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Abstract
Background: Constraint-based models allow the calculation of the metabolic flux states that can
be exhibited by cells, standing out as a powerful analytical tool, but they do not determine which
of these are likely to be existing under given circumstances. Typical methods to perform these
predictions are (a) flux balance analysis, which is based on the assumption that cell behaviour is
optimal, and (b) metabolic flux analysis, which combines the model with experimental
measurements.

Results: Herein we discuss a possibilistic framework to perform metabolic flux estimations using
a constraint-based model and a set of measurements. The methodology is able to handle
inconsistencies, by considering sensors errors and model imprecision, to provide rich and reliable
flux estimations. The methodology can be cast as linear programming problems, able to handle
thousands of variables with efficiency, so it is suitable to deal with large-scale networks. Moreover,
the possibilistic estimation does not attempt necessarily to predict the actual fluxes with precision,
but rather to exploit the available data – even if those are scarce – to distinguish possible from
impossible flux states in a gradual way.

Conclusion: We introduce a possibilistic framework for the estimation of metabolic fluxes, which
is shown to be flexible, reliable, usable in scenarios lacking data and computationally efficient.

Background
Systems biology states that, in order to quantitatively
understand and predict the cell behaviour, its constitutive
components and their interactions must be studied as a
whole system [1,2]. Metabolic networks are a paradig-
matic example of this aim because, even incomplete as
they may be, they are the best characterized cellular net-
works [3]. In recent times, the information embedded in
metabolic networks is being used to assemble constraint-
based models under the pseudo steady-state assumption,
thus not requiring the knowledge of kinetic parameters,
which are still rarely known [3,4]. Constraint-based mod-

els allow the calculation of the possible metabolic states
or "behaviours" that can be exhibited by the cell; however,
they do not predict which of these are likely under given
circumstances. One approach to perform these predic-
tions is flux balance analysis (FBA), which is based on the
assumption that cell behaviour has evolved to be optimal
in a certain sense [5,6]. It has been shown that FBA is able
to predict the actual fluxes [7-9], but this requires to iden-
tify which are the relevant objectives for different condi-
tions [7,10]. As an alternative, one could perform a
metabolic flux analysis (MFA) which, generally speaking,
is the exercise of estimating the fluxes shown by cells by

Published: 31 July 2009

BMC Systems Biology 2009, 3:79 doi:10.1186/1752-0509-3-79

Received: 24 March 2009
Accepted: 31 July 2009

This article is available from: http://www.biomedcentral.com/1752-0509/3/79

© 2009 Llaneras et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 22
(page number not for citation purposes)

http://www.biomedcentral.com/1752-0509/3/79
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19646223
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Systems Biology 2009, 3:79 http://www.biomedcentral.com/1752-0509/3/79
combination of a constraint-based model and the set of
available experimental measurements.

In order to estimate the intracellular fluxes, traditional
metabolic flux analysis (TMFA) employs only measure-
ments of uptake and production rates (i.e. influxes into
and outfluxes from cells) that are stoichiometrically bal-
anced [11]. This purely stoichiometric approach has some
limitations, but most of them can be overcome with sim-
ple extensions, as it will be shown below.

One typical difficulty to be tackled by MFA is that the
available measurements may be insufficient to estimate
the intracellular fluxes, particularly in large-scale net-
works, because there may be different flux distributions
compatible with the available measurements. To face this
situation, intracellular information obtained from stable
isotope tracer experiments has been incorporated in many
studies (13C-MFA) [12-14]. Yet, data from isotope tracer
experiments will not be considered in this work. Instead,
we follow a constraint-based modeling approach, in the
sense that we do not attempt necessarily to predict the
actual fluxes with precision, but rather to distinguish
"most possible" from "impossible" flux states, based on a
suitable definition of "possibility", a constraint-based
model and the available measurements, which in most
cases do not include isotopic data.

Another option to face a lack of measurements is the use
of some rational hypotheses to chose one flux distribution
among those that are compatible with the measurements.
For instance, Nookaew et al. have proposed to estimate
the intracellular fluxes based on the assumption that cells
are likely to use as many pathways as possible to maintain
robustness and redundancy [15]. Related hypotheses have
been formulated using the concept of elementary modes
[16,17]. The assumption of optimal cell behavior typically
used in FBA could be also used (e.g. [7]). It will be shown
that the methodology we propose is able to detect these
flux distribution that are equally possible (or similarly
possible), but for the sake of simple exposition we will not
use any hypothesis herein. However, the possibilistic
framework might be extended to incorporate hypotheses,
as discussed in the conclusions section.

In this context, the paper discusses the use of a possibilis-
tic framework for metabolic flux analysis.

Uncertainty, lack of measurements and model impreci-
sion will be handled introducing the notion of "degree of
possibility". Then, an efficient optimization-based
approach will be employed to query the most possible
fluxes and their possibility distributions. The methodol-
ogy is based on a re-interpretation of the consistent causal
reasoning paradigm [18] as an equivalent problem of fea-

sibility subject to equality and inequality constraints; pref-
erences under uncertain knowledge are incorporated by
transforming the feasibility problem into a linear optimi-
sation one, which may be interpreted in possibilistic
terms. The optimisation approach to logic reasoning has
been previously explored by the research group to which
the authors belong in [19-21], and this paper applies it to
MFA.

The main features of the possibilistic framework intro-
duced in the paper are the following: (i) it is based on a
constraint-based model and not only on stoichiometric
balances, (ii) it considers measurements uncertainty in a
flexible way (e.g. non-symmetric error or a band of uncer-
tainty due to systemic error) and (iii) even model impreci-
sion, (iv) it provides possibility distributions (and
intervals) which are more informative than point-wise
estimations when multiple flux values might be reasona-
bly possible, (v) it is reliable even if only a few fluxes are
measurable, (vi) it has the ability to detect, and handle,
inconsistencies between measurements and model, and
furthermore (vii) with high computational efficiency.

The structure of the paper is as follows: preliminaries on
possibility, optimization and metabolic flux analysis are
first addressed. Then, the basics of Possibilistic MFA and
some refinements are discussed; the framework is illus-
trated with simple examples and a well-know model of C.
glutamicum. The paper is closed with a summary and a dis-
cussion on future work.

Preliminaries: possibility and optimization
In an abstract ideal situation, many estimation problems
in science and engineering can be cast as estimating some
decision variables δ given the known values of a set of
other ones m (possibly, measurements) and a model
expressed as a set of equality and inequality constraints
(involving decision variables, measurements and some
model parameters). Then, the valid estimations will be
the feasible solutions of a constraint satisfaction problem
[22,23].

However, in many practical cases, the measurements are
imprecise and the model parameters and constraints are
also not accurate, so real data violates them. This is the
reason why most real-life models should include uncer-
tainty. The most basic representation of uncertainty
would be giving interval values to measurements and
model parameters. Refinements of the uncertainty repre-
sentation give rise to probabilistic [23-25] and possibilis-
tic [26-28] frameworks.

Probabilistic frameworks have an underlying interpreta-
tion in terms of the frequency in which some flux condi-
tions appear; on the other hand, possibilistic frameworks
Page 2 of 22
(page number not for citation purposes)



BMC Systems Biology 2009, 3:79 http://www.biomedcentral.com/1752-0509/3/79
measure the degree of compliance (consistency) of some
decision variables with some (soft) modeling constraints.
In this sense, the basic assumptions of both paradigms of
inference under uncertainty are different.

In the following subsections the possibilistic framework
will be described. Afterwards, this section of preliminaries
will be closed discussing the relationship between proba-
bility and possibility and justifying the use the possibilis-
tic framework.

Soft constraint satisfaction problems: a possibilistic approach
As explained above, the possibilistic framework is the cho-
sen representation for the problem under study, following
the ideas in [29], where possibilistic constraint satisfac-
tion problems (CSP) are presented. There, the authors
introduce constraints which are satisfied to a degree,
transforming the feasibility/infeasibility of a potential
solution into a gradual notion: given a CSP with multiple
solutions δ ∈ Δ (where Δ denotes the search space over
which feasible values for the decision variables will be
searched), a function π : Δ → [0, 1] was suggested in order
to represent preference or priority as a "consistency
degree". The meaning of π(δ) = 1 would indicate that δ is
in full agreement with the model and measurement con-
straints; the meaning of π(δ) = 0 indicates that δ is in
"absolute, total contradiction" with the problem con-
straints, and never should be considered a feasible value.
Intermediate values would denote values of decision vari-
ables which "somehow mildly" violate the problem con-
straints but could be considered "partially possible" from
the "practical" knowledge of the "expert" modeller who
defined π. The higher the value of π(δ), the higher the
accordance with the problem constraints should be (sub-
jectively interpreted as a higher "possibility" of the deci-
sion variable choice δ). Given the here outlined subjective
meaning of π, it is denoted in literature as possibility distri-
bution. The possibilistic calculus [27,29] refers then, to
computations with possibility distributions from a series
of axioms. Basic ideas on it will be outlined below in this
section. A simple example now illustrates the basic idea.

Example
Consider a flux balance {f1 = f2}, stating equality between
two flows, f1 and f2, supposedly measured in a biological
or chemical reaction. The measurements ma = (5, 7) and
mb = (5, 5.1) are infeasible, whereas mc = (5, 5) is feasible.
However, it seems clear that the subjective "possibility" of
mb is higher than that of ma; mb can be thought to be quite
reasonable in practice due to measurement errors.

The idea can be easily formalised for further computations
by defining a possibility distribution, for instance,

. In this way, potential solutions can

be ranked: π(ma) = 0.018, π (mb) = 0.99 and π(mc) = 1. The

search space in which to define the possibility, Δ, could be

defined as, say, Δ = {(δ1, δ2)|0 ≤ δi ≤ 10}.

Usually, the function π(δ) is built by "conjunction" of
possibility functions of individual relations πi(δi)
(expressing user-defined preference or priority on each
individual constraint, in many cases in a problem-
dependent way). Such conjunction will be latter discussed
in this section. The best CSP solutions are defined to be
those which satisfy the global problem to the maximal
degree.

In this way, once the user has defined such function
expressing how a particular combination of system varia-
bles is "consistent" with its model, the basic idea on pos-
sibilistic calculus is, given a subset of the system variables
(assumed as known or measured), estimate the "most
possible" values of all the remaining variables via an opti-
mization problem. The close relationship between possi-
bilistic calculus and optimisation is discussed in the
subsection below.

Possibility theory
The basic building block of possibility theory is a user-
defined possibility distribution π : Δ → [0, 1]. This defines
the possibility of each "point" δ in Δ. A consistent prob-
lem formulation is defined to be the one in which there
exists at least one point with possibility equal to one.

The second building block are events, formally defined as
subsets of Δ, in order to address problems such as, in the
above example, determining the possibility of event A =
{(f1, f2) ∈ Δ | 0 ≤ f1 ≤ 3, 4 ≤ f2 ≤ 10}.

Possibility calculus as optimization
By definition, the possibility of an event A (subset of Δ) is
computed via:

and, obviously, given two events A and B, A ⊂ B entails
π(A) ≤ π(B).

Hence, possibility computations are optimisation prob-
lems (Cf. with probability computations, which are inte-
gration problems).

For a multidimensional Δ = Δ1 × Δ2, δ = (δ1, δ2) ∈ Δ, the
marginal possibility distribution of δ1 is defined as:
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i.e., the possibility of the event {δ1 = }.

Optimization as possibility calculus
Conversely, consider a cost function J : Δ → R+ (i.e., verify-
ing J(δ) ≤ 0 for all δ ∈ Δ), so that there exists δ0 ∈ Δ such
that J(δ0) = 0. Then, a consistent possibility distribution
may be defined on Δ via:

and the possibility of an event A is given by replacing the
possibility definition (3) in (1), resulting in:

In the next sections, abusing the notation, an event A will
be usually described by a set of constraints on the decision
variables δ.

In this way, numeric constrained optimisation problems
may be subjectively interpreted in possibilistic terms: the
cost J(δ) will be interpreted as the log-possibility of δ and,
by definition, unfeasible values of decision variables will
be assigned zero possibility.

Let us now review some other relevant definitions and
issues in possibilistic calculus.

Necessity
In order to assert that an event A is necessarily true (in our
context, that all problem solutions belong to A), saying
that A is "possible" may be not enough: it must also be
true that the complementary event "not A" is not possible.
This motivates the introduction of a necessity measure:

In a binary setting, all solutions belong to a subset A if and
only if π(A) = N(A) = 1; there exist solutions in A (and
solutions outside A) if π(A) = 1 but N(A) = 0, and there are
no solutions in A if π(A) = 0.

Extending the measures π(A), N(A) to [0,1] provides a
natural gradation of such concepts: π(A) = 0.95, N(A) =
0.1 would indicate that there are very possible solutions in
A, but not all of them are in there (there are solutions with
possibility 1-0.1 = 0.9 outside A).

Interactivity and possibilistic conjunction
The possibilistic analog to statistical independence is the
non-interactivity.

If the joint possibility of two variables Δ = Δ1 × Δ2, δ = (δ1,
δ2) ∈ Δ can be expressed as the product of two univariate
ones:

then variables δ1 and δ2 are said to be non-interactive. In
that way, given an event A1 ⊂ Δ1 and an event A2 ⊂ Δ2, it is
straightforward to prove that:

which can be read as "the possibility of event A1 and event
A2 is the product of the individual possibilities when the
events relate non-interactive variables", interpreting, as
usual in literature, set intersection as a linguistic conjunc-
tion.

Under non-interactivity assumption, if the possibility is
defined as the logarithm of a cost index (3), the product
(6) gets transformed into a sum:

On the following, given individual cost indices J1(δ1),
J2(δ2), etc. relating to different constraints, the above
expression (8) will be the one used in most cases to define
a possibility distribution in the product space. In this way,
we are interpreting the possibilistic conjunction operator
in [29] as an algebraic product of possibilities, i.e., stating
an underlying non-interactivity assumption between dif-
ferent constraints. Note, however, that the interactivity
assumption is not always intuitively needed. In the other
extreme (total interactivity: variables δ1 and δ2 fully "cor-
related", for instance equal), we would have: π(A1 ∩ A2) ≤
max(π(A1), π(A2)), which would suggest the maximum
possibility as the conjunction operator when two events
affect exactly the same decision variables. In between
those two extremes, other choices may be also possible (T
-norm operators [30]).

Conditional possibility
The possibilistic analog to conditional probability is con-
ditional possibility.

Consider an event B with nonzero possibility. A quotient
definition for conditional possibility of an event A given
event B will be used in this paper:

In this way, given a (multivariate) possibility distribution
π(δ), the conditional possibility can be computed as:

d1
∗

p d dd( ) ( )= ∈−e J Δ (3)

p d d( ) inf ( )A e A J= − ∈ (4)

N A A( ) ( )= − ¬1 p (5)

p d d p d p d( , ) ( ) ( )1 2 1 1 2 2= (6)

p p p( ) ( ) ( )A A A A1 2 1 1 2 2∩ = (7)

J J J( , ) : ( ) ( )d d d d1 2 1 1 2 2= + (8)

p p p( | ) : ( ) / ( )A B A B B= ∩ (9)
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so, if the possibility distribution is actually the exponen-
tial of a cost index, we get:

that is, computing the possibility by subtracting the cost
associated to event B from the cost of any of its subsets.

In order to get a conditional possibility distribution of a
variable δ, we assume event A being an individual point
δ*, getting:

That is, the conditional distribution can be obtained by
dividing the possibility distribution function for all points
in a set by the maximum possibility of them, i.e., normal-
ising the possibility distribution on a restricted condition-
ing domain B to a maximum equal to one.

The conditional definitions allow for an analogy to Baye-
sian inference: if we assume that B is actually certain
(whatever the a priori possibility π(B) was), then condi-
tional possibility may be understood as an a posteriori pos-
sibility.

Possibility versus probability
Both possibility theory and probability theory are frame-
works for handling uncertainty in constraint satisfaction
problems. Basically, a subjective interpretation would
assign high possibility to events with high probability.
Hence, in a first approximation, user-defined probabili-
ties and possibilities should be related by an implicit
monotonically increasing function. Possibility-necessity
measures have also been linked to imprecise probabilities
[31]. However, once aggregation takes place (via sums
and integration in probability, via maximisations in pos-
sibility), although the subjective interpretation might be
considered similar, there is no longer an implicit function
relating probability and possibility. For further discussion
on possibility, probability, and other uncertain reasoning
frameworks, and their interrelations, the reader is referred
to [31-33].

Ideally, probabilistic results would be preferable (to con-
fidently assert that, e.g., 95% of cases a flux estimate will
lie in a particular interval). However, there are some draw-
backs: (i) exact probabilistic inference under equality and
inequality modeling constraints is computationally hard

(multivariate integration on irregular sets) (ii) some of the
a priori Bayesian probabilities are in practice rough user-
given estimates, (iii) some of the assumptions (linearity of
transformation, Gaussian distributions) may not hold in
practice, and (iv) there may be some uncertainty in the
model parameters or in the model probabilities. Thus, as
practical use of probability does not fully adhere to the
theoretical assumptions, its results should be interpreted
with some flexibility. As this work will discuss, the pro-
posed possibilistic framework is much less demanding
computationally (using optimization instead of integrals,
so large-scale cases become tractable) and gives similar
results to the probabilistic approach in realistic cases.

The objective of the next sections is to set up a possibilistic
framework for efficient computations in metabolic flux
analysis.

Preliminaries for metabolic flux analysis
In biology, the metabolism of living cells is usually repre-
sented by a metabolic network encoding the elementary
biochemical reactions taking place within the cell [3].
These metabolic networks can be translated to a matrix N,
where rows are the m internal metabolites and columns
the n reactions. Assuming that these metabolites are at
steady state, mass balances can be formulated as follows
[11]:

where v = (v1, v2,...,vn)T is the n-dimensional vector of met-
abolic fluxes.

Hence, a (steady-state) flux vector v represents the meta-
bolic state of the cells at a given time, without any infor-
mation on the kinetics of the reactions; it shows the
contribution of each reaction to the overall metabolic
processes of substrate utilization and product formation.
Notice that as typically n is larger than m, the system (13)
is underdetermined, i.e. there is a wide range of stoichio-
metrically-feasible flux vectors. Assuming now that some
fluxes in v have been measured (denoted as vm), while the
rest remain unknown (denoted as vu), equation (13) can
be rearranged as follows:

As measurements are imprecise in practice, such measure-
ment imprecision can be incorporated as constraints:

where em represents measurements errors and  repre-

sents the actually measured flux value. In our approach,
the measurement uncertainty is translated into an a-priori

p d p d

d p d
( | ) :

sup ( )
sup ( )

A B A B
B
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∈
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possibility distribution for em from sensor characteristics.

Other approaches consider different choices, as discussed
below.

At this point, Traditional metabolic flux analysis (TMFA)
can be defined as the estimation of the flux vector satisfy-
ing (14) and compatible with the measurements (15). In
particular, TMFA can be formulated as a two step proce-
dure [34,35]: (I) analyze measurements consistency (and
detect gross errors) using chi-square tests, and (II) solve a
least squares problem to estimate the actual flux vector v:

where it is assumed that em are distributed normally with
a mean value of zero and a variance-covariance matrix F.

Since all the constraints are linear equalities, the analytic
solution of this minimization problem can be obtained,
resulting in the expressions to estimate vu and vm that are
typically seen in literature (e.g. [11,36]). However, with
this formulation TMFA has some important limitations:
(i) irreversibility constraints, or any other inequality con-
straints, cannot be considered, (ii) measurement errors
are assumed to be normally distributed, (iii) it only pro-
vides unique-valued flux estimation, and (iv) it needs a
high number of measurable fluxes to be of use – system
(14) has to be determined and redundant [37].

Several alternatives have been suggested to face those lim-
itations (Table 1). Quadratic programming solves the
least squares problem (16) allowing to include irreversi-
bility constraints (LS-MFA), but inherits the rest of draw-
backs (and the chi-square tests may lose validity). The flux
spectrum approach (FS-MFA) follows an interval
approach to overcome the limitations mentioned before,
but its estimations tend to be conservative because only
lower and upper bounds are used to represent measure-
ments uncertainty [38,39]. Monte Carlo has been also
used in the context of 13C-MFA (e.g. [40-42]), but rarely
in absence of isotopic data. Moreover, sometimes it has
been used incorrectly: Monte Carlo cannot be performed

just solving a quadratic programming problem for each
simulated set of measurements, because this introduce a
bias on the results. Anyway, the major drawback of Monte
Carlo is its high computational cost, which restricts its use
for large metabolic networks as an impractical number of
samples is required to assess probabilities within a reason-
able accuracy.

In the following sections we introduce a possibilistic
framework for MFA that brings several interesting fea-
tures: (i) it overcomes all the mentioned limitations of
TMFA, (ii) has the ability to detect, and handle, inconsist-
encies between measurements and model, and further-
more (iii) with high computational efficiency.

Results and discussion
Possibilistic MFA: problem statement
In this section the possibilistic framework for MFA flux
estimations is discussed. First, we define a set of time-
invariant constraints derived from the metabolism being
modelled. Then we incorporate the constraints imposed
by the measured fluxes, representing its uncertainty, by
means of auxiliar slack decision variables and a cost index.
In this way, the notion of "degree of possibility" is incor-
porated. Finally, it will be shown how (linear) optimisa-
tion problems will be able to settle queries about the most
possible fluxes, the possibility distributions, etc.

Model-based constraints

First, let us define a set of invariant constraints that every
steady-state flux vector must satisfy; they do not depend
on environmental conditions, do not change through
evolution, etc. [3]. In this work this model-based constraints,

denoted as , will be the stoichiometric relation-
ships (13) and irreversibility constraints, described by
means of inequalities:

where D is a diagonal nxn-matrix with Di, i = 1 if the flux i
is irreversible (otherwise 0).

min e F e

N v N v
m

1
m

u u m m

T ⋅ ⋅
⋅ = − ⋅

−

s.t. 
(16)

MOC

MOC =
⋅ =
⋅ ≥

⎧
⎨
⎩

N v 0

D v 0
(17)

Table 1: Features of Possibilistic MFA and alternative approaches

Feature TMFA LS-MFA FS-MFA Monte Carlo PMFA

Considers irreversible reaction x x x x
Usable in scenarios lacking measurements x o x
Includes a check of consistency x - - o x
Flexible description of measurements errors - x x
Richer estimations (not only point-wise) - x x
Computational efficiency x x x x

Possibilistic MFA (PMFA) is compared with four approaches for metabolic flux analysis, Traditional MFA (TMFA), MFA as a constraint least-squares 
problem (LS-MFA) and the flux spectrum approach (FS-MFA). Legend: (x) provided feature, (-) partially provided feature and (o) potentially 
provided feature.
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Other model-based constraints can be defined in an anal-
ogous way. For instance, elementary balances or degree of
reduction balances might be incorporated into (17) as
additional constraints [11]. It may be also possible to add
constraints based on standard Gibbs free energy changes
[43,44] or extracellular metabolites concentrations [45].

Incorporating the measurements
Estimating the non-measured fluxes would amount for
solving the above equations (17), where some of the ele-
ments in vector v are measured (vm). However, this simple
approach will be impractical in two very common situa-
tions:

• The measurements are very few, so the system has
many -possibly infinite- solutions.

• real measurements do not exactly satisfy the con-
straints due to measurements (and modelling) errors.
Therefore, no solution will be found. (For instance, an
unfeasible set results with the constraint v1 = v2 and the
measurements {v1 = 0.5, v2 = 0.5001}.)

Hence, the approach needs refinements to deal with a lack
of measurements and to introduce the "possibility" of
sensor errors and imperfect models. As shown below,
such difficulties can be overcame by the introduction of
slack variables and a cost index, enabling a grading of the
different candidate flux vectors as more or less "possible".

Possibilistic description of measurements

Each experimental measurement  can be described by

a constraint as follows:

where em is a decision variable that represents the intrinsic

uncertainty of the experimental measurements, i.e. the
discrepancy between the actual flux vm, and the measured

value . For convenience (see remark below), em is sub-

stituted by two non-negative decision variables, ε1 and μ1:

These decision variables δ = {ε1, μ1} relax the basic asser-

tion  = vm, conforming a possibility distribution in

( , vm) associated to some cost index Jm. Among differ-

ent possible choices, a simple -yet sensible- one is the lin-
ear cost index:

with α ≥ 0 and β = 0 (usually, if sensor error is "symmet-
ric", α and β should be defined to be equal).

Recalling the concepts introduced t vm he preliminaries

section, the interpretation of (19) and (20) may be: "vm =

 is fully possible; the more vm differs from , the less

possible such situation is". Indeed, the event A = {vm =

} ≡ {ε1 - μ1 = 0} will be fully possible – as

, achieved at ε1 = μ1 = 0, and then

π(A) = e-0 = 1. On the other hand, the possibility of the

event A corresponding to vm being different from  –

say, for instance, A = {vm =  + ρ} ≡ {ε1 - μ1 = ρ} – will

be given by . For instance, with a cost

index J(δ) = 5ε1 + 5μ1, and a measurement  = 0.1, the

possibility of the actual flux vm being vm = 0.2 is e-5*0.1 =

0.6065 ("quite" possible), and the possibility of vm = 1.1

is e-5*1 = 0.0063 ("almost" impossible).

Remark
As explained in a subsequent section, the weights α and β
should be defined related to each measurement's "a priori
accuracy".

A global cost index

Consider now a set of measurements 

with its associated slack variables δ1 = (ε1, μ1),... δm = (εm,

μm), and individual cost indices J1(δ1),... Jm(δm). The cor-

responding constraints will be called measurement-based
constraints, :

In order to have a possibility distribution, under the non-
interactivity assumption (6), the cost index is defined as:

where α and β are row vectors of sensor accuracy coeffi-
cients and ε1, ·μ1 correspond to stacking in vectors the
artificial variables from individual constraints.

The Possibilistic MFA problem

At this point, we can define the possibilistic MFA (PMFA)
problem by means of the cost index J (22) and the set of
constraints :

v̂m

v̂ v em m m= + (18)

v̂m

ˆ : ,v vm m= + + ≥e m e m1 1 1 1 0with (19)

v̂m

v̂m

Jm( )d ae bm= +1 1 (20)

v̂m v̂m

v̂m

inf ( )( , )d e m d= ∈ =
1 1

0A J

v̂m

v̂m

p d d( ) inf ( )A e A J= − ∈

v̂m

ˆ ( ˆ ,..., ˆ )v m = v vm1

MEC

MEC =
= + −

≥
⎧
⎨
⎩

ˆ

,

v v

0
m m 1 1

1 1

ee mm
ee mm

(21)

J J J= + + = ⋅ + ⋅1 1 2 2( ) ( )d d … aa ee bb mm1 1 (22)

CB

CB MOC MEC= ∪ (23)
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where the decision variables δ are the actual fluxes v = (vu,
vm), and the slack variables ε1 and μ1.

The cost index J reflects the log-possibility of a particular
combination of the decision variables, that is, the log-pos-
sibility of a particular flux vector v.

Remark
The PMFA will be cast as a linear programming problem;
this is the reason why the non-negative decision variables
ε1 and μ1 were introduced in substitution of em. However,
it can be formulated using any other optimization frame-
work. For instance, PMFA can be easily cast under a quad-
ratic programming framework. Throughout the paper
linear programming will be assumed due to its great com-
putational performance (solvable in polynomial time).
This supposes a great advantage when dealing with large-
scale metabolic networks. Nevertheless, an example using
quadratic programming will be described in a subsequent
section to point out the flexibility of the PMFA.

Example 1 – Problem statement

Consider the toy metabolic network depicted at the top of

Figure 1, and the corresponding constraints,  and

. Let us consider that the measurement of v2 is "very

accurate", that of v5 is moderately accurate and those of v3

and v4 are quite unreliable. The weights α and β associated

to the slack variables ε1, and μ1, can be defined in accord-

ance with this information: if we take α2 = β2 = 2, α5 = β5

= 0.5, and α3 = β3 = α4 = β4 = 0.15, the measurements are

depicted on the bottom in Figure 1, for supposed meas-

urements  = 9,  = 31,  = 30,  = 10.

Point-wise flux estimations
The simplest outcome of a PMFA problem is a point-wise
flux estimation: the minimum-cost (maximum possibil-
ity) flux vector. This problem can be conveniently cast as
the optimisation of a linear functional subject to linear
constraints.

According to (4), the maximum possibility (minimum-
cost) flux vector vmp corresponding to a given set of meas-
urements is obtained as the solution to the linear pro-
gramming (LP) optimization problem:

being its degree of possibility π(vmp) = exp(Jmin).

The obtained flux vector vmp contains the most possible

flux values compatible (consistent) with the model and
the measurements. A possibility equal to one must be
interpreted as the flux vector being in complete agreement
with the model and the original measurements. Lower

MOC

MEC

v̂2 v̂5 v̂3 v̂4

min J = ⋅ + ⋅aa ee bb mm1 1

s.t. CB
(24)

Example 1 – Problem statementFigure 1
Example 1 – Problem statement. A toy metabolic network and the corresponding constraints are given in the top. In the 
bottom, a possibilistic distribution representing a set of single measurements is depicted.
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values of possibility imply that vmp corresponds to fluxes

vm deviated from the measurements .

Notice that as π(vmp) = π( ), it can be interpreted as the

"a priori" possibility of encountering the measurements

; so if it is low, this implies that either (a) there is a

gross error in the measurements, (b) there is an error in
the model, or both. Therefore, the maximum possibility
can be used to evaluate consistency and detect errors
(inconsistencies between data and models). We will come
back to this point in a subsequent section.

Example 1, continued

Consider again the model and the measurements given in
Figure 1. The maximum possibility flux vector resulting
from (24) is vmp = (0.75, 9, 30.25, 8.25, 31, 39.3), with a

possibility of e-0.3 = 0.74. The most possible flux vector
being not fully possible (peak value not equal to 1) indi-
cates that the measurements and the model are not in
complete agreement. Indeed, as a matter of fact, the

model says that v2 - v4 = v5 - v3, but  = -1 and

 = 1. Should the measurements had been fully

compatible with the constraints imposed by the meta-

bolic network – i.e.  = 10,  = 30,  = 30 and  =

10 – the maximum possibility flux vector would have
been vmp = (0, 10, 30,10, 30, 40), with a possibility of

π(vmpc) = 1.

Notice also that the possibility depends on the reliability
associated to each measurement. For instance, if all the
measurements were supposed to be more reliable – say α'
= 10·α and β' = 10·β – the possibility distribution func-
tions would be narrower. The interpretation of the new
coefficients would, therefore, be that the same deviation
from the fluxes of maximum possibility will be now be
considered as a less possible fact.

Possibility distributions as flux estimations
Clearly, a point-wise flux estimation is limited in a situa-
tion where multiple flux values might be reasonably pos-
sible. To face these situation, marginal and conditional
possibility distributions (and intervals) can be obtained,
again, by solving linear optimisation problems. These
provide a much more informative flux estimation than a
point-wise one, such as the maximum possibility flux vec-
tor, or the interval of minimum-maximum possible val-
ues in [38].

These flux estimations, which are illustrated in Figure 2,
wil be presented along this subsection.

Marginal possibility distributions
Marginal possibility distributions (2) can be easily plotted
and give a valuable information for the end user: they
show, and rank, the possible values for each flux in the
network.

The possibility of vi being equal to a given value f, π(vi = f

∩ ), is computed by simply adding a constraint to
(24):

v̂ m

CB

v̂ m

ˆ ˆv v2 4−

ˆ ˆv v5 3−

v̂2 v̂5 v̂3 v̂4

CB

min J

v fi

= ⋅ + ⋅

=
⎧
⎨
⎩

aa ee bb mm1 1

s.t. 
CB (25)

Possibilistic flux estimationsFigure 2
Possibilistic flux estimations. (Left) the figure shows possibilistic distributions representing the original single measure-
ments, and the maximum possibility flux estimation and the distribution of marginal possibility given by PMFA. (Right) the figure 
shows the distributions of marginal and conditional (a posteriori) possibility. The flux intervals for conditional possibilities of 
0.8, 0.5 and 0.1, and the maximum possibility estimation, are also depicted in a box-plot chart.
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Hence, plotting the marginal possibility for a range of
fixed given values f (taken within a pre-specified range)
will provide the marginal possibility distributions that be
interpreted as the "distribution of the possible values for
each flux in the network, given the measurements" (see
Figure 2, left).

Notice that "cuts"  of a possibility distribution,

containing those values of vi with a marginal possibility

higher than γ can be obtained solving two LP problems:

This provides a highly efficient procedure to compute a
possibility distribution: compute "cuts" of possibilities
between 0 and 1, say, 0.1, 0.2, etc. (computing the mar-
ginal possibility of all the fluxes in the network by means
of a grid of points is linear in the number of grid points
and polynomial in the number of fluxes). This approach
is better than defining a range of values f and computing
its possibility with (25) because it avoids the problem of
determining the most convenient step size and bounds of
the flux (which, usually, are not known a priori).

Conditional possibility distributions
Using the definition given in the preliminaries (12), the
conditional possibility distribution of a flux vi can be com-
puted as follows:

Remember that conditional distribution can be obtained
normalising the marginal possibility distribution to a
maximum equal to one (see Figure 2).

Conditional possibility may be understood as an a posteri-

ori possibility: π(vi = f| ) is the possibility of vi having

the value f, if we assume that  is actually certain, i.e.
that the model and the measurements are correct.

(A posteriori) Possibilistic intervals

In analogy to (26), the interval of flux values 

with a degree of conditional (a posteriori) possibility
higher than can be obtained solving two LP problems:

The upper bound would be obtained by replacing mini-
mum by maximum.

These possibilistic intervals have a similar interpretation
to "confidence intervals" ("credible intervals") in Baye-
sian statistics, providing a concise flux estimation that can
be represented by means of a box-plot chart (see Figure 2,
right).

Example 1, continued
With the measurements in Figure 1, the resulting marginal
possibility distributions for each flux are plotted in Figure
3A. They show that, for instance, the most possible value
of v1 is 0.75 (possibility of 0.74), that v1 being 2.25 is quite
possible, but that v1 bigger than 10 is almost impossible
(possibility lower than 0.05). The possibility distributions
also reflect the reliability of the estimation of each flux:
the estimation of v6 is less reliable than the one of v1 or v2,
since it has a wide range of highly possible values.

Notice too that the uncertainty on the measurements is
often strikingly reduced through the flux estimation. For
instance, the estimation of v4 – whose measurement was
quite unreliable a priori – has been significantly
improved, once model constraints and other measure-
ments have been incorporated. This reflects the already
noticed fact that the metabolic network structure greatly
constrains the possible values of fluxes for a given, typi-
cally small, set of measured flux values. The plots of mar-
ginal possibility can also detect multiple flux vectors with
maximum possibility (possibility distribution functions
with flat top). Figure 3B depicts the maximum possibility
flux estimation and three possibilistic intervals by means
of a box-plot chart. The intervals point out that, for
instance, the highly possible a posteriori values of v5 are
those in [30.75, 31] (possibility greater than 0.9) and that
those in [29.5, 32] are also quite possible (possibility
greater than 0.5), while those outside [27, 34.5] are
almost impossible as their a posteriori possibility is lower
than 0.1.

Possibilistic MFA: Refinements
Now that the basics of the PMFA framework have been
introduced, some refinements will be discussed.

A better description of measurement's uncertainty
The formulation used above to describe the uncertainty of
the experimental measurements might be considered
somehow limited in some applications.

[ , ], ,v vi
m

i
M

g g

v v
J

v v
J

i
m

i

i
M

i

,

,

min
log

max
log

g

g

g

g

=
< −

⎧
⎨
⎩

=
< −

⎧
⎨
⎩

s.t. 

s.t. 

CB

CB
(26)

p
p

p( | )

( )
( )v f

vi f
f

i = =
= ∩ ∈⎧

⎨
⎪

⎩⎪
CB

CB

CB
CB

0 otherwise

(27)

CB

CB

[ , ], ,v vi
m

i
M

g g

v v

J

i
m

i, min

log ( ) log

g

p g

=

− < −
⎧
⎨
⎩

s.t. 
CB

CB

(28)
Page 10 of 22
(page number not for citation purposes)



BMC Systems Biology 2009, 3:79 http://www.biomedcentral.com/1752-0509/3/79
Fortunately, it is very easy to add new slack variables, and
modify the  (23) and the cost index (22), allowing to
work with possibility distribution functions of different
characteristics.

As an example, the constraints (29) and cost (30) below
describe an interval measurement plus some possibility of
outlier measurements:

and

The possibility of  is one and

the possibility of the actual flux being vm being out of the

referred interval depends on the cost index weights (α and

β).

For instance, a band with possibility equal to one can be
used to account for systemic errors in measuring a particu-
lar flux, and a couple of additional slack variables may be
defined to account for the decreasing possibility of random
errors. These kind of representation of measurement
uncertainty will be illustrated in subsequent examples.

Remark
Notice that more slack variables can be added to achieve
a more complex representation of the measured flux
uncertainty. In fact, any convex representation of the log-
possibility uncertainty can be approximated if a sufficient
number of slack variables are incorporated (ε1, μ 2, ε2,
μ2,...). Details are omitted for brevity.

Considering uncertainty in the model structure
Until now, the model-based constraints (23) – the stoichi-
ometric relationships, reaction's irreversibility, or any
other – have been considered as hard constraints; only
those flux vectors v that exactly satisfy them could be fea-
sible solutions. However, these constraints can be "sof-
tened" via suitable slack variables to consider uncertain
knowledge. Then, these additional slack variables may be
used in a cost index to generate a possibility distribution.

Consider, as an example, an equality restriction a = b. A
relaxed ("softened") version of such restriction may be
written as:

with  and ν being slack variables penalised in an optimi-
sation index J = f(, ν), typically with linear cost index
terms, γ + τυ, in an analogous way to the discussion on
uncertain measurements.

Notice also that a "softened" inequality restriction is noth-
ing but an equality one with no penalisation on one of the

CB

ˆ

:

,

v v

with

m m

max

max

= + − + −
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≤ ≤

≤ ≤

e m e m
e m
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m m

1 1 2 2

1 1

2 2

2 2

0

0

0

(29)

J = +ae bm1 1 (30)

v v vm m
max

m
max∈ − +[ , ]e m2 2

a b= + − ≥² ²n n, , 0 (31)

Example 1 – Flux estimationFigure 3
Example 1 – Flux estimation. PMFA estimations were obtained for the example described in Figure 1. (A) The measured 
values are depicted with dashed lines. The computed possibility distributions are depicted with solid lines. (B) The Figure 
shows the flux intervals of conditional possibility 0.8 (box), 0.5 (thick line) and 0.1 (narrow line) and the maximum possibility 
flux estimation (square and circle for non-measured and measured fluxes, respectively).
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slack variables above. For instance a ≤ b + ε can be
expressed as a = b + ε - μ with free μ.

Such softened model constraints may be used to roughly
incorporate imprecision in the model arising, for
instance, from non-compliance with the pseudo-steady-
state assumption, partial unbalance of some metabolites
or uncertain yields. Although these issues require further
research, let us outline some preliminary ideas below.

Relaxing the pseudo-steady state assumption

Equation (13) derives from the dynamic mass balance
around the internal metabolites c, where it is assumed

that  ≈ 0 and that the term μ·c is negligible (μ denotes

the growth rate). Adding slack decision variables to (13),
as it has been explained, makes it possible to relax this
assumption.

Partial unbalance of metabolites
Sometimes, a metabolite cannot be assumed to be bal-
anced because there are reactions producing or consum-
ing this metabolite that have not been taken into account
in the network; for instance, this is often the case for the
cofactors, ATP, NADP, etc. This unknown consumption/
production can be represented by means of slack variables
(e.g.  and υ) if some interval limits (e.g. max and υmax) are
provided.

Uncertainty in stoichiometric yields
In some cases, the value of a yield coefficient is not exactly
known. This is usually the case of the yield coefficients of
lump reactions used to represent biomass synthesis. Let vr
be the flux through a reaction with an uncertain yield Yi, r
for the metabolite i. The row corresponding to this metab-
olite in (13) can be rewritten as:

If it is known that  and vr is irreversible,

equation (32) can be substituted by two constraints:

However, if the flux vr is reversible, inequalities in (33)
cannot be set up, and the approach is no longer applica-
ble. Integrating modal interval arithmetic [46] in the pro-
posed framework might be a possible option, under
research at this moment.

Illustrative examples of other features of PMFA
Other features of Possibilistic MFA (PMFA) will be briefly
illustrated using the simple metabolic network in Figure
1.

Example 2: Errors detection in measurements and model

As earlier mentioned, the value of the peak possibility in
the resulting flux distribution provides an indication of

the agreement between the model ( ) and the meas-

urements ( ). A low degree of possibility means that
the model and the measurements are inconsistent. That is,
that there is not any flux vector "near" the measured val-
ues satisfying the model-based constraints. Therefore, if
the the maximum possibility flux vector has a low value,
one must assume that either (a) there is an important
error in one or more measurements, (b) there is a relevant
error in the model (e.g. a mass balance is not closed, or a
metabolite is not at steady state), or both.

If a high inconsistency (low possibility) is detected, it is
possible to investigate what is causing it, and thus correct
the measurements or improve the model. Following a
straight approach, we can remove one measured flux at a
time and perform the flux estimation to determine if the
removed measurement was causing the low possibility. If
this is the case, we may consider the following alterna-

tives: (a) consider that  is a totally unreliable measure-

ment and, thus, accept the flux estimation inferred from

the others measurements, (b) obtaining either  again,

or a different measurable flux which could provide addi-

tional information, (c) consider  a reliable piece of

data and, hence, conclude that there is an error in the
model or its assumptions. In case (c), a similar approach
can be used to investigate which particular model-based
constraint is causing the low possibility – by "softening"
the suspicious constraints one at a time.

A simple example of the procedure just described is
shown in Figure 4. Initially, a PMFA estimation using all
the measured fluxes was performed, obtaining a maxi-

mum possibility flux vector with low possibility, π(v) =

π( ) = 0.15. If the estimation is repeated removing the

flux , the maximum possibility does not increase; how-

ever, when the estimation is performed removing , the

maximum possibility is significantly higher (0.7). This

suggests that there was a large error in the value , or an

dc
dt
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error in the model related to the balance around metabo-
lite C which involved fluxes v2, v3 and v6.

Example 3: Scenario lack of data
One of the features of PMFA is that it can be used even if
there is a lack of measurements; i.e. even if (14) is under-
determined or not redundant [37].

To point this out, let us continue with our example assum-
ing now that only two fluxes are measured (an under-
determined case). PMFA flux estimations, the marginal
possibility distributions and the a posteriori intervals, are
shown in Figure 5. Notice that crisp flux estimations will
only be obtained if the irreversibility constraints – or
other inequalities – are able to "bound" the underdeter-
minacy of (14). Interestingly, our experience show that
this is often the case for medium size networks. Moreover,
if this is not the case, the possibilistic flux estimation will
be less precise – large intervals and "wide" distributions –
but still reliable, i.e. the estimation will always be as pre-
cise as allowed by the available measurements and knowl-
edge.

Example 4: Using quadratic programming

To show how PMFA can be cast within other optimisation
frameworks, an example using quadratic programming

will be discussed. We define  as  = vm + em and J

= ·W·em, where W is a diagonal matrix of weights.

Hence, we have  for each measure-

ment, i.e. measurements uncertainty is represented as a
quadratic possibility distribution.

Let us continue with our example using the measurements
of Figure 1, but representing them with the quadratic for-
mulation just introduced. The original possibility distri-
bution of single measurements (dashed lines) and the
possibility distributions computed with PMFA (solid
lines) are depicted in the Figure 5. Notice that results are
similar to those obtained in the previous example (Figure
1), where the standard linear programming framework
was used (even if additional auxiliar variables 2, μ2, etc.
were not used). However, the qualitative similarity
between the results makes the author think that, in most
cases, the linear programming setup is expressive enough
and much more efficient than quadratic or other more
complex optimization cases.

Example 5: Comparison with other methods
This example compares PMFA with traditional MFA and
some of its extensions. We continue using the network

MEC v̂ m

em
T

p( ) ( )v em
w v vi m m= − − 2

Example 2 – PMFA to detect errors in measurements and modelFigure 4
Example 2 – PMFA to detect errors in measurements and model. The metabolic network depicted in Figure 1 is 
used, assuming that five fluxes have been measured: v2, v3, v4, v5 and v6 (dotted line). The possibility distributions for each flux 

are depicted in three cases: using all the measurements (deep blue), removing the flux  (red) and removing the flux  (light 

green).
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depicted in Figure 1, and perform the estimations with
PMFA, Traditional MFA (TMFA), MFA as a constraint,
least-squares problem (LS-MFA) and the flux spectrum
(FS-MFA).

To show that PMFA is able to represent the measurements
in a flexible way, we assume that errors in v2 and v3 are
non-symmetric, and we add a band of uncertainty to
account for systemic errors (Figure 6).

Inconveniently, errors have to be approximated with a
normal distribution so that TMFA and LS-MFA can be
used (see preliminaries). For the estimations with FS-MFA
we represent the measurements with the interval of 95%,
or 2σ (see [38]). All the results are depicted in Figure 6.
Notice that TMFA assigns a negative value to an irreversi-
ble flux, v1, since it is not taking these constraints into
account – this was predictable, but it must be highlighted

because TMFA is still being widely used in the literature.
The results also point out that the possibilistic distribu-
tion (and intervals) are much more informative than the
point-wise estimations of TMFA and LS-MFA, or the inter-
vals of FS-MFA. Basically, point-wise estimations fail
when several flux values reasonably possible, whereas the
flux spectrum interval tend to be conservative. Further-
more, remember that TMFA and LS-MFA cannot be used
in scenarios lacking data, such as example 3, where PMFA
was shown to be valuable.

To complete this perspective, the next section will discuss
a comparison between PMFA and Monte Carlo
approaches.

Example 6: Comparison with Monte Carlo
Continuing with our example, now measurements are
represented (a) in possibilistic terms (linear case) and (b)

Examples 3 and 4Figure 5
Examples 3 and 4. Both examples use the simple model described in Figure 1, assuming that some fluxes are measured 
(dashed lines). (A) (C) Possibility distributions of measured and non-measured fluxes (solid line). (B) (D) Flux intervals for con-
ditional possibilities of 0.8 (box), 0.5 (thick line) and 0.1 (narrow line) and the maximum possibility flux estimation (squares and 
circles for non-measured and measured fluxes, respectively).
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with a "similar" probabilistic formulation assuming that
errors are normally distributed. Both representations are
depicted in Figure 7 (dashed lines). Then, we performed
two flux estimations using (a) PMFA and (b) Monte Carlo
simulations (1.7 millions of combinations of values of
measured fluxes were generated, taken into account their
normal distribution). The conditional possibility distribu-
tions and the histograms resulting from PMFA and Monte
Carlo, respectively, are depicted in Figure 7. Even if prob-
ability and possibility are not truly equivalent, a reasona-
ble similarity between the results from both approaches
exists.

Notice also that this is a simple case where Monte Carlo
can be applied. Nonetheless, its worst performance is
clear: the cost of computing the possibility distributions is
polynomial in the number of fluxes (as shown above),
whereas the cost of a Monte Carlo approach grows expo-
nentially with the number of independent decision varia-
bles.

Larger-scale Example: C. glutamicum
In this section we apply Possibilistic MFA (PMFA) to a
medium-size example. For illustrative purposes, we have
chosen a very well-know metabolic model of Corynebacte-
rium glutamicum.

Metabolic network model
The metabolic network of C. glutamicum has been taken
from [47] and is a slight variation of the one originally
constructed in [48,49]. The reactions considered in
describing the biochemistry of the primary metabolism of
C. glutamicum necessary to support lysine and biomass
synthesis from glucose are given in the additional file 1. A
reaction of ATP dissipation is included in the network, so
that the ATP balance could be maintained, without actu-
ally constraining the flux space. On the contrary, the co-
factors NADP, NAD and FAD are supposed to be bal-
anced. The reaction for biomass formation is an approxi-
mation using as reactants those amino acids that explicitly
appear in the network and the precursors of the other
amino acids synthesized by C. glutamicum.

PMFA setting

The stoichiometric relationships, embedded in a 36 × 40
stoichiometric matrix, and the irreversibility of certain
reactions, embedded in a 40 × 40 diagonal matrix, define

our model-based constraints ( ) according to (17).
Both matrices are given in the additional file 1.

Experimental measurements
Experimental data of a batch fermentation of C. glutami-
cum cultured on minimal glucose medium has been taken

MOC

Example 5 – Comparison of PMFA and alternative methodsFigure 6
Example 5 – Comparison of PMFA and alternative methods. We use the model described in Figure 1 assuming that v2, 
v3, v4 and v5 have been measured (depicted in grey). The flux estimation was performed with four methods: PMFA, Traditional 
MFA (TMFA), MFA as a constraint weighted least-squares problem (LS-MFA) and the flux spectrum approach (FS-MFA). The 
marginal distribution computed with PMFA are depicted in blue, the point-wise estimation of TMFA and LS-MFA are depicted 
in light and dark grey respectively, and the interval estimation of FS-MFA in green. In (B) the maximum possibility flux estima-
tion and the flux intervals for conditional possibilities of 0.8 (box), 0.5 (thick line) and 0.1 (narrow line) are compared with the 
estimations given by TMFA, LS-MFA and FS-MFA.
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from [48]. There, the growth rate and the fluxes (produc-
tion/consumption rates) of the external metabolites – lac-
tate, acetate, glucose, O2, CO2, NH3, lysine and trehalose
– were experimentally measured. Since the accumulation
of lactate and acetate was negligible, their flux is always
zero in this case study. The measured fluxes vGLC (1), vO2
(34), vNH3 (35), vLY (37), vThre (38) and vCO2 (39) and the
growth rate vBio (36), and also their standard deviations,
are given in Figure 8.

PMFA setting

Using the data in Figure 8, we have built a possibilistic
representation of single measurements defining conven-
ient auxiliar variables and weights. The criterion to choose

the weights was: full possibility for vm ∈  ± σ/2 and pos-

sibility 0.5 for those in ± σ. The values in ± 2·σ have pos-

sibility 0.1 (σ denotes standard deviation. If errors are
assumed to be normally distributed, these levels corre-
spond to the probabilistic confidence intervals of 38%,
68% and 95%, respectively). The resultant decision varia-
bles and weights define our measurement-based con-
straints ( ) according to (21). These possibilistic
representations are depicted in Figure 8.

Possibilistic flux estimation of C. glutamicum
We used all the available measurements – vGLC (1), vO2
(34), vNH3 (35), vLY (37), vThre (38), vCO2 (39) and vBio (36)

– to obtain the maximum possibility flux vector (results
given in the additional file 1). The flux vector had a degree
of possibility 0.38, which could be considered "low" if
one considers that a significant degree of uncertainty was
already being taken into account (table 1). We then
obtained the marginal possibility distributions for each
flux, which inspection indicated that the low possibility
was almost completely caused by only one measured flux,
vNH3 (35). This suggests that this measurement was inac-
curate, or that its standard deviation was underestimated.
Interestingly, this flux was indeed the most uncertain one
in the original dataset (its standard deviation was a huge
44 mM/h for a nominal value of 64.8 nM/h).

As a results of this analysis – which is a rough example of
the procedure mentioned in a previous section – we
decided to remove the measurement and repeat our calcu-
lations. As expected, this time we obtained a maximum
possibility flux vector with a similar shape, but higher
possibility (0.88). The marginal possibility distributions
are depicted in Figure 9A, and the maximum possibility
flux estimation and the flux intervals are depicted in Fig-
ure 9B. Numerical data are given in the additional file 1,
where they can be compared with those obtained if the
measurement of vNH3 is used.

Possibilistic flux estimation lacking measurements
We performed a flux estimation using only data of three
extracellular fluxes that can be measured with standard

v̂m

MEC

Example 6 – Comparison of PMFA and Monte Carlo methodsFigure 7
Example 6 – Comparison of PMFA and Monte Carlo methods. We use the simple model described in Figure (3) 
assuming that v2, v3, v4 and v5 have been measured. (1) PMFA: the measurements represented in possibilistic terms using linear 
terms are depicted in grey, and the possibility distributions calculated from them in blue (thin lines for marginal distributions 
and thick lines for conditional ones). (2) Monte Carlo approach: the measurements represented assuming that errors are nor-
mally distributed are depicted in grey and the histograms are those resulting from the Monte Carlo simulations.
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equipment: vGLC (1), vCO2 (39) and biomass vBio (36). In
this case, the obtained maximum possibility flux vector is
fully possible. This flux vector and the flux intervals are
depicted in Figure 10. Remarkably, even if only three
fluxes were measured, there was a small range of flux vec-
tors with an a posteriori possibility higher than 0.8.
Numerical results are given in the additional file 1.

Possibilistic flux estimation with uncertain model
As explained above, we can "soften" the model-based con-
straints to relax the pseudo-steady state assumption. As
example, we assumed a degree of uncertainty around all
the mass balances introducing decision variables 1 and υ1
and weights γ1 = τ1 = 2 (see Figure 8). Hence, flux vectors
which imply small accumulations of some metabolites
will be accepted, yet considered less possible.

It could be also stated that the metabolic network used
herein, the one introduced by Vallino et al., relies on an
unrealistic assumption: that co-factors NADP, NAD and
FAD are balanced [50,51]. To avoid this, we can remove
these metabolites from our stoichiometric matrix or, as an
alternative, use the expressivity of the possibilistic frame-
work to allow a certain degree of unbalance for these
metabolites. Just as example, herein we assumed that
cofactors may be unbalanced with some limits (say, 30
mM/h for NADP/NADPH and 15 mM/h for FAD/FADH

and NAD/NADH). This "knowledge" can be easily incor-
porated into our model defining the convenient auxiliar
variables and weights (as explained above).

At this point, PMFA was performed in three scenarios: (a)
the model-based constraints are not relaxed (reference
case) (b) the pseudo-steady state assumption is relaxed
and NADP/NADPH is allowed to be unbalanced, and (c)
the pseudo-steady state assumption is relaxed and the
three cofactors – NADP/NADPH, FAD/FADH and NAD/
NADH – are allowed to be unbalanced. The marginal pos-
sibility distributions obtained in each case are compared
in Figure 11, where it can be observe how the model
uncertainty is translated into the flux estimations; con-
sider this uncertainty results in less precise flux estima-
tions, given the less reliable model equations.

Conclusion
In this paper we have discussed a possibilistic framework
for the estimation of the metabolic fluxes shown by cells
at given conditions given.

Considering ordinary constraint-satisfaction problems,
metabolic fluxes fulfilling a set of model-based con-
straints and compatible some experimental measure-
ments are "possible", otherwise "impossible". In this
paper, this idea is refined to cope with uncertain knowl-

Experimentally measured fluxes during a batch fermentation of C. glutamicumFigure 8
Experimentally measured fluxes during a batch fermentation of C. glutamicum. The second column contains the 
experimental measurements and their standard deviation taken from [48]. The possibility distribution representing each single 
measurement is depicted in the third column, and the used weights are given in the last one.
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Possibilistic flux estimation for C. glutamicumFigure 9
Possibilistic flux estimation for C. glutamicum. The measured fluxes are vGLC (1), vO2 (34), vNH3 (35), vLY (37), vThre (38) and 
vCO2 (39) and vBio (36). (A) Marginal possibility distributions for each flux are depicted. The original distribution of single meas-
urements appear in grey (thick line). (B) The maximum possibility flux estimation (circles and squares for measured and non-
measured fluxes, respectively) and the flux intervals for conditional possibilities of 0.8 (box), 0.5 (thick line) and 0.1 (narrow 
line) are depicted. All fluxes in mM/h.
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edge – in the form of measurements errors or imperfect
models – by introducing the notion of "degree of possibil-
ity", which enables grading the candidate flux values as
more or less possible. Then, possibilistic MFA is able to
query the flux vector of maximum possibility. Moreover,
when multiple flux vectors might be reasonably possible,
the marginal and conditional possibility distributions for
each flux can be computed.

Possibilistic MFA overcomes several limitations of tradi-
tional MFA and some of its extensions. It considers meas-
urements uncertainty in a flexible way (e.g. non-
symmetric error or a band of uncertainty due to systemic
error) and also model imprecision, and it is reliable even
if only a few fluxes are measurable (a common scenario).
Possibilistic MFA also computes possibility distributions
(and intervals) which are more informative than point-
wise estimations when multiple flux values might be rea-
sonably possible. These distributions are also better than
the intervals provided by the flux spectrum, or other
methods giving upper and lower bounds for the fluxes. In
addition, Possibilistic MFA has the ability to detect, and
handle, inconsistencies between measurements and
model. Finally, it must be remarked that Possibilistic MFA
estimations have been cast as linear optimisation prob-
lems, for which widely-known and efficient tools exist (a
MATLAB script solving example 1 is given in the addi-
tional file 2 to illustrate this point). This great computa-

tional performance makes the methodology capable of
dealing with large-scale or even genome-scale metabolic
networks.

It must be noticed that there is a challenge when estimat-
ing the fluxes in large-scale networks because there may be
diffierent flux vectors compatible with the few available
measurements [52]. Interestingly, the proposed method-
ology is still of use in this situation: possibilistic MFA will
detect all these flux vectors that are equally possible (or
even similarly possible) and depict them by means of pos-
sibilistic distributions or intervals (e.g. example 3). Unfor-
tunately, if there is a wide range of candidates, the
estimation may be sometimes little informative (but at
least we can be sure that it is reliable, because all the flux
vectors compatible with model and measurements are
captured). One strategy to face this difficulty consists of
using a rational hypothesis to promote certain flux vector
among those that are equally possible. For instance, it can
be assumed that cell behaviour has evolved to be optimal
in some sense, so that the fluxes are optimally regulated
depending on the given environmental conditions, and
then invoke this principle to choose particular flux vectors
[3,7,9]. There might be still alternate optima, but the
approach will reduce the range of possible flux vectors.
Notice that this optimality principle, or any other hypoth-
esis, might be incorporated into the possibilistic frame-
work as far as they are encoded in in the form of a cost

Possibilistic flux estimation for C. glutamicum lacking measurementsFigure 10
Possibilistic flux estimation for C. glutamicum lacking measurements. In this case the measured fluxes are only vGLC 
(1), vCO2 (39) and vBio (36). The maximum possibility flux estimation (circles and squares for measured and non-measured fluxes, 
respectively) and the flux intervals for conditional possibilities of 0.8 (box), 0.5 (thick line) and 0.1 (narrow line) are depicted. 
All fluxes in mM/h.
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index (but sometimes it will not be the case or, in other
cases, its optimization will not be computationally sim-
ple). This point requires further work.

Further extension may also address the adaptation of the
ideas introduced herein to metabolic flux analysis with
data from labelling experiments (13C-MFA) [12-14].
Extracellular dynamics could be also taken into account
incorporating measurements in different time instants
[38]. Finally, we are currently developing a software that
implements the Possibilistic MFA methods and its future
extensions, which will be freely available for academia.

In summary, this papers introduces a unifying framework
for flux estimation and (possibilistic) evaluation of con-
sistency that is flexible, usable in scenarios lacking data,
highly informative, and computationally efficient. In our
opinion, the combination of computational efficiency
and flexibility of the assumptions is a distinctive advan-
tage with respect to other approaches which either may
rely on stronger assumptions (chi-squared distributions,
interval-only descriptions, absence of irreversibility), or

be only data-based (so they do not incorporate, say, stoi-
chiometric model balances), or provide only point-wise
estimates (of flux or consistency), or be computationally
intensive (multi-variate integration in a general Bayesian
estimation problem).
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Additional material

Additional file 1
Realistic example. Additional material related with the experimental case 
study with C. glutamicum. This includes a list of reactions and metabo-
lites, the stoichiometric matrix and measurements data. Numerical results 
of the four examples described in the article are also included.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-79-S1.xls]

Possibilistic flux estimation for C. glutamicum with uncertainty in the modelFigure 11
Possibilistic flux estimation for C. glutamicum with uncertainty in the model. The marginal possibility distributions 
for each flux are depicted in three cases: (a) the model-based constraints are not relaxed (red) (b) the pseudo-steady state 
assumption is relaxed and NADP/NADPH is allowed to be unbalanced (deep blue), and (c) the pseudo-steady state assumption 
is relaxed and the three cofactors – NADP/NADPH, FAD/FADH and NAD/NADH – are allowed to be unbalanced (light 
green). The original distribution of single measurements are depicted with dashed lines. All fluxes in mM/h.
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