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Background: Asthma is the most frequent cause of hospitalisation among children;
however, little is known regarding the effects of asthma on immune responses in children.

Objective: The present study aimed to evaluate cytokine responses of peripheral blood
mononuclear cells (PBMCs), PBMC composition and lung function in children with and
without asthma.

Methods: Using a case-control design, we compared 48 children with asthma aged 3-11
years with 14 age-matched healthy controls. PBMC composition and cytokine production
including interferon (IFN)-g, interleukin (IL)-1b, IL-5 and lL-6 following stimulation with
rhinovirus-1B (RV1B), house dust mite (HDM) and lipopolysaccharide (LPS) were
measured. Lung function was assessed using impulse oscillometry and nitrogen
multiple breath washout.

Results: The frequency of group 2 innate lymphoid cells were significantly higher in
asthmatics and PBMCs from asthmatics had deficient IFN-g production in response to
both RV1B and LPS compared with controls (P<0.01). RV1B-induced IL-1b response
and HDM-stimulated IL-5 production was higher in asthmatics than controls (P<0.05). In
contrast, IL-1b and IL-6 were significantly reduced in response to HDM and LPS in
asthmatics compared to controls (P<0.05). Children with asthma also had reduced
pulmonary function, indicated by lower respiratory reactance as well as higher area of-
reactance and lung clearance index values compared with controls (P<0.05).

Conclusion: Our study indicates that children with asthma have a reduced lung function
in concert with impaired immune responses and altered immune cell subsets. Improving
org June 2021 | Volume 12 | Article 6646681
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our understanding of immune responses to viral and bacterial infection in childhood
asthma can help to tailor management of the disease.
Keywords: asthma, children, innate immune response, innate lymphoid cells, lung function
INTRODUCTION

Asthma is the most prevalent chronic childhood condition (1, 2).
Children with asthma frequently experience exacerbations, and
the majority of exacerbations in children are associated with viral
infections (3). While rhinoviruses (RVs) are the most frequent
precipitants of virus-associated exacerbations in children (4),
asthma exacerbations may also be triggered by invasive bacterial
infection (5). Indeed, there is evidence showing strong
associations between levels of household lipopolysaccharide
(LPS) and asthma exacerbations (6–8) and reduced lung
function (7). However, in children with asthma, a greater
understanding of the mechanisms underlying the immune
response to different stimuli, and factors contributing to
increased risk of infection are required.

There are numerous immune cells, including neutrophils,
eosinophils, natural killer (NK) cells, dendritic cells (DCs),
lymphocytes as well as structural cells such as epithelial cells,
that may contribute to an altered immune response in childhood
asthma. Recent studies have demonstrated that innate lymphoid
cells (ILCs) also have a key role in the development of virus-
induced asthma exacerbations (9). Group 2 ILC (ILC2) secrete
interleukin (IL)-5, IL-9 and IL-13 in response to IL-25 and IL-33
stimulation (9, 10), and circulating ILC2 levels are increased in
adults with asthma. However, the role of ILC2 in childhood
asthma is less clear.

The aims of this study were to compare cytokine responses of
peripheral blood mononuclear cells (PBMCs) (including
interferon (IFN)-g, IFN-l, IL-1b, IL-5 and IL-6) stimulated
with RV1B, LPS and house dust mite (HDM) in asthmatic
children with healthy controls and to characterise immune cell
subsets (ILCs, eosinophils, neutrophils, lymphocytes, NK cells
and DCs) in whole blood. We further investigated the
relationship between immune cell subset populations and
PBMC cytokine responses. Additionally, we aimed to compare
the lung function parameters between children with and
without asthma.
MATERIALS AND METHODS

Study Design and Participants
This was an observational, case-control study including children
with asthma aged 3-11 years (n=48) and healthy, age-matched
controls with no previous diagnosis of asthma or history of
respiratory conditions (n=14). Children with asthma were
recruited via attendance to the emergency department or
admission to the John Hunter Children’s Hospital and
Maitland Hospital, following an exacerbation of asthma. This
study includes baseline data obtained from asthmatic children
org 2
participating in a 26-week clinical trial evaluating the effects of a
high fruit and vegetable diet on asthma exacerbation
(ACTRN12615000851561). Healthy controls were recruited via
flyers placed in community centres and at the University of
Newcastle (UoN). The study was conducted at the Hunter
Medical Research Institute (HMRI), Newcastle, Australia,
between September 2015 and March 2019. All participants
were screened for eligibility prior to enrolment.

Inclusion criteria for children with asthma were physician
diagnosis of asthma; recent exacerbation/s (≥1 exacerbation in
past 6 months or ≥2 in the past 12 months) and stable asthma at
the visit. Exclusion criteria included other respiratory conditions,
diagnosed intestinal disorders, or consumption of nutritional
supplements (in previous 4 weeks). Inclusion and exclusion
criteria were the same for the control group, with the
exception that controls had no history of asthma or wheeze.
All subjects were consuming a low fruit and vegetable diet (≤3
serves of fruit and vegetables per day (assessed over past week).
The study was approved by the HNEH Ethics Committee (15/06/
17/4.03) and registered with the UON Human Research Ethics
Committee. Written informed parental consent and child assent
(where applicable), was obtained prior to participation in
the study.

Clinical Assessment
All participants fulfilling the inclusion criteria attended HMRI
for clinical assessment and blood collection following a 12 hour
overnight fast. Clinical assessments included anthropometry,
nitrogen multi-breath washout (MBW), impulse oscillometry
(IOS) and blood collection. For details, refer to supplement.

Laboratory Methods
Immunoglobulin E (IgE) specific antibodies against 4 allergens
(dust mites, mixed moulds, mixed grasses, and mixed animal
epithelial) were measured in plasma using an ImmunoCAP
Fluorenzyme assay (Pathology North, Newcastle, NSW Australia).

PBMCs were isolated from whole blood by density gradient
method (11) using Ficoll-PaqueTM PLUS (GEHealthcare, Sydney,
Australia) and cultured with and without RV1B, LPS or HDM for
48 hours. The concentrations of IFN-g, IL-1b and IL-6 in the
culture supernatants were analysed using bead-based multiplex
assay (BD Bioscience, Sydney, Australia) and IFN-l and IL-5
concentrations in the culture supernatants were measured using
high-sensitivity commercial ELISA assays (R&D Systems, Sydney,
Australia) as per the manufacturer’s recommendations.

Quantification of major immune cell subsets in whole blood,
including eosinophils and neutrophils, T lymphocytes, DCs, NK
cells plus B cells and ILCs was performed by multi-parametric
flow cytometry using the Fortessa LSR-X20 (BD Biosciences,
Sydney, Australia).

For full laboratory analysis methods see supplement.
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Statistical Analysis
Statistical analyses were performed using STATA 15 (StataCorp,
College Station, Texas, USA). Data are reported as mean ± standard
deviation or median (interquartile range). Significant differences
between groups were determined using independent t-test
(parametric data) or Wilcoxon Rank Sum tests (non-parametric
data). Subgroup analyses on immune responses of PBMCs were
performed on a subset of participants with negative RAST results
(no history of allergy) as well as those with no history of OCS use. In
adjusted comparisons, age, weight and height were adjusted using
General Linear Model. Pearson’s Chi-squared test or Fisher’s exact
test (expected cell sizes< 5) were used to test equality of proportions
between groups. Exploratory analysis between immune cell subset
populations and PBMC cytokine responses were assessed using
Spearman’s correlations. Significance was accepted when P<0.05.
RESULTS

Subject Characteristics
Demographic and clinical characteristics of the children with
asthma and healthy controls enrolled in the study are listed in
Table 1A. There were no significant differences in age, weight,
height, BMI and BMI z score among the asthmatic children and
healthy controls. The proportion of males was significantly
higher in children with asthma compared to the healthy
controls. Furthermore, the history of eczema (60.4% versus 0%,
P<0.0001) or hayfever (60.4% versus 14.3%, P<0.01) was greater
Frontiers in Immunology | www.frontiersin.org 3
in the asthma group compared with the control group. Similarly,
there were more children with history of food allergy in the
asthmatics than in healthy controls, which appeared to be
marginally significant (P=0.056). There were also more
subjects with asthma that had a positive RAST result to dust
mite (allergen specific IgE 15-50 kUA/L) (P<0.001).

Children with asthma were well-controlled at the time of
sample collection [median asthma control score of 24 (21, 25)]
(Table 1B). Of 48 subjects in the asthmatic group, 58.3% had ≥1
hospital admission for acute asthma exacerbation in the previous
12 months. Asthma medication use in the previous 12 months is
presented in Table 1B.

Ex Vivo Stimulation of Cytokine Production
by PBMCs
Cytokine responses of PBMCs to Human
Rhinovirus-1B stimulation
PBMCs from children with asthma stimulated with RV1B
produced significantly less IFN-g compared with PBMCs from
healthy controls (P<0.01) (Figure 1 and Table 2). A similar trend
was observed for IFN-l, although the difference did not reach
statistical significance. In contrast, the concentrations of IL-1b in
the supernatants of PBMCs infected with RV1B were
significantly higher in children with asthma than in the healthy
controls (P<0.05) (Figure 1 and Table 2). The RV1B induced IL-
6 response was also higher in asthmatics than healthy controls;
however, this was not significant.

Cytokine responses of PBMCs to House Dust Mite
stimulation
HDM-induced IL-1b and IL-6 production were significantly
lower in children with asthma than healthy controls (P<0.001)
(Figure 2 and Table 2). In contrast, the production of type 2
cytokine, IL-5, following HDM exposure was significantly higher
in asthmatic children than in age-matched healthy controls
(P<0.01) (Figure 2 and Table 2). However, there were no
significant differences in HDM-induced IFN-g, and IFN-l
production in PBMCs obtained from asthmatic children
compared with those from healthy controls (P>0.05).
TABLE 1A | Subject demographics and clinical characteristics.

Variable Asthma
(n=48)

Healthy controls
(n=14)

P-
value

Gender (Male: Female) 35:13 5:9 0.023
Age (years) 5.25 (3.82, 6.99) 6.58 (4.99, 8.38) 0.136
Age 3-6 years, n (%) 32 (66.7) 9 (64.3) 1.00
Age 7-11 years, n (%) 16 (33.4) 5 (35.7)
Weight (kg) 21.50

(16.70, 25.75)
23.55

(18.70, 30.70)
0.215

Height (cm) 116.25
(103.45, 124.70)

122.16
(115.50, 133.30)

0.079

BMI z-score 0.05 ± 0.19 -0.04 ± 0.05 0.814
BMI percentile 51.70 ± 31.63 50.14 ± 33.36 0.872
Current food allergy, n (%) 11 (22.9) 0 (0) 0.056
History of Eczema*, n (%) 29 (60.4) 0 (0) <0.001
History of Hayfever^, n (%) 29 (60.4) 2 (14.3) 0.002
Positive RAST Results‡, n (%) n=47 n=13
Dust Mite 29 (61.7) 0 (0) <0.001
Animal mix 4 (8.5) 0 (0) 0.413
Grass mix 5 (10.6) 0 (0) 0.335
Mould mix 1 (2.1) 0 (0) 0.810
Data are presented as mean ± SD or median (interquartile). BMI z-scores and percentiles
were calculated using the Centre for Disease Control and Prevention (CDC) 2000 Growth
Charts. Difference between groups analysed by the Wilcoxon Rank sum test (non-
parametric data), two-sample t-test (parametric data) or Pearson’s Chi-squared test/
Fisher’s exact test (testing equality of proportions). P<0.05 considered statistically
significant. *Based on parental response to “Has your child ever had eczema?” ^Based
on parental response to “Has your child ever had a problem with sneezing, or a runny or
blocked nose when he/she DID NOT have a cold or the flu?”. ‡Plasma allergen-specific
immunoglobulin E level between 15.0-50 kUA/L. Bold values indicate statistically
significant difference (P<0.05) noted between the two groups.
TABLE 1B | Clinical characteristics of children with asthma.

Characteristics Asthma
(n=48)

Asthma control score, median (IQR) 24 (21, 25)
≥1 hospital admission due to exacerbation in previous 12
months, n (%)

28 (58.3)

Medication use, n (%)
OCS intermittent 21 (43.7)
ICS or ICS/LABA combination 33 (68.7)
ICS intermittent* 7 (14.5)
ICS maintenance^ 22 (45.8)
ICS/LABA maintenance ^ 4 (8.3)
SABA only 12 (25.0)
June 2021 | Volume 12 |
IQR, interquartile; OCS, oral corticosteroids; ICS, inhaled corticosteroids; LABA, long-
acting b2-agonist; SABA; short-acting b2-agonist. *Reported to have been taken
intermittently or on an as-needed basis. ^Reported to have been taken for most of the
previous 12 months.
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Cytokine responses of PBMCs to
Lipopolysaccharide stimulation
There was significantly less IFN-g produced by LPS stimulated
PBMCs from children with asthma compared with those from
the controls (P<0.001) (Figure 3 and Table 2); however, no
significant difference was found in LPS- induced IFN-l
production in PBMCs obtained from children with asthma
compared with PBMCs from controls. Furthermore, PBMCs
stimulated with LPS produced the same pattern of IL-1b and
IL-6 response observed for HDM with PBMCs from asthmatic
children producing significantly lower IL-1b and IL-6 compared
Frontiers in Immunology | www.frontiersin.org 4
with PBMCs from healthy controls (P<0.001 and P<0.05,
respectively) (Figure 3 and Table 2).

Subgroup analyses
A subgroup analysis on children with negative RAST results was
performed on 19 children with asthma and 13 healthy controls.
Production of IFN-g in response to both RV1B and LPS was lower
in asthmatic children than healthy controls (P= 0.018 and P=
0.009, respectively). Additionally, HDM stimulated IL-1b and IL-6
production (P=0.002 and P= 0.001, respectively) and as well as
LPS induced IL-1b release were found to be lower in asthmatics
compared to the healthy controls (P=0.005) (Table S3).

A subgroup analysis was also carried out on a subset of
participants with no history of OCS use (asthmatics=27, healthy
controls= 14). Children with asthma had deficient IFN-g
production in response to both RV1B and LPS compared with
healthy controls (P=0.003 and P<0.0001, respectively).
Moreover, IL-1b and IL-6 production in response to both
HDM (P <0.001 and P<0.001, respectively) and LPS (P <0.001,
P=0.029, respectively) were found to be lower in asthmatic
children than in their age-matched counterparts (Table S4).

Peripheral Whole Blood Immune
Cell Profiles
Immune cell subset frequency was assessed in PBMCs from 17
asthmatics and 11 healthy children. Asthmatic children showed a
significantly higher number of ILC1 and ILC2 compared to
healthy controls [(51.09 (39.04, 100.62) versus 21.91 (13.04,
67.60), P<0.05 and 151.80 (81.16, 335.17) versus 8.40 (6.52,
11.46), P<0.001, respectively]. Moreover, while there were no
significant differences in numbers of ILC3 with natural
cytotoxicity receptor (NCR+) between the two groups, the
number of circulating ILC3 NCR- was significantly higher in
children with asthma compared to healthy controls [25.00 (2.52,
70.99) versus 0.0 (0, 0.53), P<0.001] (Figure 4 and Table 3). The
frequency of granulocytes, DCs, NK cells and lymphocytes were
similar in the two groups (Table 3).
FIGURE 1 | Effects of RV1B stimulation on cytokine responses of PBMCs. PBMCs from children with asthma (n=48) and healthy controls (n=14) were exposed to
media or RV1B (MOI=20) for 48h. Bars represent median (interquartile range). Data adjusted for the levels in uninfected PBMCs (control). Plot represents median with
interquartile ranges and individual’s values are represented by dots. PBMC, peripheral blood mononuclear cells; RV, rhinovirus; IFN, interferon.
TABLE 2 | Cell supernatant cytokine secretion of PBMCs in response to different
stimuli in children with asthma and age-matched non-asthmatic group.

Cytokine
(pg/ml)

Asthma (n=48) Healthy controls (n=14) P-
value

PBMCs stimulated with Rhinovirus-1
IFN-g 14.88 (7.38, 32.72) 39.40 (30.59, 100.1) 0.002
IFN-l 5.13 (1.87, 13.41) 6.63 (3.22, 89.46) 0.192
IL-1b 21.25 (5.08, 88.15) 8.29 (2.25, 18.54) 0.044
IL-5 0.51 ± 0.27 0.48 ± 0.26 0.649
IL-6 (ng/mL) 1.43 (0.31, 8.93) 0.48 (0.19, 2.46) 0.372
PBMCs stimulated with House Dust Mite
IFN-g 1.11 (0.77, 1.35) 0.99 (0.78, 1.14) 0.932
IFN-l 2.18 (1.05, 4.55) 3.84 (2.1, 6.08) 0.159
IL-1b 14.25 (8.88, 49.04) 76.99 (52.88, 114.88) <0.001
IL-5 6.62 (1.10, 22.86) 0.93 (0.54, 1.75) 0.005
IL-6 (ng/mL) 2.43 (1.00, 12.16) 30.90 (19.58, 56.81) <0.001
PBMCs stimulated with Lipopolysaccharide
IFN-g 1.66 (1.06, 5.53) 41.14 (16.29, 55.50) <0.001
IFN-l 2.58 (0.88, 7.12) 2.21 (1.33, 3.06) 0.655
IL-1b 1888.58 (1173.98,

5863.56)
10681.23 (7967.57,

15169.19)
<0.001

IL-5 0.53 (0.25, 0.78) 0.60 (0.37, 0.79) 0.711
IL-6 (ng/mL) 73.26 (47.64, 119.08) 127.31 (82.20, 146.08) 0.021
Data are presented as median (interquartile range) or mean ± SD. All variables adjusted for
the levels in uninfected PBMCs (control). Difference between groups analysed byWilcoxon
Rank Sum test (non-parametric data) or two-sample t-test (parametric data). PBMC,
peripheral blood mononuclear cells; IFN, interferon; IL, interleukin. Bold values indicate
statistically significant difference (P<0.05) noted between the two groups.
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FIGURE 2 | Effects of HDM stimulation on cytokine responses of PBMCs. PBMCs from children with asthma (n=48) and healthy controls (n=14) were exposed to
media or HDM for 48h. Bars represent median (interquartile range). Data adjusted for the levels in uninfected PBMCs (control). Plot represents median with
interquartile ranges and individual’s values are represented by dots. PBMC, peripheral blood mononuclear cells; HDM, house dust mite; IL, interleukin.
FIGURE 3 | Effects of LPS stimulation on cytokine responses of PBMCs. PBMCs from children with asthma (n=48) and healthy controls (n=14) were exposed to
media or LPS for 48h. Bars represent median (interquartile range). Data adjusted for the levels in uninfected PBMCs (control). Plot represents median with
interquartile ranges and individual’s values are represented by dots. PBMC, peripheral blood mononuclear cells; LPS, lipopolysaccharide; IFN, interferon.
Frontiers in Immunology | www.frontiersin.org June 2021 | Volume 12 | Article 6646685
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Associations
Correlation analysis between peripheral blood immune cell
numbers and cytokine responses of PBMCs revealed an inverse
association between the frequency of ILC1 and LPS-induced IL-
Frontiers in Immunology | www.frontiersin.org 6
1b (rs=-0.45, P=0.030). Furthermore, the frequency of ILC2 was
inversely correlated with LPS-induced IL-1b and IL-6 (rs=-0.43,
P=0.035; and rs=-0.45, P=0.030, respectively), and HDM-
induced IL-6 (rs=-0.54, P=0.006). Inverse associations were
A B

C

FIGURE 4 | Frequency of (A) ILC1, (B) ILC2 and (C) NCR- ILC3 in children with asthma and healthy controls. Bars represent median (interquartile range). Immune
cell phenotyping was performed in whole blood using a lyse-wash procedure. Cells are per 106 CD45+ cells. Plot represents median with interquartile ranges and
individual’s values are represented by dots. ILCs, innate lymphoid cells; NCR, natural cytotoxicity receptor.
TABLE 3 | Frequency of circulating immune cell subsets in children with asthma and age-matched non-asthmatic group.

Cell Subsets Asthma (n=17) Healthy controls (n=11) P-value*

Innate lymphoid cells1

ILC1 51.09 (39.04, 100.62) 21.91 (13.04, 67.60) 0.022
ILC2 151.8 (81.16, 335.17) 8.40 (6.52, 11.46) <0.001
ILC3 NCR- 25 (2.52, 70.99) 0 (0, 0.53) <0.001
ILC3 NCR+ 0 (0, 0.69) 0 (0, 0) 0.052
Granulocytes
Eosinophils 111914.8 ± 142033.3 63698.76 ± 34578.89 0.141
Neutrophils 280270.5 ± 137243 345993 ± 169330.6 0.865
Dendritic cells
BDCA-1 30476.19 (16366.61, 37001.29) 6503.078 (1912.066, 43572.04) 0.111
BDCA-3 4444.444 (2646.28, 21046.3) 14217.13 (1572.327, 73949.58) 0.706
pDCs 26904.76 (19498.61, 57909.61) 16758.32 (3783.01, 40094.34) 0.352
NK cells 41905.82 (33153.01, 68353.91) 38138.79 (13537.55,56780.51) 0.543
B cells 432004.3 (412312.2, 634458.6) 287007.8 (234278.1, 486687) 0.068
T cells
CD4+ T cells 528823.5 (517112.3, 591268.7) 562661.8 (502188.2, 591235.2) 0.724
Activated CD4+ 34910.71 (27368.62, 46767.48) 34416.15 (25020.48, 79951.78) 0.795
Treg cells 36234.1 (34276.74, 39402.04) 32471.75 (27356.96, 40535.74) 0.249
CD8+ T cells 189591.7 ± 140576.2 206728.8 ± 104836.4 0.732
Activated CD8+ 674.48 (247.83, 1730.77) 1056.32 (684.84, 4197.76) 0.094
TCR-beta T cells 742566.8 (683641.6, 832381) 768274.4 (729063.5, 838161.9) 0.759
gd-T cells 81940.52 (58436.9, 115443.6) 60867.0 (48278.07, 89825.17) 0.249
June 2021 | Volume 12 | Artic
Data are presented as mean ± SD or median (interquartile range). 1Innate lymphoid cells and granulocytes are per 106 CD45+ cells. Dendritic cells are per 106 human leukocyte antigen+

cells. B cells, T cells and NK cells adjusted are per 106 CD3+ cells. *Difference between groups analysed byWilcoxon Rank Sum test (non-parametric data) or two-sample t-test (parametric
data). P < 0.05 considered statistically significant. ILCs, innate lymphoid cells; NCR, natural cytotoxicity receptor; BDC, blood dendritic cells; PDC plasmacytoid dendritic cells; NK cells,
natural killer cells; TCR-b, T cell receptor-b; Treg cells, T regulatory cells. Bold values indicate statistically significant difference (P<0.05) noted between the two groups.
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also found between the prevalence of ILC3 NCR- and RV1B-
induced IFN-g (rs=-0.48, P=0.019), HDM-induced IL-6 (rs=-
0.77, P<0.0001), and LPS-induced IL-1b (rs=-0.48, P=0.018).
Moreover, the frequency of B cells was inversely associated
with RV1B-induced IFN-l (rs=-0.45, P=0.035). In addition, the
frequency of TCR- b cells was positively associated with LPS-
induced IL-1b (rs=0.44, P=0.031).

Lung Function Assessments
Impulse Oscillometry
IOS variables included in the analysis were airway reactance
(Xrs), respiratory resistance (Rrs) (all measured at 5, 10, 15 and
20 Hz), as well as respiratory impedance measured at 5 Hz (Z5),
and reactance area (Ax). Children with asthma demonstrated
lower reactance at 5, 10, 15 and 20 Hz compared with healthy
controls (Table 4). Whereas, Ax values were greater in asthmatics
than in healthy controls (Table 4). No difference was found in
respiratory resistance and respiratory impedance between the two
groups. After adjusting for age, weight and height, the difference
between airway resistance at 5Hz and 20Hz (R5-R20) was
significantly higher in asthmatics than in healthy controls
(P<0.05). Additionally, the differences in airway reactance
remained significant after adjusting for age, weight and height,
while Ax value was no longer different between the groups.

Nitrogen Multiple-Breath Washout
Lung clearance index (LCI)2.5 values were on average 1.09 units
(95% confidence interval: 0.09- 2.09, P< 0.05) higher in children
with asthma compared with healthy controls (Table 4). No
significant difference was detected in functional residual
capacity between the groups. Adjusting for age, weight and
height did not alter the results.
DISCUSSION

For the first time, this study has demonstrated that children with
asthma had deficient IFN-g production in response to both
Frontiers in Immunology | www.frontiersin.org 7
RV1B and LPS infection, compared with the healthy controls.
RV1B induced IL-1b response was higher in asthmatics than
healthy controls. HDM-stimulated IL-5 production was also
significantly greater in asthmatic children than in healthy
controls. In contrast, both IL-1b and IL-6 production were
significantly lower in response to HDM and LPS in children
with asthma. Furthermore, the frequency of ILC1, ILC2, and
ILC3 NCR- were significantly higher in children with asthma
compared to healthy controls, while other immune cells such as
granulocytes, DCs, B cells and T-cells were present in whole
blood in similar numbers. These results indicate that innate
immune dysfunction in asthma is not limited to adults and may
explain the increased susceptibility of asthmatic children to viral
and bacterial respiratory infections.

In the present study, we observed that ex vivo RV1B infection
of PBMCs from asthmatic children resulted in >2.6 times less
IFN-g production compared with PBMCs from healthy controls.
Whereas, RV1B-induced IL-1b production was 2.5-fold higher
in asthmatic cells than in healthy controls, which suggests
inflammasome induction (12). Our results suggest that
diminished IFN-g production, as well as overproduction of
inflammatory cytokines (IL-1b) in children with asthma, may
be involved in their high susceptibility to lower airway symptoms
caused by RV infection. These findings are in concordance with
another study in pre-school children (13) that showed reduced
serum IFN-a levels in children with asthma compared to healthy
controls. In line with our findings, numerous studies in adults
reported that following RV exposure PBMCs from adult patients
with asthma produced lower levels of IFN-g compared with cells
from healthy controls (14, 15).

IFNs can decrease susceptibility of host cells to viral infection,
and an inverse association between IFN-g production and viral
load has been shown previously (3, 16). The antiviral activities of
IFNs are mediated directly through the inhibition of viral
replication in cells and indirectly through the induction of
cytokines and chemokines, which results in recruitment of NK
cells as well as CD4 and CD8 T cells (17). Diminished antiviral
IFN responses in asthma could be the main mechanism for
TABLE 4 | Comparison of lung function parameters between children with asthma and age matched non-asthmatic group.

Variable Asthma (n=27) Healthy controls (n=13) P-value Adjusted P*

X5 Hz z-score 0.56 ± 0.45 0.93 ± 0.53 0.028 0.043
X10 Hz z-score 0.63 (-0.18, 0.83) 0.96 (0.64, 1.61) 0.031 0.034
X15 Hz z-score 1.47 (0.65, 2.23) 2.28 (1.87, 2.72) 0.009 0.012
X20 Hz z-score -0.23 ± 1.24 0.64 ± 1.06 0.036 0.023
R5 Hz z-score -0.37 ± 0.91 -0.52 ± 0.83 0.624 0.622
R10 Hz z-score -0.22 ± 0.99 -0.30 ± 0.73 0.810 0.713
R15 Hz z-score -0.39 (-0.89, 0.30) -0.35 (-0.63, 0.49) 0.711 0.986
R20 Hz z-score -0.04 ± 1.06 0.12 ± 0.61 0.601 0.664
R5-R20 -0.33 ± 0.51 -0.65 ± 0.44 0.064 0.036
Z5 Hz z-score -0.42 ± 0.87 -0.60 ± 0.80 0.533 0.535
Ax (kPas/L) 1.01 (0.57, 1.67) 0.57 (0.20, 0.73) 0.013 0.085
LCI2.5 7.65 ± 1.36 6.56 ± 0.56 0.034 0.006
FRC 1.27 (0.88, 1.54) 1.16 (1.07, 1.34) 0.953 0.385
June 2021 | Volume 12 | A
Lung function was measured using Impulse Oscillometry and Nitrogen Multiple- Breath washout. Data are presented as mean ± SD or median (IQR). Difference between groups analysed
by Wilcoxon Rank Sum test (non-parametric data) or two-sample t-test (parametric data). Patients with missing and/or invalid data were excluded for each variable. *Age, weight and
height were adjusted using General Linear Model. P<0.05 considered statistically significant. X, respiratory reactance; R, respiratory resistance; Z, respiratory impedance; AX, area of
reactance; LCI, lung clearance index; FRC, Functional residual capacity. Bold values indicate statistically significant difference (P<0.05) noted between the two groups.
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enhanced susceptibility to respiratory viral infection (18). This
mechanism could be an explanation for asthmatic patients
having more severe lower respiratory tract symptoms and
declines in lung function of greater duration and severity
following RV infection (18).

IFN-g also appears to be a key mediator of LPS-induced
immune responses (19). We observed a deficient IFN-g response
to LPS in asthmatic children compared with age-matched healthy
controls. Similarly, Contoli et al. showed primary bronchial
epithelial cells and alveolar macrophages from adult asthmatic
patients produced lower levels of IFN-l following LPS stimulation
than healthy controls (5). IL-6 and IL-1b production by PBMCs in
response to HDM and LPS were impaired in children with asthma
in our study. There is apparent controversy about the immune
responses to LPS in patients with asthma. A previous study showed
that following LPS exposure, PBMCs from adult asthmatic patients
produced more IL-1b than cells from healthy controls (20), while,
another study in adults reported that asthmatic patients have
defective innate immune responses to LPS demonstrated by
lower LPS-induced IL-1B response in asthmatics compared to
healthy participants (21). Recent studies have highlighted the role
of toll-like receptors (TLRs) in the innate and adaptive immune
responses. TLRs are involved in the initial immune response to
pathogens or environmental stimuli and are broadly expressed by a
variety of tissues and cell types (22, 23). Previous studies have
demonstrated an association between TLRs and the pathogenesis
of asthma (22). One of the well-characterised TLRs that can
recognise ligands such as LPS and HDM is TLR4. It has been
shown that the expression of TLR4 on PBMCs is diminished in
asthmatic patients (22). Our finding of a significantly lower level of
IL-6 and IL-1B in response to HDM and LPS in the asthmatic
group is in concordance with the previous study that reported
lower expression of TLR4 in asthma (22).

This study also demonstrated that HDM-stimulated IL-5
release was significantly higher in children with asthma than in
healthy controls. This is in consistent with previous studies that
reported children and adolescents with asthma had enhanced TH2
cytokines responses to HDM in comparison with healthy controls
(24–26). Previous research suggested that HDM can trigger a TH2-
type response in the T cells that specifically recognize the allergen
but that allergen-responsive T cells might be lower in healthy
subjects than in patients with asthma. It can be suggested that the
impaired inflammatory response observed in patients with asthma
is due to an imbalance between type I and type II cytokines.

There are several additional points that warrant consideration.
The number of children with sensitization to dust mite was
significantly higher in children with asthma compared with
healthy controls (61.7% vs. 0%, respectively). Increased IgE
antibodies to allergens was found to be correlated with increased
risk for lower respiratory tract symptoms with viral infections such
as rhinovirus in patients with asthma (16). To examine whether
allergy status is one of the causes of the observed significant
differences in immune responses of PBMCs, we performed a
subgroup analysis on children with negative RAST results
(n= 32) and differences in the following variables remained
statistically significant between the two groups: RV1B induced
Frontiers in Immunology | www.frontiersin.org 8
IFN-g (P= 0.018), HDM stimulated IL-1b and IL-6 production
(P=0.002, P= 0.001, respectively) and as well as LPS induced IFN-g
and IL-1b release (P= 0.009 and P=0.005, respectively) (Table S3).
These findings confirm that the deficient IFN responses observed
in children with asthma is not related to their allergy status.
However, it should also be noted that no significant difference was
observed in HDM-specific IL-5 responses between the two groups
after adjusting for allergy status. Our results indicate that HDM-
induced IL-5 production can be considered as a predictor for the
presence of atopy in children with asthma, as has been suggested
by others (27). Additional questions of concern relate to the effects
that corticosteroids may have on the observed differences in
immune responses of PBMCs. Prior studies have reported
immune-suppressive characteristics of steroids (28, 29). Twenty-
one children in asthma group (43.7%) used intermittent oral
corticosteroids, while none of the healthy controls used
corticosteroids for any health conditions. Our subgroup analysis
of subjects with no history of OCS use (n=41) revealed the
following: IFN-g production in response to both RV1B and LPS
remained to be significantly lower in children with asthma
compared with healthy controls (P=0.003 and P<0.0001).
Additionally, IL-1b and IL-6 production in response to both
HDM and LPS were remained lower in asthmatic children than
in their age-matched counterparts (P <0.001) (Table S4). These
findings are in line with previous in vitro studies that reported
corticosteroids inhibit viral-induced cytokines but do not inhibit
interferons (30). However, the interaction between corticosteroids
and virus infection is controversial and some studies demonstrated
that treatment with corticosteroids induced viral replication in the
epithelial cells by suppressing type I and type III IFN production
(31). It is also worth noting that in our study there was an apparent
increase in RV1B induced IFN-l production in subjects with no
history of OCS; however, this was not significantly different
between the two groups. These data indicate the need to further
in vivo and in vitro studies in the role of corticosteroids in innate
immune responses and activation of immune cells in asthma.

We also measured the frequency of whole blood immune cell
subsets and found a higher prevalence of ILC1, ILC2, and ILC3
NCR- in children with asthma compared to healthy controls.
These findings are consistent with previous studies that also
reported higher prevalence of ILC2 in blood from adult
asthmatic patients than healthy controls (9, 10, 32), which was
associated with worse asthma control (10). However, in another
study, ILC2 were on average 50% lower in the blood of children
with acute asthma compared with healthy controls (33).
Compelling evidence indicates that ILCs have significant roles
in asthma development, specifically virus-induced asthma (9), as
they link the innate and the adaptive immune responses within
the hypersensitive airway (10). The airway epithelial cells, as the
first natural barrier, protect the body from external antigens. In
response to pathogen recognition, allergen exposure or viral
infection, epithelial cell-derived cytokines such as IL-25 and
IL-33 are released. Following secretion, IL-25 and IL-33 can
bind to their receptors on the surface of ILC2 and affect the
growth and proliferation of these cells (9, 34). Activated ILC2
cells are potent secretors of Th2 cytokines (e.g., IL-5, IL-13)
June 2021 | Volume 12 | Article 664668
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(9, 34), which results in airway hyperactivity, mucus
overproduction, airway smooth muscle constriction as well as
airway remodelling (35).

In an exploratory analysis, we examined the relationship
between peripheral blood immune cell numbers and cytokine
responses of PBMCs to RV1B, HDM, and LPS stimulation. We
found that the number of ILC2 and ILC3s NCR- was inversely
correlated with HDM-induced IL-1b. LPS-induced IL-1bwas found
to be inversely correlated with ILC1s, ILC2 and ILC3s NCR-, while,
positively associated with TCR+ cells. Inverse correlations were also
found between ILC2 and IL-6 from LPS-stimulated PBMCs, as well
as between ILC3s NCR- and IFN-g production in response to RV1B
stimulation. These findings suggest that increased circulating ILCs,
in particular, ILC2 might be involved in dysregulated innate
immune responses in asthmatic children. Additionally, we found
that the frequency of B cells was inversely associated with RV1B-
induced IFN-l. This inverse correlation confirms the previous
observation that virus-induced IFN-l can reduce proliferation of
B cells in a dose-dependent manner (36). To our knowledge, this is
the first study to suggest a relationship between whole blood
immunophenotype and innate immune responses of PBMCs.
Previous research has explored the association between cord
blood immune cell subsets and airway immune mediators and
reported a positive association between activated CD4 and CD8 T
cells and TNF-a, while regulatory T cells and CD4 T cells were
reported to be inversely correlated with IL-1b (37).

Our study also revealed that compared with healthy controls,
asthmatic children had lower lung reactance (Xrs) values, while
area of reactance was found to be significantly higher in
asthmatics than in healthy controls. Moreover, after adjusting
for age, weight and height, asthmatic children had a greater R5-
R20 value compared with controls. This is consistent with
previous studies that reported peripheral airway IOS indices
(including Ax and R5-R20) were correlated with asthma control
in both children and adults (38–41). Our findings are also in line
with previous research showing that Xrs predicted values were
significantly lower in asthmatics than in controls (42). In a cohort
of 162 children aged 2-5 years, lower z-scores of reactance X5

were observed in persistent asthmatics compared with children
with intermittent asthma (43). Our results showed that functional
impairment of the airways is present, even in young children with
stable asthma. The ability to predict loss of asthma control in
children can decrease asthma related mobility and mortality.
Thus, IOS can be used to identify paediatric patients with stable
asthma who are at risk of losing asthma control.

The measurements from nitrogen MBW showed that, as
expected, LCI2.5 was higher in asthmatic children than in
healthy controls. These results are in agreement with previous
research (44, 45). Baseline LCI was found to be significantly higher
in school-aged children with asthma compared with healthy age-
matched controls (40). Similarly, another study demonstrated that
clinically stable paediatric patients with asthma had a significantly
greater LCI value compared to healthy controls, which persisted
after salbutamol use (41). These findings suggest that ventilation
inhomogeneity is present in the airways of asthmatic children even
in those with stable asthma. LCI has been found be useful in the
recognition of early lung disease as well as in the prediction of lung
Frontiers in Immunology | www.frontiersin.org 9
function in children (46–49). Further studies are needed to assess
the role of LCI in tracking the progression of early airway
remodelling in children with asthma.

There are several limitations to our study, including the
relatively small sample size of the control group. The rate of
recruitment was lower than we had anticipated, with objections
to the venous blood draw being the primary reason for parental
refusal. Although, the sample size in this study was comparable
to similar studies conducted in adults (50, 51) and children (52).
Nonetheless, the study was adequately powered to detect
important differences in circulating ILC subsets in children
with asthma compared with healthy controls, and associations
between immune cell subsets and responses to virus, HDM and
LPS exposure, which are important observations.

A key strength of the present study is that the children with
and without asthma were matched for age, which is known to
affect immune responses (53). Additionally, asthma was defined
by a doctors diagnosis (54). Another strength of this study is the
exploration of the associations between whole blood
immunophenotype and innate immune responses of PBMCs
for the first time in children with asthma.

In summary, our study indicates that children with asthma
have impaired innate immune responses, which may explain the
high frequency of viral-induced acute exacerbations in this
population. Furthermore, asthma was associated with increased
frequency of ILC subsets, which could contribute to airway
inflammation and tissue remodelling. Increased understanding
of innate immune responses may facilitate the development of
therapeutic strategies to prevent acute asthma exacerbations in
young children with asthma.
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