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The article introduces a new multistage technique for solving a polynomial system of nonlinear initial and 
boundary value problems of differential equations. The radius of convergence 𝑅 of the series solution to 
the problem is derived a-priorly in terms of the parameters of the polynomial system. Then guided by the 
convergence-control parameter ℎ < 𝑅, the domain of the problem is split into subintervals. By stepping out 
in a multistage manner, corresponding subproblems are defined which are then subsequently solved with 
conventional Parker-Sochacki method to get a piecewise continuous solution with very high accuracy. The 
method is applied to SIR epidemic model, stiff differential equation modelling combustion, Lorenz chaotic 
problem, and the Troesch’s boundary value problem. The results obtained showed a remarkable accuracy when 
compared with Runge-Kutta Method of order 4. The article showcased the proposed method as a simple, yet 
accurate approximate analytical technique for nonlinear differential equations.
1. Introduction

Nonlinear ordinary differential equations appear naturally either in 
the modelling of physical phenomena in nature, or because of a transfor-

mation which forms part of solution technique for solving some partial 
differential equations. The often desired exact solutions to such differ-

ential equations are mostly not available. Researchers often resort to 
numerical and approximate analytical techniques for solving differen-

tial equations. However, for problems being considered in this paper, 
namely the chaotic initial value problems and the Troesch’s problem, 
existing numerical solvers have failed to produce accurate solutions for 
certain choices of the parameters describing the problem, see e.g. [1] 
(Troesch’s problem) and [2] (Chaotic problem).

On the other hand, approximate analytical techniques such as 
Homotopy Analysis Method (HAM), Adomian Decomposition Method 
(ADM), Homotopy Perturbation Method (HPM), including their vari-

ous modifications have been successfully applied and solutions got for 
nonlinear differential equations in the literature. Among the major con-

cerns reported for such solutions is their limited convergence horizon, 
beyond which approximate analytical solution diverges. Recently, the 
authors in [3] showed that approximate analytical solution, convergent 
on the entire domain, can not be got for SIR epidemic model using 
conventional HAM. Stiff differential equations are a class of differen-
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tial equations whose solutions, as reported in the literature, can not be 
efficiently computed using the aforementioned techniques. Therefore, 
speeding up the convergence or extending the domain of convergence 
of such series solution has been examined by several authors and dif-

ferent post-processing techniques have been proposed. A quite unifying 
approach for extending the domain of convergence of approximate ana-

lytical solution is to implement the method in a multistage manner. This 
procedure was used to improve the Adomian Decomposition Method 
in [4], the Variational Iteration Method in [5], Differential Transfor-

mation Method [6], Homotopy Perturbation Method in [7], and the 
Homotopy Analysis Method in [3]. The cost arising from computational 
complexities of the underlying method remains a major concern in any 
multistage implementation. It is therefore desirable for numerical an-

alysts to have access to a method that is both computationally simple 
and yet highly accurate.

Motivated by the above concerns on existing techniques, we devise, 
in this article, a new multistage technique which is based on Parker-

Sochacki method. The Parker-Sochacki method is a simple technique 
for computing iteratively, the coefficients of the Maclaurin series solu-

tion to a polynomial system of strongly nonlinear ordinary and partial 
differential equations whose solutions are analytic. The ease of appli-

cation of this method to both initial and boundary value problems has 
been showed by the authors in [8, 9]. Building on the conventional 
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Parker-Sochacki Method, the radius of convergence 𝑅 of the series so-

lution to the problem is derived a-priorly in terms of the parameters 
of the polynomial system. Then guided by the convergence-control pa-

rameter ℎ < 𝑅, the domain of the problem is split into subintervals. By 
stepping out in a multistage manner, corresponding subproblems are de-

fined which are then solved with conventional Parker-Sochacki method 
to get a piecewise continuous solution with very high accuracy.

It was demonstrated in [10] that computational complexity of 
Parker-Sochacki method compares well with that of Runge-Kutta 
method of order four. Thus in this article, relying on both the favourable 
computational complexity as well as computational simplicity of the 
method, a multistage implementation of Parker-Sochacki shall be used 
to derive approximate analytical solution to SIR epidemiological model, 
a stiff differential equation modelling combustion, Lorenz chaotic prob-

lem, and the Troesch’s boundary value problem with Troesch’s param-

eter 𝜆 = 30, which is convergent on the entire domain of the problem.

2. Basics of the proposed method (Multistage Parker-Sochacki 
Method)

Here, the basics of the proposed method are presented. We describe 
the conventional Parker-Sochacki method and introduce the domain 
split technique of the new approach.

2.1. Polynomial projection and Parker-Sochacki method

The Parker-Sochacki Method (PSM) [8, 9, 11, 12, 13, 14] extends 
the conventional power series method to solving nonlinear initial value 
problems and initial value problems involving transcendental functions. 
The method relies on polynomial projection, which is described be-

low. To understand the concept of polynomial projection or projectively 
polynomial functions, consider the initial value problem

𝑦′(𝑥) =𝐾 sin𝑦(𝑥), 𝑦(0) = 𝑦0. (1)

The above problem is not directly amenable to the conventional power 
series method. However, introducing the new variables 𝑢 = sin𝑦, 𝑣 =
cos𝑦 reduces the problem to

𝑦′ =𝐾𝑢, 𝑦(0) = 𝑦0, (2)

𝑢′ =𝐾𝑢𝑣, 𝑢(0) = 0, (3)

𝑣′ = −𝐾𝑢2, 𝑣(0) = 1, (4)

which is now a polynomial system in the variables 𝑦, 𝑢 and 𝑣. As we 
shall shortly show, power series solution of this system can be straight-

forwardly computed through simple recursions. Notice that the solution 

𝑦 to (1) is now embedded in the solution 
⎛⎜⎜⎝
𝑦

𝑢

𝑣

⎞⎟⎟⎠
of (2)-(3). A differential 

equation for which a variable 𝑦 is a component of the solution is called 
projection for 𝑦, or that 𝑦 is projectively polynomial. In [11, 15], the au-

thors showed that many differential equations can be projected into 
polynomial systems, where power series solution can easily be com-

puted.

The basic computational idea of Parker-Sochacki method is now as 
follows. Given a first order non-autonomous problem of the form

𝐲′ = 𝑓 (𝑥,𝐲), 𝑥0 ≤ 𝑥 ≤ 𝑥𝑓 , 𝐲(𝑥0) = 𝐲0, (5)

the first step of the method is to recast the problem as a projectively 
polynomial system through appropriate auxiliary variables, to the form

𝐲′ = 𝑓 (𝐲), 𝑥0 ≤ 𝑥 ≤ 𝑥𝑓 , 𝐲(𝑥0) = 𝐲0. (6)

In the above, the function 𝑓 is a vector of polynomials, that is, 𝑓 ∶ℝ𝑑 →
ℝ𝑑 where 𝑑 is the dimension of the polynomial system. Without loss of 
generality, let us assume that 𝑥0 = 0 and write 𝐲(𝑥) as
2

𝐲(𝑥) =
𝑚∑
𝑖=0

𝐲𝑖𝑥𝑖 (7)

where the coefficients 𝐲0 = 𝐲(0), 𝐲1 = 𝐲′(0), 𝐲2 = 1
2!𝐲

′′(0), ... are to be 
determined. The corresponding expression for the derivative of 𝑦 is ob-

tained as

𝐲′(𝑥) =
𝑚∑
𝑖=0

(𝑖+ 1)𝐲𝑖+1𝑥𝑖. (8)

Now, the function 𝑓 being a polynomial function of 𝑦, can similarly be 
written as

𝑓 (𝐲(𝑥)) =
𝑚∑
𝑖=0

𝑓𝑖𝑥
𝑖. (9)

Upon substituting (8) and (9) into (6) we obtain

𝐲𝑖+1 =
𝑓𝑖

𝑖+ 1
(10)

where the coefficients 𝑓𝑖 are computed by the repeated use of Cauchy 
product [16] e.g. if 𝑓 (𝑦) = 𝑦2, then 𝑓𝑖 =

∑𝑖

𝑗=0 𝑦𝑗𝑦𝑖−𝑗 . The obtained coef-

ficients 𝑦𝑖+1 above are then used in (7) to obtain the series solution of 
the problem (5) as

𝐲(𝑥) = 𝑦0 +
𝑚∑
𝑖=1

𝑓𝑖−1
𝑖

𝑥𝑖.

Now in the case 𝑥0 ≠ 0, the series solution is computed normally 
as described above. Let this series solution be denoted by 𝜙(𝑥). The 
solution to the original problem is then

𝐲(𝑥) = 𝜙(𝑥− 𝑥0) = 𝐲0 +
𝑚∑
𝑖=1

𝑓𝑖−1
𝑖

(𝑥− 𝑥0)𝑖. (11)

As can be seen above, the PSM is very easy to implement. This makes 
the method applicable to a wide range of differential equations that 
can be written in the form (6) including strongly nonlinear coupled 
differential equations.

2.2. Convergence and error analysis of the method

Following the notations in [17], we define the norm || ⋅ || as

||(𝑦1, 𝑦2,… , 𝑦𝑛)|| = max
1≤𝑖≤𝑛

|𝑦𝑖|
If 𝑝 ∶ ℝ𝑑 → ℝ𝑑 is a vector of polynomials and 𝑌 𝛼 = 𝑦

𝛼1
1 𝑦

𝛼2
2 … 𝑦𝛼𝑑

𝑑
, we 

write

𝑝(𝑌1, 𝑌2,… , 𝑌𝑑 ) =
∑
|𝛼|≤𝑘

𝑎𝛼𝑌
𝛼

where 𝑘 = deg(𝑝𝑖) is the degree of 𝑝𝑖 and |𝛼| = 𝛼1 + 𝛼2 +⋯ + 𝛼𝑑 . Further-

more, we define

Σ𝑝𝑖 =
∑
|𝛼|≤𝑘

|𝑎𝛼,𝑖|,

deg(𝑝) = max{deg(𝑝1), deg(𝑝2), … , deg(𝑝𝑑 )} and Σ𝑝 = max{Σ𝑝1, Σ𝑝2, … ,
Σ𝑝𝑑}.

With these preliminaries, we now state the theorem on convergence 
of series solution by PSM.

Theorem 2.1. [18] If 𝑦 satisfies (5), 𝑘 = deg(𝑝) ≥ 2, 𝛼 = max{1, ||𝑦0||}, 
𝑀 = (𝑘 − 1) Σ𝑝 𝛼𝑘−1, 𝑥0 = 0, and |𝑥| < 1

𝑀
then

‖𝑦(𝑥) −
𝑚∑

𝑦𝑖𝑥
𝑖‖ ≤ 𝛼|𝑀𝑥|𝑚+1

1 − |𝑀𝑥| .

𝑖=0
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Now, to examine the order of convergence and the general be-

haviour of the global error, the following preliminaries are in order. 
First, let us consider the discretization of the problem domain [𝑥0, 𝑥𝑓 ]
which is obtained by introducing the nodes 𝑥𝑖 = 𝑥0 + 𝑖 ℎ, 𝑖 = 0, 1, … , 𝑁 =
𝑥𝑓−𝑥0

ℎ
, where ℎ is a fixed step-size conveniently chosen as 1∕(2𝑀) [17, 

Section 4.1].

For clarity, let us also recall the general problem (6) under consid-

eration, namely

𝐲′ = 𝑓 (𝐲), 𝑥0 ≤ 𝑥 ≤ 𝑥𝑓 , 𝐲(𝑥0) = 𝐲0. (12)

Recall that if 𝑓 satisfies the existence and uniqueness conditions of 
Picard-Lindelöf Theorem [19], and 𝑓 ∈ 𝐶𝑛+1([𝑥0, 𝑥𝑓 ]) then the unique 
solution 𝑦 to (6) can be expressed as

𝑦(𝑥) =
𝑛∑

𝑗=0
𝑦𝑗 (𝑥− 𝑐)𝑗 + 𝑦(𝑛+1)(𝜉(𝑥))

(𝑛+ 1)!
(𝑥− 𝑐)𝑛+1

for all 𝑐 ∈ (𝑎, 𝑏) with 𝜉(𝑥) ∈ (𝑐, 𝑥). Further, as 𝑓 is assumed to be real 
analytic on [𝑥0, 𝑥𝑓 ], then we can write (see also Section 2.1)

𝑦(𝑥) =
∞∑
𝑗=0

𝑦𝑗 (𝑥− 𝑐)𝑗 = 𝑦0 + 𝑦1(𝑥− 𝑐) + 𝑦2(𝑥− 𝑐)2 + 𝑦3(𝑥− 𝑐)3 +…

for all 𝑐 ∈ [𝑥0, 𝑥𝑓 ] so that for all 𝑥 = 𝑥𝑖 + ℎ ∈ [𝑥0, 𝑥𝑓 ], with 𝑐 = 𝑥𝑖 in the 
above, it follows that

𝑦(𝑥𝑖 + ℎ) =
𝑛∑

𝑗=0
𝑦𝑗ℎ

𝑗 + 𝑦(𝑛+1)(𝜉(ℎ))
(𝑛+ 1)!

ℎ𝑛+1 (13)

where 𝜉(ℎ) ∈ (𝑥𝑖, 𝑥𝑖 + ℎ).
We also recall that the PSM technique described in Section 2.1 is de-

signed in such a way that the approximation of 𝑦(𝑥𝑖+ℎ) exactly matches, 
to a given degree say 𝑚, the Taylor polynomial of the unknown solu-

tion 𝑦 expanded about 𝑥𝑖. Thus, the PSM can be viewed as an explicit 
one-step method of the form [20]

𝑤𝑖+1 =𝑤𝑖 + ℎ(𝑦1 + 𝑦2ℎ+ 𝑦3ℎ
2 +⋯+ 𝑦𝑚ℎ

𝑚−1)

where 𝑤𝑖 ≈ 𝑦(𝑥𝑖) and 𝑦1, 𝑦2, … 𝑦𝑚 are the Taylor coefficients of the so-

lution to (6) obtained via the recursion (10). Note that for one-step 
methods, the global error 𝜖𝑚 = |𝑦(𝑥) −∑𝑚

𝑗=0 𝑦𝑗𝑥
𝑗 | → 0 if the local trunca-

tion errors 𝜏𝑖 → 0 on the subintervals decay to zero as ℎ → 0 [19].

Theorem 2.2. The absolute error 𝜖𝑚 for the PSM series solution defined in
(7) has exponential decay for step-size ℎ < 1.

Proof. If we assume that 𝑦(𝑥𝑖) and 𝑦(𝑥𝑖 + ℎ) are exact, then the local 
truncation error for PSM is given by

𝜏𝑖+1(ℎ) =
𝑦(𝑥𝑖 + ℎ) − 𝑦(𝑥𝑖) − ℎ(𝑦1 + 𝑦2ℎ+ 𝑦3ℎ

2 +⋯+ 𝑦𝑚ℎ
𝑚−1)

ℎ
.

Note that for one-step implementation, only 𝑥𝑖 and 𝑦(𝑥𝑖) are required 
to compute 𝑦(𝑥𝑖 + ℎ). Thus, we choose 𝑦0 = 𝑦(𝑥𝑖) so that with 𝑛 = 𝑚 + 1
in (13), ℎ < 1, the local truncation error reduces to

𝜏𝑖+1(ℎ) = 𝑦𝑚+1ℎ
𝑚 + 𝑦(𝑚+2)(𝜉(ℎ))

(𝑚+ 2)!
ℎ𝑚+1 ≤ 𝑦𝑚+1ℎ

𝑚.

Thus the method is consistent. Consequently, the global error behaves 
as

𝜖𝑚 ≤ 𝐶ℎ𝑚

for some positive constant C. □

Remark 2.3. We also conclude from Theorem 2.2 that the PSM is also 
convergent of order 𝑚.
3

2.3. Multistage implementation

Theorem 2.1 above allows us to compute the radius and interval 
of convergence of the series solution derived through the conventional 
PSM, namely 1∕𝑀 . Unfortunately, most times this number is usually 
small and the series solution is not convergent on the entire integration 
interval [𝑥0, 𝑥𝑓 ]. Therefore, to extend the interval of convergence of the 
series solution computed via the method described above, we follow the 
idea in [17] and consider the problem on smaller subintervals where 
high accuracy of the method and convergence of the method is assured.

Introducing the nodes 𝑥𝑖 = 𝑥0 + 𝑖 ℎ where ℎ = 1∕(2𝑀) allows us to di-

vide the integration domain [𝑥0, 𝑥𝑓 ] into non-overlapping subintervals 
𝐼𝑘 = [𝑥𝑘−1, 𝑥𝑘], 𝑘 = 1, 2, 3, … , 𝑁 such that ∪[𝑥𝑘−1, 𝑥𝑘] = [𝑥0, 𝑥𝑓 ]. The PSM 
is implemented in a multistage fashion as follows. In the first subinter-

val 𝐼1, starting with the given initial condition 𝐲(1)0 = 𝐲0, the problem is 
solved using the Parker-Sochacki method to get an approximate solu-

tion given by (11), denoted here as 𝐲(1)(𝑥). For the next subinterval 𝐼2, 
the initial condition 𝐲(2)0 is obtained by evaluating (11) at ℎ, which is 
then used in the computation of new approximation 𝐲(2)(𝑥) on 𝐼2, i.e. 
𝐲(2)0 = 𝐲(1)(ℎ). The function evaluation of the solution at the end of one 
interval becomes the initial condition for the next subinterval. This pro-

cedure is repeated until the last subinterval [(𝑁 −1)ℎ, 𝛽], giving a highly 
accurate piecewise continuous solution of the form

𝐲(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐲(1)(𝑥) if 𝑥 ∈ 𝐼1

𝐲(2)(𝑥) if 𝑥 ∈ 𝐼2,

𝐲(3)(𝑥) if 𝑥 ∈ 𝐼3,

⋮

𝐲(𝑁−1)(𝑥) if 𝑥 ∈ 𝐼𝑁−1,

𝐲(𝑁)(𝑥) if 𝑥 ∈ 𝐼𝑁 .

It should be noted that one advantage of Parker-Sochacki method 
is that it allows on-the-fly change of the order of approximation 𝑚. 
Therefore, besides reducing the length of the subintervals to achieve 
better results, the overall accuracy of the method can be improved by 
increasing the order of approximation in each subinterval.

3. Application to SIR disease epidemic model

The spread and control of infectious diseases are usually modelled 
by epidemic models. Mathematical modelling of progression of infec-

tious diseases dates back to the work of Bernuolli [21]. In 1927 Kermack 
and McKendrick [22] proposed a model for a non-fatal disease in a pop-

ulation which is assumed to have a constant size over the period of 
epidemic. The model is termed the SIR model. The model decomposed 
the population into three compartments, the susceptible S, the infected I 
and the recovered population R. The movement of the population from 
one compartment to the other is described by the initial value problem 
given in [23] as

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼, (14)

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼, (15)

𝑑𝑅

𝑑𝑡
= 𝛾𝐼, (16)

with initial conditions

𝑆(0) =𝑁𝑆, 𝐼(0) =𝑁𝐼 , 𝑅(0) =𝑁𝑅. (17)

The parameters 𝛽, 𝛾 > 0 denote the rate of change of susceptible pop-

ulation to infectious population and infectious population to immune 
population, respectively. In the above, at a time 𝑡, the population is 
assumed to comprise 𝑆(𝑡) susceptible - those so far uninfected and there-

fore liable to infection; 𝐼(𝑡) infective - those who have the disease and 
are still at large; 𝑅(𝑡) who are isolated, or who have recovered and are 
therefore immune.
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The above problem has been widely considered in the literature, 
regarding analytical techniques or numerical approaches for finding dis-

ease progression pattern of the population, see [24], [25], [26], [27]. 
It has often been reported that approximate analytical solutions to such 
nonlinear differential equations are only valid for small finite intervals. 
Beyond such intervals, the approximate solutions diverge and thus not 
useful. Recently, the authors in [3] showed that, without multistage 
implementation, the famous Homotopy Analysis Method (HAM) also 
cannot solve the SIR model over a long time horizon. Here, the problem 
will be solved using the proposed multistage Parker-Sochacki Method.

3.1. Convergence and solution by Multistage Parker-Sochacki Method

According as Theorem 2.1, the smallest interval for which the se-

ries solution to the epidemic model (14)-(16) is expected to converge is 
given by (−ℎ, ℎ) where ℎ < 1

𝑀
and 𝑀 = (𝑘 − 1) Σ𝑝 𝛼𝑘−1. Observe that 

the bound provided in Theorem 2.1 is a rather tight bound and so 
the actual interval of convergence could be larger. However, the result 
of the theorem provides the safest theoretical bound without comput-

ing the interval of convergence of the series solution. From the system

(14)-(16), it is clear that

Σ𝑝 =max{𝛽, 𝛽 + 𝛾, 𝛾} = 𝛽 + 𝛾, ||𝑦0|| =max{𝑁𝑆,𝑁𝐼 ,𝑁𝑅},

𝛼 =max{1, ||𝑦0||}, 𝑘 = 2.

With 𝛽 = 0.001, 𝛾 = 0.1, 𝑁𝑆 = 499, 𝑁𝐼 = 1, 𝑁𝑅 = 1, we obtained Σ𝑝 =
0.101, 𝛼 = 499, 𝑘 = 2 so that 𝑀 = 50.399 and consequently the smallest 
interval for which the series solutions of the SIR model are theoretically 
convergent is (−ℎ, ℎ) where ℎ < 1∕𝑀 = 0.0198.

Now, with the step-size ℎ > 0 chosen within the interval of conver-

gence, as ℎ = 0.01 we divide the problem domain, chosen here as [0, 100]
into subintervals 𝐼𝑖 = [𝑖ℎ, (𝑖 + 1)ℎ], 𝑖 = 0, 1, … On the first subinterval 
𝐼1 = [0, 0.01], the problem is solved as follows. Following the discussion 
of Section 2.1 above, we write

𝑆(𝑡) =
𝑚∑
𝑖=0

𝑆𝑖𝑡
𝑖, 𝐼(𝑡) =

𝑚∑
𝑖=0

𝐼𝑖𝑡
𝑖, 𝑅(𝑡) =

𝑚∑
𝑖=0

𝑅𝑖𝑡
𝑖. (18)

Thus by the PSM, the coefficients in the expansion are thus obtained 
through the recursion

𝑆𝑖+1 = −
𝛽
∑𝑖

𝑗=0 𝑆𝑗𝐼𝑖−𝑗

𝑖+ 1
, 𝐼𝑖+1 =

𝛽
∑𝑖

𝑗=0 𝑆𝑗𝐼𝑖−𝑗 − 𝛾𝐼𝑖

𝑖+ 1
, 𝑅𝑖+1 =

𝛾𝐼𝑖

𝑖+ 1
(19)

with initial conditions

𝑆0 = 𝑆(0) =𝑁𝑆, 𝐼0 = 𝐼(0) =𝑁𝐼 , 𝑅0 =𝑅(0) =𝑁𝑅.

Solving these with parameter values 𝛽 = 0.001, 𝛾 = 0.1, 𝑁𝑆 = 499, 𝑁𝐼 =
1, 𝑁𝑅 = 1 yield the solution

𝑆(1)(𝑡) = 499 − 0.499 𝑡− 0.09930100000 𝑡2 − 0.01309924900 𝑡3

− 0.001281084280 𝑡4−0.00009784814872 𝑡5−0.000005908988970 𝑡6

− 0.0000002687103489 𝑡7 − 0.000000006753653701 𝑡8

+ 0.0000000002645523368 𝑡9 + 5.226667371 × 10−11 𝑡10 +… (20)

𝐼 (1)(𝑡) = 1 + 0.399 𝑡+ 0.07935100000 𝑡2 + 0.01045421567 𝑡3

+ 0.001019728889 𝑡4+0.00007745357094 𝑡5+0.000004618096122 𝑡6

+ 0.0000002027375471 𝑡7 + 0.000000004219434362 𝑡8

− 0.0000000003114349408 𝑡9 − 4.915232430 × 10−11 𝑡10 +… (21)

𝑅(1)(𝑡) = 1 + 0.1 𝑡+ 0.01995000000 𝑡2 + 0.002645033333 𝑡3

+ 0.0002613553918 𝑡4 + 0.00002039457778 𝑡5

+ 0.000001290892849 𝑡6 + 0.00000006597280174 𝑡7

+ 0.000000002534219339 𝑡8 + 4.688260402 × 10−11 𝑡9

− 3.114349408 × 10−12 𝑡10 +… (22)
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hese results (using PSM) are plotted and compared against those ob-

ined with Runge-Kutta method of order 4 (RK4) in Figs. 1 (a)-(e). 
he blowup of these solutions over a relatively short time horizon 
an be seen from the figures. Hence, the need for multistage imple-

entation. Therefore, on the second subinterval [0.01, 0.02], the same 
SM computational algorithm is run but with a new initial conditions 
(2)(0) = 𝑆(1)(0.01), 𝐼 (2)(0) = 𝐼 (1)(0.01) =, 𝑅(2)(0) = 𝑅(1)(0.01). In a multi-

tage fashion described in Section 2.3, further subproblems are solved 
om one interval to the other to get a piece-wise convergent solution, 
hich is valid in the entire domain. These approximate analytical solu-

ons are shown in Table 1. It is worthwhile to mention that only cubic 
olynomial is used, in each subinterval, to obtain the solution presented 
 the table.

To enable comparison of present results with existing results in the 
terature e.g. [24, 25, 26], we also consider other choice of the model 
arameters, namely 𝑁𝑆 = 20, 𝑁𝐼 = 15, 𝑁𝑅 = 10, 𝛽 = 0.01, 𝛾 = 0.02. Again 
ith PSM, this choice produced the five-term approximations

(𝑡) = 20 − 3.0 𝑡− 0.04500000000 𝑡2 + 0.02805000000 𝑡3

+ 0.0007953750000 𝑡4 − 0.0003165502500 𝑡5, (23)

(𝑡) = 15 + 2.70 𝑡+ 0.01800000000 𝑡2 − 0.02817000000 𝑡3

− 0.0006545250000 𝑡4 + 0.0003191683500 𝑡5, (24)

(𝑡) = 10 + 0.30 𝑡+ 0.02700000000 𝑡2 + 0.0001200000000 𝑡3

− 0.0001408500000 𝑡4 − 0.000002618100000 𝑡5 (25)

hich coincide with those in [24, 25, 26]. These results are displayed 
 Fig. 2(a). When compared with Fig. 2(b), the blow-up of the five-

rm approximate analytical solution beyond some certain values of 𝑡 is 
bvious from the graphical illustrations in Fig. 2(a).

. Application to combustion equation

Consider the simple experiment of lighting a match stick. As de-

cribed in [28], the ball of flame produced initially increases in size 
ntil a particular critical size where the size remains constant, because 
f a balance of oxygen available for combustion in the ball’s interior 
nd that available on its surface. The above phenomenon is described 
y the stiff ordinary differential equation

𝑦

𝑡
= 𝑦2(1 − 𝑦), 𝑦(0) = 𝛿, 𝑡 ∈ [0,2∕𝛿]. (26)

he differential equation (26) belongs to a class of stiff differential 
quations, and arises in the modelling of trimolecular equations [28, 
9]. Here, the variable 𝑦(𝑡) ≥ 0 denotes concentration while the initial 
adius 𝛿 > 0 of the ball of flame describes a small disturbance of the 
re-ignition state 𝑦 = 0. The state 𝑦 = 1 is termed the explosion state. 
everal approaches which have been proposed to solve such a problem 
clude the Asymptotic Expansion Technique [29], Nonstandard Finite 
ifference Method [28], Singular Perturbation Method [30], Wavelets 
31] and Boundary Value Methods [32]. Here, the problem is elegantly 
olved using multistage PSM.

.1. Convergence and solution by Multistage Parker-Sochacki Method

In view of the convergence Theorem 2.1, for the combustion equa-

on, we have

= 3, 𝛼 =max{1, |𝛿|}, Σ𝑝 = 2

o that for the choice 𝛿 < 1, we obtain 𝛼 = 1. Thus, 𝑀 = 4 and the 
mallest interval of convergence is (−ℎ, ℎ) with ℎ < 0.25. So choos-

g ℎ = 0.2, the integration interval is divided into smaller intervals 
ℎ, 𝑖(𝑖 + 1)], 𝑖 = 0, 1, … over which subproblems are defined. On the first 
terval 𝐼1 = [0, 0.2], the subproblem is solved as follows. Observe that 
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Fig. 1. Long-term behaviour of the solutions 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡) of the epidemic model using the proposed Multistage-PSM (solid line), PSM (dash) and Runge-Kutta 
method (dots) for 𝛽 = 0.001, 𝛾 = 0.1, 𝑁𝑆 = 499, 𝑁𝐼 = 1, 𝑁𝑅 = 1.

Table 1. Convergent approximate analytical solution of the SIR model.

𝑡 Convergent Approximate Analytical Solution 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)
0 ≤ 𝑡 ≤ 0.01 𝑆(𝑡) = 499 − 0.499 𝑡− 0.099301 𝑡2 − 0.013099249 𝑡3

𝐼(𝑡) = 1 + 0.399 𝑡+ 0.079351 𝑡2 + 0.01045421567 𝑡3

𝑅(𝑡) = 1 + 0.1 𝑡+ 0.01995 𝑡2 + 0.002645033333 𝑡3

0.01 ≤ 𝑡 ≤ 0.02 𝑆(𝑡) = 499.00499 − 0.499 𝑡− 0.099301 (𝑡− 0.01)2 − 0.013099249 (𝑡− 0.01)3

𝐼(𝑡) = 0.99601 + 0.399 𝑡+ 0.079351 (𝑡− 0.01)2 + 0.01045421567 (𝑡− 0.01)3

𝑅(𝑡) = 0.999 + 0.1 𝑡+ 0.01995 (𝑡− 0.01)2 + 0.002645033333 (𝑡− 0.01)3

⋮ ⋮

99.99 ≤ 𝑡 ≤ 100 𝑆(𝑡) = 548.89501 − 0.499 𝑡− 0.099301 (𝑡− 99.99)2 − 0.013099249 (𝑡− 99.99)3

𝐼(𝑡) = −38.89601 + 0.399 𝑡+ 0.079351 (𝑡− 99.99)2 + 0.01045421567 (𝑡− 99.99)3

𝑅(𝑡) = −8.999 + 0.1 𝑡+ 0.01995 (𝑡− 99.99)2 + 0.002645033333 (𝑡− 99.99)3
the right-hand side of (26) is already a polynomial function so that on 
letting

𝑦(𝑡) =
𝑚∑
𝑖=0

𝑦𝑖𝑡
𝑖,

the recursive relation for computing the series coefficients follows from

(26) as
5

𝑦𝑖+1 =
∑𝑖

𝑗=0 𝑦𝑗𝑦𝑖−𝑗 −
∑𝑖

𝑗=0
(∑𝑗

𝑘=0 𝑦𝑘𝑦𝑗−𝑘
)
𝑦𝑖−𝑗

𝑖+ 1
, 𝑦0 = 𝛿.

Thus, we obtain

𝑦1 = −𝛿2(𝛿 − 1), 𝑦2 =
1
2
𝛿3 (3𝛿 − 2) (𝛿 − 1) ,

𝑦3 = −1
6
𝛿4

(
15𝛿2 − 20𝛿 + 6

)
(𝛿 − 1)
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Fig. 2. Comparison of the long-term behaviour of the solutions 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡) of the epidemic model using the proposed Multistage-PSM (solid line), PSM (dash) and 
Runge-Kutta method (dots) for 𝑁𝑆 = 20, 𝑁𝐼 = 15, 𝑁𝑅 = 10, 𝛽 = 0.01, 𝛾 = 0.02.
𝑦4 =
1
24

𝛿5
(
105𝛿3 − 210𝛿2 + 130𝛿 − 24

)
(𝛿 − 1) ,…

which yields the approximate analytical solution

𝑦(𝑡) =𝛿 − 𝛿2(𝛿 − 1)𝑡+ 1
2
𝛿3 (3𝛿 − 2) (𝛿 − 1) 𝑡2

− 1
6
𝛿4

(
15𝛿2 − 20𝛿 + 6

)
(𝛿 − 1) 𝑡3 +…

For 𝛿 = 0.01, we get the analytical solution

𝑦(1)(𝑡) = 0.01 + 9.9 × 10−5 𝑡+ 9.7515 × 10−7 𝑡2 + 9.572475 × 10−9 𝑡3

+ 9.372369188 × 10−11 𝑡4 + 9.157127880 × 10−13 𝑡5 +…

on the first subinterval [0, 0.2]. Graphical illustration of the above solu-

tion is displayed in Fig. 3. The series solution diverges for 𝑡 ≥ 70, making 
multistage implementation imperative to obtain a convergent solution 
in the entire domain of the problem. On the next subinterval [0.2, 0.4], 
with initial condition 𝑦(2)(0) = 𝑦(1)(0.2) = 0.01001983909, the PSM algo-

rithm is repeated to get the next approximate analytical solution.

5. Application to chaotic Lorenz problem

In 1963, Lorenz [33], proposed a model in form of nonlinear dif-

ferential equations describing the flow of two-dimensional fluid cell 
between two parallel plates at different temperatures called the Lorenz 
system

𝑑𝑥

𝑑𝑡
= 𝑎(𝑦− 𝑥),

𝑑𝑦

𝑑𝑡
= −𝑥𝑧+ 𝑏𝑥− 𝑦,

𝑑𝑧

𝑑𝑡
= 𝑥𝑦− 𝑐𝑧

subject to initial conditions 𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0, 𝑧(0) = 𝑧0. Common tech-

niques for solving this chaotic system are numerical integrators and 
multistage methods such as multistage spectral relaxation method [2]. 
Here, efficacy of our method is shown by solving the system with pa-

rameter values 𝑎 = 10, 𝑏 = 28, 𝑐 = 8∕3, and initial conditions 𝑥0 = 1, 𝑦0 =
5, 𝑧0 = 10.

5.1. Convergence and solution by Multistage Parker-Sochacki Method

Following Theorem 2.1, the convergence parameters are computed 
as
6

Fig. 3. Comparison of the long-term behaviour of the solution 𝑦(𝑡) of the 
combustion equation using the proposed Multistage Parker-Sochacki Method 
(solid line), the conventional Parker-Sochacki Method (dash) and Runge-Kutta 
method (dots).

𝑘 = 2, Σ𝑝 =max{2|𝑎|, |𝑏|+ 2, |𝑐|+ 1}, 𝛼 =max{1, |𝑥0|, |𝑦0|, |𝑧0|}
so that the smallest interval of convergence for the series solution 
of the Lorenz problem is (− 1

𝑀
, 1
𝑀
) where 𝑀 = (𝑘 − 1)Σ𝑝 𝛼𝑘−1. With 

𝑎 = 10, 𝑏 = 28, 𝑐 = 8∕3, and initial conditions 𝑥0 = 1, 𝑦0 = 5, 𝑧0 = 10, 
we get Σ𝑝 = max{20, 30, 11∕3} = 30 and 𝛼 = max{1, 1, 5, 10} = 10 so that 
𝑀 = 300 and the smallest interval of convergence obtained as (−ℎ, ℎ)
with ℎ < 0.003. Thus, with ℎ = 0.002, the integration interval is subdi-

vided into subintervals, over which the problem is solved following the 
proposed multistage implementation. It is pertinent to remark that al-

though chosen heuristically, the step-size ℎ was also chosen to be 0.001
in [2], well within the now a-priorly computed interval of convergence.

Consequently, on the first subinterval, the subproblem is solved us-

ing PSM as follows. On noting that the Lorenz problem is already in the 
required polynomial form, the coefficients in the expansions

𝑥(𝑡) =
𝑚∑

𝑥𝑖𝑡
𝑖, 𝑦(𝑡) =

𝑚∑
𝑦𝑖𝑡

𝑖, 𝑧(𝑡) =
𝑚∑

𝑧𝑖𝑡
𝑖

𝑖=0 𝑖=0 𝑖=0
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are obtained directly through the recursions

𝑥𝑖+1 =
10(𝑦𝑖 − 𝑥𝑖)

𝑖+ 1
, 𝑥0 = 1,

𝑦𝑖+1 =
−
∑𝑖

𝑗=0 𝑥𝑗𝑧𝑖−𝑗 + 28𝑥𝑖 − 𝑦𝑖

𝑖+ 1
, 𝑦0 = 5,

𝑧𝑖+1 =
∑𝑖

𝑗=0 𝑥𝑗𝑦𝑖−𝑗 −
8
3𝑧𝑖

𝑖+ 1
, 𝑧0 = 10.

Approximate analytical solutions to the Lorenz problem are thus ob-

tained as

𝑥(𝑡) = 1 + 40 𝑡− 135 𝑡2 + 14980
9

𝑡3 − 635075
108

𝑡4 + 7432397
324

𝑡5 +…

𝑦(𝑡) = 5 + 13 𝑡+ 1093
3

𝑡2 − 37135
54

𝑡3 + 3621947
648

𝑡4 − 14633219
1215

𝑡5 +…

𝑧(𝑡) = 10 − 65
3

𝑡+ 2437
18

𝑡2 − 4096
81

𝑡3 + 10005631
1944

𝑡4 − 107999275
5832

𝑡5 +…

These approximate solutions are plotted and displayed (dash) in 
Fig. 4(a), Fig. 4(c) and Fig. 4(e). The result of the multistage implemen-

tation (solid line) is also displayed against numerical result obtained 
via the Runge-Kutta Method of order 4 (dots) in Fig. 4(b), Fig. 4(d) and 
Fig. 4(f).

6. Application to the Troesch’s problem

We consider the Troesch’s boundary value problem arising in the 
study of confinement of a plasma column by a radiation pressure [34], 
and in the theory of gas porous electrodes [35, 36] given by

𝑦′′(𝑥) = 𝜆 sinh𝜆𝑦(𝑥), 𝑦(0) = 0, 𝑦(1) = 1. (27)

The Troesch’s problem has been reported to have singularity which 
lies within the interval of integration [0, 1] whenever 𝑦′(0) > 8𝑒−𝜆, [1]. 
Consequent on this observation, both the numerical and approximate 
analytical solutions to the Troesch’s problem are highly sensitive to the 
Troesch parameter 𝜆. Several methods have been proposed to solving 
the Troesch’s problem, see [37], [38], [39], [40], [41] and [42] for 
particular cases of small values of 𝜆. Recently, a numerical method was 
proposed in [1], for the first time, to solve the Troesch’s problem for 
large value 𝜆 = 100.

In this section, the strength of our method will be shown by solv-

ing the Troesch’s problem with 𝜆 = 30. We consider the initial-valued 
equivalent formulation of the problem as

𝑦′′(𝑥) = 𝜆 sinh𝜆𝑦(𝑥), 𝑦(0) = 0, 𝑦′(0) = 𝛾 (28)

where for 𝜆 > 20, the unknown 𝛾 = 𝑦′(0) will be computed using an 
approximation formula as reported in [43] as

𝑦′(0) = 10−12𝑒29.71−𝜆, 𝜆 > 20, 𝑦′(0) < 10−4.

In fact, for 𝜆 = 30, 𝛾 is computed as 7.482635676 × 10−13.

6.1. Convergence and solution by Multistage Parker-Sochacki Method

The function 𝜆 sinh𝜆𝑦 on the right side of (28) is not a polynomial 
function. The equation has to be recast as a projectively polynomial 
system of differential equation. For that purpose, we introduce the vari-

ables

𝑦′ = 𝑢, 𝑣 = sinh𝜆𝑦, 𝑤 = cosh𝜆𝑦

so that from (28) one obtains

𝑦′ = 𝑢, 𝑢′ = 𝜆𝑣, 𝑣′ = 𝜆𝑢𝑤, 𝑤′ = 𝜆𝑢𝑣 (29)

with initial conditions

𝑦(0) = 0, 𝑢(0) = 𝛾, 𝑣(0) = 0, 𝑤(0) = 1. (30)
7

Now from the polynomial system (29)-(30), with 𝜆 = 30, 𝛾 =
7.482635676 × 10−13 the interval of convergence for series solution to
(28) are computed. Here,

𝑘 = 2, 𝛼 =max{1, 𝛾} = 1, Σ𝑝 =max(1, 𝜆) = 𝜆 = 30.

Hence, 𝑀 = 30, so that the step-size ℎ < 1∕30 = 0.033 must be chosen 
to have a convergent approximate analytical solution to the Troesch’s 
problem. Here, we chose ℎ = 10−4 so that on the first subinterval, the 
problem is solved using the PSM as follows.

If we let

𝑦 =
𝑚∑
𝑖=0

𝑦𝑖𝑥
𝑖, 𝑢 =

𝑚∑
𝑖=0

𝑢𝑖𝑥
𝑖, 𝑣 =

𝑚∑
𝑖=0

𝑣𝑖𝑥
𝑖, 𝑤 =

𝑚∑
𝑖=0

𝑤𝑖𝑥
𝑖, (31)

then it follows from the polynomial system (29)-(30) that

𝑦𝑖+1 =
𝑢𝑖

𝑖+ 1
, 𝑢𝑖+1 = 𝜆

𝑣𝑖

𝑖+ 1
, 𝑣𝑖+1 = 𝜆

∑𝑖

𝑗=0 𝑢𝑖−𝑗𝑤𝑗

𝑖+ 1
,

𝑤𝑖+1 = 𝜆

∑𝑖

𝑗=0 𝑢𝑖−𝑗𝑣𝑗

𝑖+ 1
, 𝑖 = 0,1,2,… ,𝑚. (32)

Solving these recursions with the initial conditions (30), and substitut-

ing into (31), we obtain

𝑦(𝑥) =7.482635676 × 10−13 𝑥+ 0.000000000112239535140000𝑥3

+ 0.00000000505077908130000𝑥5 +…

The above approximate analytical solution as well as result of multi-

stage implementation are shown in Fig. 5(a) and Fig. 5(b).

7. Conclusion

Based on Parker-Sochacki Method, a new multistage technique has 
been developed in this article to find an approximate analytical solution 
of initial and boundary valued problems of nonlinear differential equa-

tions. By computing a-priorly a convergence quantity in terms of the 
parameters of the problem, subproblems are defined and solved from 
one interval to the next in a multistage fashion. Within the interval of 
convergence, the method was highly accurate and efficient.

The proposed method has been applied to both the initial value 
problem and boundary value problems. The results obtained, shown 
graphically, showed that the proposed method gives appreciable accu-

racy when compared with results obtained via the numerical Runge-

Kutta method of order 4 (RK4). The computational simplicity, and yet 
high accuracy of the proposed method makes it a viable alternative 
to solving highly nonlinear initial value problem, and even boundary 
value problems via the shooting technique.
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Fig. 4. Comparison of the long-term behaviour of the solution 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) of the Lorenz’s problem using the proposed Multistage Parker-Sochacki Method (solid 
line), the conventional Parker-Sochacki Method (dash) and Runge-Kutta method (dots).
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Fig. 5. (a.) Comparison of the solution 𝑦(𝑥) of the Troesch’s problem for 𝜆 = 30 using the proposed Multistage Parker-Sochacki Method (solid line) and the con-

ventional Parker-Sochacki Method (dash). (b.) Comparison of the solution 𝑦(𝑥) of the Troesch’s problem for 𝜆 = 30 using the proposed Multistage Parker-Sochacki 
Method (solid line) and Runge-Kutta method (dots).
Acknowledgements

The author would like to thank the referees for their helpful sug-

gestions. This article is dedicated to my father, Chief Ramoni Akinloye 
Akindeinde, the Baale of Oosa Village, Apomu.

References

[1] Helmi Temimi, Mohamed Ben-Romdhane, Ali R. Ansari, Grigorii I. Shishkin, Finite 
difference numerical solution of Troesch’s problem on piecewise uniform Shishkin 
mesh, Calcolo (2016).

[2] S.S. Motsa, P. Dlamini, M. Khumalo, A new multistage spectral relaxation method 
for solving chaotic initial value systems, Nonlinear Dyn. 72 (2013) 265–283.

[3] M. Sajid, Z. Abbas, N. Ali, T. Javed, A note on solutions of the sir models of epi-

demics using ham, ISRN Appl. Math. 2013 (2013) 457072.

[4] M. Mossa Al-Sawalha, M.S.M. Noorani, I. Hashim, On accuracy of Adomian de-

composition method for hyperchaotic rãssler system, Chaos Solitons Fractals 40 (4) 
(2009) 1801–1807.

[5] B. Batiha, M.S.M. Noorani, I. Hashim, E.S. Ismail, The multistage variational itera-

tion method for a class of nonlinear system of odes, Phys. Scr. 76 (2007) 388–392.

[6] Y. Do, B. Jang, Enhanced multistage differential transformation method: application 
to population models, Abstr. Appl. Anal. 2012 (253890) (2012).

[7] M.S.H. Chowdhury, I. Hashim, Application of multistage homotopy-perturbation 
method for the solutions of the Chen system, Nonlinear Anal., Real World Appl. 
10 (1) (2009) 381–391.

[8] S.O. Akindeinde, A.O. Adewumi, A.A. Aderogba, B.S. Ogundare, Improved Parker-

Sochacki approach for closed form solution of nonlinear enzyme catalyzed reaction 
processes, J. Mod. Methods Numer. Math. 8 (1–2) (2017) 90–98.

[9] S.O. Akindeinde, Parker-sochacki method for the solution of convective straight fins 
problem with temperature-dependent thermal conductivity, Int. J. Nonlinear Sci. 
25 (2) (2018) 119–128.

[10] D.C. Carothers, G.E. Parker, J.S. Sochacki, P.G. Warne, Some properties of solutions 
to polynomial systems of differential equations, Electron. J. Differ. Equ. 2005 (40) 
(2005) 1–17.

[11] G. Edgar Parker, James S. Sochacki, Implementing the Picard iteration, Neural Par-

allel Sci. Comput. 4 (1) (March 1996) 97–112.

[12] Joseph W. Rudmin, Application of the parker-sochacki method to celestial mechan-

ics, Technical report, James Madison University, 1998.

[13] Robert D. Stewart, Wyeth Bair, Spiking neural network simulation: numerical in-

tegration with the parker-sochacki method, J. Comput. Neurosci. 27 (1) (2009) 
115–133.

[14] Ismail M. Abdelrazik, Hesham A. Elkaranshawy, Extended parker-sochacki method 
for Michaelis-Menten enzymatic reaction model, Anal. Biochem. 496 (2016) 50–54.

[15] G.E. Parker, J.S. Sochacki, A Picard-Maclaurin theorem for initial value PDEs, Abstr. 
Appl. Anal. 5 (2000) 47–63.

[16] Donald E. Knuth, The Art of Computer Programming, vol. 1, 3rd ed., Addison Wesley 
Longman Publishing Co., Inc., Redwood City, CA, USA, 1997.
9

[17] Amaury Pouly, Daniel S. Graca, Computational complexity of solving polynomial 
differential equations over unbounded domains, Theor. Comput. Sci. 626 (2016) 
67–82.

[18] P.G. Warne, D.A. Polignone Warne, J.S. Sochacki, G.E. Parker, D.C. Carothers, 
Explicit a-priori error bounds and adaptive error control for approximation of 
nonlinear initial value differential systems, Comput. Math. Appl. 52 (12) (2006) 
1695–1710.

[19] I.M. Mack, Generalized Picard-Lindelöf Theory, Sloan School of Management, Mas-

sachusetts Institute of Technology, Massachusetts Institute of Technology, Cam-

bridge, MA, 1991.

[20] G. Jenna, W. Morgan, An adaptive, highly accurate and efficient, parker-sochacki 
algorithm for numerical solutions to initial value ordinary differential equation sys-

tems, SIURO 12 (2019) 257–281.

[21] D. Bernoulli, Reflexions sur les avantages de l’inoculation, Mercure de France 173 
(1760) (June Issue).

[22] W.O. Kermack, A.G. McKendrick, Contribution to the mathematical theory of epi-

demics, Proc. R. Soc. Lond. A 115 (1927) 700–721.

[23] D.W. Jordan, Nonlinear Ordinary Differential Equations: An Introduction to Dynam-

ical Systems, 3rd ed., Oxford University Press, Oxford, 1999.

[24] J. Biazar, Solution of the epidemic model by Adomian decomposition method, Appl. 
Math. Comput. 173 (2) (2006) 1101–1106.

[25] M. Rafei, D.D. Ganji, H. Daniali, Solution of the epidemic model by homotopy per-

turbation method, Appl. Math. Comput. 187 (2) (2007) 1056–1062.

[26] M. Rafei, H. Daniali, D.D. Ganji, Variational iteration method for solving the epi-

demic model and prey and predator problem, Appl. Math. Comput. 186 (2) (2007) 
1701–1709.

[27] A.M. Batiha, B. Batiha, A new method for solving epidemic model, Aust. J. Basic 
Appl. Sci. 5 (12) (2011) 3122–3126.

[28] Shirley Abelman, Kailash C. Patidar, Comparison of some recent numerical methods 
for initial-value problems for stiff ordinary differential equations, Comput. Math. 
Appl. 55 (2008) (2008) 733–744.

[29] E.L. Reiss, A new asymptotic method for jump phenomena, SIAM J. Appl. Math. 39 
(1980) 440–455.

[30] D.R. Kassoy, A note on asymptotic methods for jump phenomena, SIAM J. Appl. 
Math. 42 (1982) 926–932.

[31] C.H. Hsiao, Numerical solution of stiff differential equations via Harr wavelets, Int. 
J. Comput. Math. 82 (9) (2005) 1117–1123.

[32] L. Brugnano, D. Trigiante, Boundary value methods: the third way between lin-

ear multistep and Runge-Kutta methods, Comput. Math. Appl. 36 (10-12) (1998) 
269–284.

[33] E. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963) 130–141.

[34] E.S. Weibel, On the confinement of a plasma by magnetostatic fields, Phys. Fluids 
2 (1) (1959) 52–56.

[35] D. Gidaspow, B.S. Baker, A model for discharge of storage batteries, J. Electrochem. 
Soc. 120 (8) (1973) 1004–1010.

[36] V.S. Markin, A.A. Chernenko, Y.A. Chizmadehev, Y.G. Chirkov, Aspects of the theory 
of gas porous electrodes, in: Fuel Cells: Their Electrochemical Kinetics, Consultants 
Bureau, New York, USA, 1966, pp. 22–33.

[37] Shih-Hsiang Chang, A variational iteration method for solving Troesch’s problem, J. 
Comput. Appl. Math. 234 (10) (2010) 3043–3047.

http://refhub.elsevier.com/S2405-8440(20)32031-4/bib2636A2389F7B321E763C5C32A809BE56s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib2636A2389F7B321E763C5C32A809BE56s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib2636A2389F7B321E763C5C32A809BE56s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib19ED8522AF051922FCC09A4969AE2D97s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib19ED8522AF051922FCC09A4969AE2D97s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib55925312700C9BD8407C4BF9C00A852Fs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib55925312700C9BD8407C4BF9C00A852Fs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib54A52124AE8FD7B7DE067BB8B14395D8s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib54A52124AE8FD7B7DE067BB8B14395D8s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib54A52124AE8FD7B7DE067BB8B14395D8s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib263AD51D1D64F6104188EE4DE093441Fs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib263AD51D1D64F6104188EE4DE093441Fs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib58BE73BF55EEEF7E5A15EE5B1BD88A1Ds1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib58BE73BF55EEEF7E5A15EE5B1BD88A1Ds1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib7FC75246E1E8749B2DF72AE9495CE57As1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib7FC75246E1E8749B2DF72AE9495CE57As1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib7FC75246E1E8749B2DF72AE9495CE57As1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib8C6DCCBDA3479E74950C20C81FD1091As1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib8C6DCCBDA3479E74950C20C81FD1091As1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib8C6DCCBDA3479E74950C20C81FD1091As1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib463AF145DC5B4187B9755670CE760CA0s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib463AF145DC5B4187B9755670CE760CA0s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib463AF145DC5B4187B9755670CE760CA0s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib99AF26599F840F9EB32F8B2D249D976Es1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib99AF26599F840F9EB32F8B2D249D976Es1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib99AF26599F840F9EB32F8B2D249D976Es1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib51854F2FAAC2B3E0004D7E9A0D59D4B7s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib51854F2FAAC2B3E0004D7E9A0D59D4B7s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibD07FDAAECD41BA0B1D7C66073D7EBEB1s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibD07FDAAECD41BA0B1D7C66073D7EBEB1s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibC0BDBCD113F68C853E6CF51A7877A98Fs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibC0BDBCD113F68C853E6CF51A7877A98Fs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibC0BDBCD113F68C853E6CF51A7877A98Fs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib4BD8B2BFF231E0F1208C2ACD0E315D5As1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib4BD8B2BFF231E0F1208C2ACD0E315D5As1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib2B671DB47B74B5B770229F82E54E317Cs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib2B671DB47B74B5B770229F82E54E317Cs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib6F0DE634BB1793C86A9CC487D5079A7Cs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib6F0DE634BB1793C86A9CC487D5079A7Cs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib0DC8A8522117EC9D739E5F20795CC04Fs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib0DC8A8522117EC9D739E5F20795CC04Fs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib0DC8A8522117EC9D739E5F20795CC04Fs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib364687A51F3C6EBA26634B672244789Ds1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib364687A51F3C6EBA26634B672244789Ds1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib364687A51F3C6EBA26634B672244789Ds1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib364687A51F3C6EBA26634B672244789Ds1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibF5D9D40EE7476994E565225BFEF99792s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibF5D9D40EE7476994E565225BFEF99792s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibF5D9D40EE7476994E565225BFEF99792s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib486C2B946C3E36683444A50F9E0077EFs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib486C2B946C3E36683444A50F9E0077EFs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib486C2B946C3E36683444A50F9E0077EFs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib145AFF85B8E64514B9125EE45D430E03s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib145AFF85B8E64514B9125EE45D430E03s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib459116DE4E06CFCB02AFC68E0F9B25C9s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib459116DE4E06CFCB02AFC68E0F9B25C9s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib963740B8B8215FC6F032D9E2D6EBFBADs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib963740B8B8215FC6F032D9E2D6EBFBADs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibE5E5560450A56A00DEA13D220DB5EACFs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibE5E5560450A56A00DEA13D220DB5EACFs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibA5C0319599EE07F8D9436AA81D8D9C29s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibA5C0319599EE07F8D9436AA81D8D9C29s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib8C2E83D125E6861D42CC453EAA3C1315s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib8C2E83D125E6861D42CC453EAA3C1315s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib8C2E83D125E6861D42CC453EAA3C1315s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib932790CB00D3606B3F3592CE9279C0A4s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib932790CB00D3606B3F3592CE9279C0A4s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib6047FE230EF877637EA358528E25DAF3s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib6047FE230EF877637EA358528E25DAF3s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib6047FE230EF877637EA358528E25DAF3s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib3780F49A5A3FAC3EB936C7011DEEAD62s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib3780F49A5A3FAC3EB936C7011DEEAD62s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib43743AB04FA8D2DFD37B921FC17A0B75s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib43743AB04FA8D2DFD37B921FC17A0B75s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib5056C00C0B56E2BB4CE42D95D3BBE6F3s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib5056C00C0B56E2BB4CE42D95D3BBE6F3s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibD9C21471AD714262DF9D06E3CBFCFC09s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibD9C21471AD714262DF9D06E3CBFCFC09s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibD9C21471AD714262DF9D06E3CBFCFC09s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib1AFDCF10BD0E8EDBD402C11D5388895As1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib922102B4D095637254CAC382FB77E7CBs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib922102B4D095637254CAC382FB77E7CBs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib07C115760A502306B21D647FB1E7AD3Es1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib07C115760A502306B21D647FB1E7AD3Es1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib4DDE621967C013BD0CDA956A6B7802EBs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib4DDE621967C013BD0CDA956A6B7802EBs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib4DDE621967C013BD0CDA956A6B7802EBs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib85DF0E5ECD309851C7BDF574691C50CBs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib85DF0E5ECD309851C7BDF574691C50CBs1


S.O. Akindeinde Heliyon 6 (2020) e05188
[38] Xinlong Feng, Liquan Mei, Guoliang He, An efficient algorithm for solving Troesch’s 
problem, Appl. Math. Comput. 189 (1) (2007) 500–507.

[39] Elias Deeba, S.A. Khuri, Shishen Xie, An algorithm for solving boundary value prob-

lems, J. Comput. Phys. 159 (2) (2000) 125–138.

[40] Hany N. Hassan, Magdy A. El-Tawil, An efficient analytic approach for solving 
two-point nonlinear boundary value problems by homotopy analysis method, Math. 
Methods Appl. Sci. 34 (8) (2011) 977–989.

[41] S.A. Khuri, A numerical algorithm for solving Troesch’s problem, Int. J. Comput. 
Math. 80 (4) (2003) 493–498.

[42] S.H. Mirmorandi, I. Hosseinpour, S. Ghanbarpour, A. Barari, Application of an ap-

proximate analytical method to nonlinear Troesch’s problem, Appl. Math. Sci. 3 (32) 
(2009) 1579–1585.

[43] M. Kubicek, V. Hlavacek, Solution of Troesch’s two-point boundary value problem 
by shooting technique, J. Comput. Phys. 17 (1) (1975) 95–101.
10

http://refhub.elsevier.com/S2405-8440(20)32031-4/bibBE47800A50C8A6E7F66396E9C67E51F8s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibBE47800A50C8A6E7F66396E9C67E51F8s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib4BFD5D1E59E21B0C64495957F20E9163s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib4BFD5D1E59E21B0C64495957F20E9163s1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib80D4EC793C7AC3AC289E87AAC47DC90Fs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib80D4EC793C7AC3AC289E87AAC47DC90Fs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib80D4EC793C7AC3AC289E87AAC47DC90Fs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibAD645BB36476933643551B333340BE8Ds1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibAD645BB36476933643551B333340BE8Ds1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibB9F9BB74A8B0EE29DDC572CD2149324Cs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibB9F9BB74A8B0EE29DDC572CD2149324Cs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bibB9F9BB74A8B0EE29DDC572CD2149324Cs1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib87F4DA480714868CDC4E2782E057D16As1
http://refhub.elsevier.com/S2405-8440(20)32031-4/bib87F4DA480714868CDC4E2782E057D16As1

	A new multistage technique for approximate analytical solution of nonlinear differential equations
	1 Introduction
	2 Basics of the proposed method (Multistage Parker-Sochacki Method)
	2.1 Polynomial projection and Parker-Sochacki method
	2.2 Convergence and error analysis of the method
	2.3 Multistage implementation

	3 Application to SIR disease epidemic model
	3.1 Convergence and solution by Multistage Parker-Sochacki Method

	4 Application to combustion equation
	4.1 Convergence and solution by Multistage Parker-Sochacki Method

	5 Application to chaotic Lorenz problem
	5.1 Convergence and solution by Multistage Parker-Sochacki Method

	6 Application to the Troesch’s problem
	6.1 Convergence and solution by Multistage Parker-Sochacki Method

	7 Conclusion
	Declarations
	Author contribution statement
	Funding statement
	Competing interest statement
	Additional information

	Acknowledgements
	References


