larose et al., 2014; Frei et al., 2016).
Importantly, these effects were prevented by the CB2 receptor
antagonists AM630 and/or SR144528. Consistent with a CB2-
mediated increased in eosinophil migration, cannabis use has
been linked to some cases of acute eosinophilic pneumonia,
although no demonstration has proven that this involved the
CB2 receptor (Sauvaget et al., 2010; Liebling and Siu 2013;
Natarajan et al., 2013; Ocal et al., 2016; Mull et al., 2020).
Interestingly, while JWH-133 led to a moderate chemotactic
response in human eosinophils, it had no effect on mouse
eosinophils (Frei et al., 2016). Altogether, the current data
support that the CB2 receptor stimulates eosinophil migration.
This could eventually lead to increased parasitic defenses but also
to a worsening of eosinophils-related inflammatory diseases.

Human B Lymphocytes
B lymphocytes maturation and differentiation are complex
processes. Following their activation, naïve cells (spleen
marginal zone) proliferate and differentiate into short-lived
plasma cells, while cells from the follicles undergo massive
proliferation and form germinal centers, where long-lived
plasma and memory cells are formed (Basu et al., 2013). Very
little is known about the role of the CB2 receptor in human B
lymphocytes but their treatment with CP 55,940 increased their
proliferation, a phenomenon blocked by SR144528 (Carayon
et al., 1998). In mice, activation of the CB2 receptor has been
associated with B lymphocyte differentiation, migration,
proliferation and antibody class switching (Jorda et al., 2002;
Tanikawa et al., 2007; Agudelo et al., 2008), suggesting the
receptor is part of the B lymphocytes immune programing,

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8264003

Simard et al. CB2 Receptor vs. Human Leukocytes

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


TABLE 1 | CB2-mediated effects on human leukocytes and related human cell lines.

Leukocytes or
cell lines

Agonist Antagonist or
inverse agonist

Effects Impact on
signaling

References

Eosinophils
Blood 2-AG 1 μM (4 h) SR144528 (1 μM) Induce migration in presence of

1 μM NDGA (lipoxygenase
inhibitor)

Oka et al.
(2004)

1 μM (1 h) SR144528 (1 μM) 2-AG-induced migration in
presence of 1 μM NDGA is
attributed to chemotaxis rather
than chemokinesis

Kishimoto et al.
(2006)

3 μM (2 h) SR144528
(10 μM)

Induce migration in presence of
IL-5

Inhibited by the Lyn inhibitor PP2 Larose et al.
(2014)

AM630 (10 μM)
250 nM (5 h) SR144528 (1 μM) ↑ CCL24-induced shape change

and migration
Frei et al.
(2016)

CP 55,940 1 μM (2 h) - No effect on migration Larose et al.
(2014)

JWH-133 100–250 nM
(5 h)

SR144528 (1 μM) Induce migration Migration inhibited by MEK1
inhibitors (U-0126, PD98,059)
and the ROCK inhibitor Y-27632

Frei et al.
(2016)

↑ CCL24-induced shape change
and migration

Not inhibited by pertussis toxin
(PTX; Gαi-independant), p38 or
PI3K inhibitors

↑ CCL24-induced CD11b
upregulation

- ↑ Ca2+ influx

↑ Adhesion to ICAM-1 - Ca2+ influx inhibited by the PLC
inhibitor U-73122 and the IP3
receptor antagonist 2-APB

Leukemia EoL-1 cells 2-AG 1 μM (4 h) SR144528 (1 μM) Induce migration in presence of
1 μM NDGA

Inhibited by PTX (Gi/0-dependant) Oka et al.
(2004)

S-777469 100–500 nM
(4 h)

- ↓ 2-AG-induced migration Haruna et al.
(2017)

B lymphocytes
Blood CP 55,940 1–100 nM (72 h) SR144528

(100–300 nM)
↑ Proliferation Carayon et al.

(1998)
Tonsillar CP 55,940 1–100 nM (72 h) SR144528

(100–300 nM)
↑ Proliferation of both naïve and
germinal centrosome B
lymphocytes

Carayon et al.
(1998)

WIN 55,212–2 10 μM (4 h) SR144528
(10 nM)

No effect Gustafsson
et al. (2006)

Raji cell line 2-AG 300 nM (4 h) SR144528
(100 nM)

Induce moderate migration Rayman et al.
(2004)↑ Migration following stimulation

with an anti-sCD40 antibody
Rec-1 cell line WIN 55,212–2 10 μM (4 h) SR144528

(10 nM)
↑ Apoptosis (caspase-3 activity) - Inhibited by the CB1 inverse

agonist SR141716A and by p38
inhibitors

Gustafsson
et al. (2006)

↑ Ceramide levels (downstream
of p38 activation)

- Not inhibited by c-Jun or MEK-1
inhibitors

SKW 6.4 cell line - SR144528
(5–10 μM)

↓ IL-6 induced secretion of
soluble IgM

- Inhibited by the CB2 agonist
HU308

Feng et al.
(2014)

AM630 (5 μM) - ↓ IL-6-induced p-STAT3 - Do not degrade IκBα as the
NF-κB inhibitor Bay11-7085

- ↑ Pax5 (first) and Bcl-6 mRNA
levels

Neutrophils
Blood 2-AG 1 μM (4 h) SR144528 (1 μM) No effect on migration in

presence of NDGA
Oka et al.
(2004)

300 nM (20 min) SR144528 (1 μM) No motility or morphologic
alterations

Kurihara et al.
(2006)

JWH-015 100 nM-10 μM
(20 min)

SR144528 (1 μM) No motility or morphologic
alterations

Kurihara et al.
(2006)

JWH-133 1 μM (2 h) - No effect on neutrophil function Zhou et al.
(2020)

100 nM (5 h) SR144528 (1 μM) No effect on IL-8-induced
migration

Frei et al.
(2016)

(Continued on following page)
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TABLE 1 | (Continued) CB2-mediated effects on human leukocytes and related human cell lines.

Leukocytes or
cell lines

Agonist Antagonist or
inverse agonist

Effects Impact on
signaling

References

100 nM-1 μM
(30 min)

AM630 (500 nM) ↓ LPS-induced VEGF-A Braile et al.
(2021)↓ LPS-induced endothelial

permeabilityT lymphocytes

Blood AEA 0.5–5 μM (6 h) SR144528 (1 μM) ↓ Proliferation Cencioni et al.
(2010)↓ IL-2, TNF-α and IFN-γ

↓ IL-17
JWH-015 20 μM (1 h) AM630 (500 nM) ↓ CXCL12-induced chemotaxis Ghosh et al.

(2006)
250 nM (2 h) AM630 (500 nM) ↓ Proliferation ↓ p-ERK1/2 Borner et al.

(2009)↓ IL-2
1 μM (6 h) SR144528 (1 μM) ↓ Proliferation Cencioni et al.

(2010)↓ IL-2, TNF-α and IFN-γ
↓ IL-17

1 μM (1–30 min) AM630 (1 μM) ↓ HIV-1 infection in primary CD4
T cells

Costantino
et al. (2012)

JWH-133 0.001–10 μM
(30 min)

- ↓ CXCL12-induced chemotaxis ↑ p-ERK1/2 Coopman et al.
(2007)

100 nM-1 μM
(1–30 min)

AM630 (1 μM) ↓ HIV-1 infection in primary CD4
T cells

↓ p-ERK1/2 and p-Akt Costantino
et al. (2012)

↓ Activation of CXCR4 by
SDF-1α
↓ Levels of F-actin

Δ9-THC 5 μg/ml (18 h) SR144528 (1 μM) ↓ Percentage of T lymphocytes
expressing IFN-γ

Yuan et al.
(2002)

↓ IFN-γ intracellular level
detected per cell
↑ IL-4 and IL-5

Jurkat cells GW 405833 10–40 μM
(3–24 h)

AM630 (1 μg/ml) ↓ Cell viability Huang et al.
(2019)↑ Cell apoptosis (annexin V)

JWH-015 20 μM (1 h) AM630 (500 nM) ↓ CXCL12-induced chemotaxis ↑ CXCL12-induced p-ERK1/2 Ghosh et al.
(2006)↓ Transendothelial migration Migration not inhibited by the

MEK-1 inhibitor PD 98,059
↓ PMA-induced MMP9

250 nM (2 h) AM630 (500 nM) ↓ anti-CD3/anti-CD28-induced
IL-2 production

- ↓ p-ERK1/2 Borner et al.
(2009)- ↑ p-Lck

- ↓ cAMP levels
- Increased cAMP levels were
inhibited by PTX

LV50 10 μM (4–72 h) SR144528 (1 μM) ↓ T cell proliferation Capozzi et al.
(2018)↑ Apoptosis

Δ9-THC 1–5 μM (1–2 h) SR144528 (2 μM) ↓ Cell viability Herrera et al.
(2006)↑ Apoptosis (Annexin 5)

↑ Ceramide levels
Activation of caspase 8 at a
post-mitochondrial level

Monocytes
Blood 2-AG 10 nM–10 μM

(4 h)
SR144528 (1 μM) ↑ Migration (chemotaxis toward

2-AG)
Kishimoto et al.
(2003)

(E)-β-
caryophyllene

500 nM (18 h) AM630 (5 μM) ↓ LPS-induced IL-1β and TNFα ↓ LPS-induced p-ERK1/2 and
p-JNK1/2

Gertsch et al.
(2008)

JWH-015 5–20 μM
(60 min)

SR144528 (1 μM) ↓ CCL2- and CCL3-induced
migration

- Inhibited by PI3K and the MEK-1
inhibitors

Montecucco
et al. (2008)

↓ CCR2 and CCR1 mRNA
expression

- Not inhibited by the p38 inhibitor
SB-203580

↓ IFNγ-induced ICAM-1
induction

1–10 μM
(20 min)

- ↓ IL-1β Rizzo et al.
(2019)

JWH-133 1 μM (18 h) SR144528 (1 μM) - ↑ p-ERK1/2 Gertsch et al.
(2008)

0.1–10 μM (days
4, 7 and 10)

- Williams et al.
(2014)

(Continued on following page)
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TABLE 1 | (Continued) CB2-mediated effects on human leukocytes and related human cell lines.

Leukocytes or
cell lines

Agonist Antagonist or
inverse agonist

Effects Impact on
signaling

References

↓ HIV-1 viral infection during
differentiation in monocyte
derived macrophages

U937 cells 2-AG 1 μM (5 min) SR144528 (3 μM) ↑ Adhesion to fibronectin Gokoh et al.
(2005a)

CP 55,940 1 nM–1 μM (2 h) SR144528 (1 μM) ↓ HIV-1 transactivating protein-
enhanced adhesion of cells to
extracellular matrix protein, such
as collagen IV and laminin

Raborn et al.
(2014)

WIN 55,212–2 1–10 μM (2 h) AM630 (1 μM) ↓ Adhesion to HUVECs Zhao et al.
(2010)

Mast cells
Endometrial JWH-015 10−8–10−6 M

(2 h)
- ↓ Calcium ionophore A23187-

induced degranulation
Iuvone et al.
(2008)

Macrophages
Monocyte-derived

macrophages
(healthy subjects)

JWH-015 50 nM (30 min) SR144528
(50 nM–0.1 μM)

↓ oxLDL-induced CD36 Chiurchiu et al.
(2014)↓ oxLDL-induced TNF-α, IL-12

and IL-10
Lenabasum 0.1–30 μM (Day

0, 3, and 6)
- No effect Tarique et al.

(2020)
Monocyte-derived

macrophages
(patients with cystic
fibrosis)

Lenabasum 0.1–30 μM (Day
0, 3, and 6)

- ↓ Macrophage polarization into
pro-inflammatory M1 phenotype

Tarique et al.
(2020)

↓ IL-8 and TNF-α secretion

Lung JWH-133 1 μM (10 min) AM630 (0.5 μM) ↓ LPS-induced VEGF-A and
VEGF-C

↑ p-ERK1/2 Staiano et al.
(2016)

↓ LPS-induced IL-6
HL-60-derived

macrophage
2-AG 1 μM (1 min) SR144528 (1 μM) Induce morphological changes

such as the extension of
pseudopods

- Inhibited by PTX (Gi/0-
dependant)

Gokoh et al.
(2005b)

↑ Actin polymerization - Inhibited by selective chelating
agent for intracellular free Ca2+

BAPTA-AM
- Inhibited by the PI3K inhibitor
wortmannin -Not inhibited by the
tyrosine kinase inhibitor
herbimycin, the MEK-1 inhibitor
PD 98,059 or the PKC inhibitor
Ro-31–8220

THP-1-derived
macrophage M2

JWH-015 1–5 μM (12 h) - ↓ Migration of A549 cells ↓ p-ERK1/2 and p-STAT3 Ravi et al.
(2016)

Dendritic cells
Myeloid AEA 2.5 μM (4 h) SR144528 (1 μM) ↓ R848-induced TNF-α, IL-

12p40, IL-6
Chiurchiu et al.
(2013)

JWH-015 1 μM (4 h) SR144528 (1 μM) ↓ R848-induced TNF-α, IL-
12p40, IL-6

Chiurchiu et al.
(2013)

Plasmacytoid
(healthy subjects)

AEA 2.5 μM (4 h) SR144528 (1 μM) ↓ R848-induced TNF-α, IFN-α Chiurchiu et al.
(2013)

2-AG 10 μM (18 h) SR144528 (1 μM) ↓ CpGA-induced IFNα Rahaman et al.
(2019)↓ TLR9 activation

JWH-015 1 μM (4 h) SR144528 (1 μM) ↓ R848-induced TNF-α and
IFN-α

Chiurchiu et al.
(2013)

0.01–1 μM (5 h) - ↓ CpG-induced IFNα and TNFα ↓ p-IRF7, p-TBK1, p-NF-κB and
p-IKKγ

Henriquez
et al. (2019)

JWH-133 0.001–0.1 μM
(5 h)

- ↓ CpG-induced IFNα and TNFα ↓ p-IRF7, p-TBK1, p-NF-κB and
p-IKKγ

Henriquez
et al. (2019)

Plasmacytoid
(patient with multiple
sclerosis)

AEA 2.5 μM (4 h) SR144528 (1 μM) No effect Chiurchiu et al.
(2013)

JWH-015 1 μM (4 h) SR144528 (1 μM) No effect Chiurchiu et al.
(2013)
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playing an important role in B lymphocyte repertoire formation
(Pereira et al., 2009).

Human Neutrophils
Neutrophils are first responders of the innate immune system,
playing crucial roles in acute inflammatory responses and host
defense. They employ several strategies to fight microbes,
including the phagocytosis and killing of pathogens with the
help of their granule content. Studies showing a CB2-receptor-
mediated effect of human neutrophils were not conclusive and
contaminating eosinophils in neutrophil preparations might have
caused a red herring situation, eosinophils being responsible for
most of the CB2 receptor signal/effects (Figure 1 and Expression
of the CB1 and CB2 Receptors by Human Blood Leukocytes). In
fact, numerous studies indicated that endocannabinoids as well as
selective and non-selective CB2 receptor agonists do not diminish
human neutrophil functions (migration, superoxide generation
and degranulation) via the CB2 receptor and when they display an
inhibitory effect on their functional responses it is mostly related
to a mechanism distinct from the CB1 and CB2 receptors (Deusch
et al., 2003; Kraft et al., 2004; Oka et al., 2004; McHugh et al.,
2008; Chouinard et al., 2011; Montecucco et al., 2012; Zhou et al.,
2020), which is consistent with their lack/very low expression of
the CB2 receptor. In contrast, JWH-133 inhibited the release of
VEGF-A but not CXCL8 from LPS-stimulated human
neutrophils, a phenomenon prevented by the CB2 receptor
antagonist AM630 (Braile et al., 2021).

• In vivo studies indicated that mouse neutrophils are more
responsive to CB2 receptor activation than human
neutrophils. As such, Cnr2−/− mice models reported
increased neutrophil numbers at inflammatory sites
(Alferink et al., 2016; Kapellos et al., 2017; Kapellos et al.,
2019). Accordingly, CB2 activation by selective agonists
suppressed neutrophil recruitment to the inflammation
site (Horvath et al., 2012; Andrade-Silva et al., 2016;
Wang et al., 2016; Parlar et al., 2018; Kapellos et al.,
2019). However, it is not clear whether the reported
evidence is a matter of mouse neutrophil responsiveness
or of indirect CB2-dependent effects mediated by other cells
(Kraft and Kress 2005). At this point, we cannot exclude that
a CB2-dependent mechanism prevents neutrophil
recruitment into by impairing their transmigration into
the tissues and by affecting other cells (e.g., endothelial
cells) as proposed earlier (Nilsson et al., 2006).

Human T Lymphocytes
Cytotoxic CD8 T lymphocytes are responsible for the elimination
of invading/dysfunctional cells while CD4 T lymphocytes
produce a myriad of inflammatory mediators and are referred
to as helper lymphocytes (Th). Although CB2 receptor expression
was barely detected in circulating T lymphocytes (Figure 1),
several studies reported that CB2 receptor expression is increased
in activated T lymphocytes and that its activation decreases their
proliferation (Borner et al., 2009; Cencioni et al., 2010; Capozzi
et al., 2018). This is accompanied with decreased IL-2 production
and increased apoptosis (Herrera et al., 2006; Borner et al., 2009;

Cencioni et al., 2010; Capozzi et al., 2018; Huang et al., 2019).
Interestingly, CB2 receptor activation seems to exert divergent
effects depending on the T lymphocyte subtype with the tendency
to decrease human Th1 and Th17 functions, while promoting
those of Th2. For instance, Δ9-THC decreased in a CB2-
dependant manner the percentage of human T lymphocytes
expressing IFN-γ, and intracellular levels of IFN-γ per cells
(Th1), while increasing levels of IL-4 and IL-5 (Th2) (Yuan
et al., 2002). Accordingly, a decrease in IL-17 levels was found
in JWH-015-treated T lymphocytes (Cencioni et al., 2010).
Finally, the CB2 agonist Lenabasum reduced TNF-α in both
CD8 and CD4 T lymphocytes (Th1). The treatment also
decreased IL-17 levels (Th17) as well as Th1 and Th17
respective signature transcription factors T-bet and RORγt
(Tiberi et al., 2021).

Human Monocytes
Blood monocytes migrate into tissues where they differentiate into
macrophages or convert into non-classical monocytes (Guilliams
et al., 2018). 2-AG is a CB2-dependant human monocyte
chemoattractant (Kishimoto et al., 2003) and induces the
adhesion of human monocytic U937 cells to fibronectin (Gokoh
et al., 2005a). However, JWH-015 decreased the CCL2-and CCL3-
induced migration of human monocytes by decreasing their
receptors’ expression (Montecucco et al., 2008). JWH-015 also
reduces human monocyte differentiation and U937 cells adhesion
to extracellular matrix proteins, both induced by HIV-1 (Raborn
et al., 2014;Williams et al., 2014). Finally, CB2 receptor engagement
in human monocytes was shown to decrease the LPS-induced IL-
1β and IL-6 production (Gu et al., 2019; Rizzo et al., 2019).

Human Macrophages
Macrophages are resident cells that are remarkably versatile,
exerting important roles in development, homeostasis, tissue
repair and immunity. The endocannabinoid 2-AG was found to
induce shape changes of HL-60-derived macrophages in a CB2-
depandent manner (Gokoh et al., 2005b). Additionally, CB2
receptor activation with JWH-015 or JWH-133 decreased the
LPS-induced VEGF-A, VEGF-C IL-6 release, as well as the
oxLDL-induced release of TNF-α, IL-12 and IL-10 (Chiurchiu
et al., 2014; Staiano et al., 2016). In mice, the CB2 receptor was
shown to switch the polarization of M1 macrophage into M2
macrophage (Duerr et al., 2014; Denaes et al., 2016; Du et al., 2018).
Such a phenomenon has been partially observed in humans by
Tarique et al. who showed that Lenabasum decreased the
polarization (M1) of monocyte-derived macrophage obtained
from cystic fibrosis patients (Tarique et al., 2020).

Human Mast Cells
Mast cells are strategically located at the interface with the
external environment, acting as key initiators of local
inflammatory responses (Elieh Ali Komi et al., 2020). The first
evidence that they could be regulated by the CB2 receptor came
from the rat basophilic leukemia cell line (RBL-2H3) expressing
the CB2 receptor (Facci et al., 1995). However, while the authors
showed that N-palmitoyl-ethanolamine (PEA) inhibited
serotonin release AEA did not. However, PEA interacts with
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PPARα (Lo Verme et al., 2005) and its initial effects are likely
linked to PPARα. In humans, the treatment of isolated mast cells
with JWH-015 decreased their degranulation in vitro (Iuvone
et al., 2008).

Human Dendritic Cells
Dendritic cells are sentinels of the immune system bridging the
innate and adaptive immunity by ingesting pathogens and
transporting antigens to lymphoid tissues. Stimulation of CB2
receptor with CB2 receptor agonists reduced their cytokine
production. Indeed, AEA and JWH-015 decreased R848-
induced levels of TNF-α, IL-12p40 and IL-6 by myeloid
dendritic cells while AEA, 2-AG, JWH-015 and JWH-133
decreased levels of R848-and/or CpG-induced IFN-α by
plasmacytoid dendritic cells by a mechanisms involving NF-κB
and IKKγ signalization (Chiurchiu et al., 2013; Henriquez et al.,
2019; Rahaman et al., 2019).

CONCLUSION

It is becoming clear that the CB2 receptor plays important roles in
the regulation of several inflammatory processes. However, while
the first studies investigating the role of this receptor in mice led
to the concept that its function was mainly anti-inflammatory,
new evidence is challenging this concept, notably in allergic
diseases, which usually involve cells such as eosinophils and B
lymphocytes, whose functional responses to CB2 receptor
activation simulates them, in human-based studies. Moreover,
the scarcity of human studies investigating the CB2 receptor
makes our understanding of the latter difficult at this point
and underscores the urgency of performing additional work
involving human samples/cells to deepen our understanding of
CB2-receptor-driven inflammatory responses and establish to
what extent we can translate findings from experimental
models to the clinic. It is thus urgent to further characterize
the functions of the CB2 receptor in human leukocytes and
inflammatory diseases.
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