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Abstract: The increasing incidence of testicular dysgenesis syndrome-related conditions and overall
decline in human fertility has been linked to the prevalence of oestrogenic endocrine disrupting
chemicals (EDCs) in the environment. Ectopic activation of oestrogen signalling by EDCs in the
gonad can impact testis and ovary function and development. Oestrogen is the critical driver of
ovarian differentiation in non-mammalian vertebrates, and in its absence a testis will form. In contrast,
oestrogen is not required for mammalian ovarian differentiation, but it is essential for its maintenance,
illustrating it is necessary for reinforcing ovarian fate. Interestingly, exposure of the bi-potential
gonad to exogenous oestrogen can cause XY sex reversal in marsupials and this is mediated by
the cytoplasmic retention of the testis-determining factor SOX9 (sex-determining region Y box
transcription factor 9). Oestrogen can similarly suppress SOX9 and activate ovarian genes in both
humans and mice, demonstrating it plays an essential role in all mammals in mediating gonad somatic
cell fate. Here, we review the molecular control of gonad differentiation and explore the mechanisms
through which exogenous oestrogen can influence somatic cell fate to disrupt gonad development
and function. Understanding these mechanisms is essential for defining the effects of oestrogenic
EDCs on the developing gonads and ultimately their impacts on human reproductive health.

Keywords: gonad; oestrogen; endocrine disrupting chemicals; differences of sexual development;
fertility; SOX9

1. Introduction

Gonadal sex determination is the process through which the bi-potential gonad differentiates into
either an ovary or testis. This leads to the development of corresponding female or male secondary sex
characteristics and has profound effects on the subsequent physiology and behaviour of the organism.
The bi-potential gonad is comprised of the machinery required to follow one of two fates—ovary or
testis—and this is under the control of well-defined molecular pathways [1,2]. The somatic cells of
the gonad are integral for influencing the overall fate of the gonad such that the differentiation of
these cells is the critical first step in the development of the reproductive tract. Mouse models have
demonstrated that these somatic cells display plasticity, where loss or gain of key gonadal genes can
drive granulosa (ovary) or Sertoli (testis) cell differentiation, independent of chromosomal sex [3–10].
Interestingly, oestrogen is able to influence these pathways in XY mammalian Sertoli cells to promote
granulosa-like cell fate [11,12]. Even brief disruptions to testicular signalling pathways can impact
Sertoli cell patterning, disrupting the development and function of the testis. This is of particular
concern given our increasing exposures to endocrine disrupting chemicals (EDCs) that can interact
with native oestrogen receptors and the decline in human reproductive health over recent decades [13].
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2. The Impact of Oestrogenic Endocrine Disrupting Chemicals on Reproductive Health

Over the last 50 years, reproductive health has rapidly declined as a result of both increasing
infertility and occurrence of reproductive birth defects. In males, a 50% decrease in sperm counts
has been observed [14], alongside increasing rates of testicular cancer [15] and abnormalities in the
development of the reproductive tract known as differences of sexual development (DSDs) [16,17].
DSDs are some of the most common birth defects in humans, affecting gonadal and anatomic sex
development and occurring in up to 1:200 live births [18]. Testicular dysgenesis syndrome (TDS)
comprises some of these conditions, including hypospadias, cryptorchidism, testicular cancer, and poor
semen quality [19]. TDS is thought to arise from disruptions to the development and functioning of
the testis during early fetal life, leading to compromised differentiation of the reproductive tract [20].
Hypospadias is one of the most frequently occurring birth defects in males, affecting 1:125 live male
births in Australia [21]; however, only 30% of hypospadias cases can be attributed to genetic factors [22],
suggesting a substantial environmental component is involved in the development of this condition.
Furthermore, the increasing prevalence of TDS-related conditions has occurred too rapidly to be
caused by genetic mutation alone and instead has been linked to our continued exposure to endocrine
disrupting chemicals (EDCs) [23–28].

EDCs are defined as “an exogenous substance or mixture that alters function(s) of the endocrine
system and consequently causes adverse health effects in an intact organism, or its progeny, or (sub)
populations” [29]. EDCs can target specific hormonal pathways by interacting directly with receptors;
for instance, some EDCs are capable of binding to native oestrogen receptors (ERs) to trigger the
ectopic activation of oestrogen-responsive signalling pathways [30]. These oestrogenic EDCs are
some of the most pervasive in our environment and include compounds, such as bisphenol A (BPA;
a plasticiser), 17α-ethynylestradiol (a component of the contraceptive pill), oestrogenic phthalates
(DEHP, DBP, DBP [31–33]; plasticisers and present in cosmetics), and genistein (a phytoestrogen
naturally occurring in soy and subterranean clover; Figure 1). Aberrant activation of oestrogen
signalling is detrimental to development as the correct levels of oestrogen are imperative for sexual
differentiation of both the male and female reproductive tract. Several studies have demonstrated that
reproductive development requires a delicate balance of androgens and oestrogens [34–36]; furthermore,
the embryonic mammalian gonad expresses oestrogen receptors throughout development [37–39] and
is therefore a direct target of oestrogenic chemicals. However, the predominant oestrogen receptor
subtype appears to differ between mammalian species [40].

The correct patterning of the gonad is crucial for establishing the cells that produce androgens and
oestrogens and contribute to the differentiation of the urogenital tract. Studies in humans and mice
have demonstrated that EDCs can interfere with gonad function and subsequently the differentiation
of the male reproductive tract (Figure 1). In mice, exposure to the oestrogenic endocrine disruptor
diethylstilbestrol (DES) in utero leads to increased rates of hypospadias and reduced anogenital
distance [41,42], a marker of androgen output during development [43,44]. Such results have also been
confirmed in vitro, where DES causes reduced testosterone output in mouse and rat gonad cultures [45]
and BPA impairs testosterone production in human fetal testis culture [45,46]. Reduced synthesis of
testosterone indicates impaired testis function, which can lead to disruption of the overall patterning
and differentiation of the male reproductive tract.

Associations between EDCs and TDS in humans are more difficult to elucidate given the
lack of controlled conditions, but many studies have demonstrated a link between exposure to
EDCs, such as genistein and BPA, in utero and the development of hypospadias and TDS-related
conditions [25,28,47–49]. The detrimental effects of EDCs are also of concern in adulthood, where a
high level of BPA in urine is associated with reduced sperm counts and motility [50,51] and elevated
exogenous oestrogen levels during adulthood negatively affect testis function in humans [52,53].
Together, these data demonstrate the ability of EDCs to target the testis in mammals, causing decreased
testis function and subsequent disruption of male reproductive tract differentiation and fertility
(Figure 1).



Int. J. Mol. Sci. 2020, 21, 8377 3 of 23
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 23 

 

 
Figure 1. Exposure to oestrogenic endocrine disrupting chemicals, such as genistein (present in soy 
and subterranean clover), bisphenol A (a plasticiser), ethynylestradiol (a synthetic oestrogen present 
in the contraceptive pill), or phthalates (plasticisers, present in some cosmetics), can disrupt gonad 
development and function, leading to negative reproductive outcomes. Exposure of the bi-potential 
gonad as it undergoes differentiation into either an ovary or testis can disrupt somatic cell 
specification, an important step in establishing gonad fate. Exposure of the differentiated gonad can 
impact steroidogenesis, gametogenesis and the ongoing maintenance of somatic cell fate, disrupting 
the continuing function of the gonad. Either periods of exposure can contribute to the development 
of premature ovarian insufficiency (POI), polycystic ovary syndrome (PCOS), or cause delayed 
pubertal timing in females. In males, such exposures have been linked to testicular dysgenesis 
syndrome, comprising of hypospadias, cryptorchidism, decreased sperm counts, and testicular 
cancer. 

Females can similarly be impacted by excess oestrogen signalling, as the early development of 
the female urogenital tract occurs in the absence of any hormones [54] such that exposure to oestrogen 
at this time is also ectopic, leading to the development of conditions associated with ovarian 
dysgenesis syndrome [55]. The best characterised case of exogenous oestrogen signalling impacting 
female reproductive development is the daughters of DES treated women. DES was prescribed to 
pregnant women between 1938 and 1975 to prevent miscarriage or premature birth [56,57]. 5–10 
million women were prescribed DES in the U.S. alone [58], and the drug was also widely used 
throughout Europe, Australia and the UK. Not only was DES ineffective in preventing miscarriage, 
but it caused an increased incidence of reproductive tract cancers, infertility and recurrent 
miscarriage in the daughters of women exposed to DES [59,60]. Thus, it is clear that exogenous 
oestrogen signalling is also detrimental to female reproductive health. 

Aberrant oestrogen signalling during critical periods of development and even in adulthood can 
impact the function of the ovary. The age of onset of puberty in girls has decreased in the U.S., 
Denmark, India, and China [61–64] and is thought to similarly be linked to increasing oestrogenic 
EDC exposure. Sex steroids play a crucial role in pubertal timing, and disruption of this timing—
such as via exposure to EDCs—can have long-term reproductive consequences [65].  

Exposure to oestrogenic EDCs has also been linked to conditions caused by compromised 
ovarian function and depletion of ovarian reserve (Figure 1), such as polycystic ovary syndrome 
(PCOS) [66] and primary ovarian insufficiency (POI) [67,68]. PCOS affects between 15–20% of women 
of reproductive age and is the most commonly occurring endocrine disorder in women [66,69]. PCOS 
is characterised by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries, alongside an 

Figure 1. Exposure to oestrogenic endocrine disrupting chemicals, such as genistein (present in soy
and subterranean clover), bisphenol A (a plasticiser), ethynylestradiol (a synthetic oestrogen present
in the contraceptive pill), or phthalates (plasticisers, present in some cosmetics), can disrupt gonad
development and function, leading to negative reproductive outcomes. Exposure of the bi-potential
gonad as it undergoes differentiation into either an ovary or testis can disrupt somatic cell specification,
an important step in establishing gonad fate. Exposure of the differentiated gonad can impact
steroidogenesis, gametogenesis and the ongoing maintenance of somatic cell fate, disrupting the
continuing function of the gonad. Either periods of exposure can contribute to the development of
premature ovarian insufficiency (POI), polycystic ovary syndrome (PCOS), or cause delayed pubertal
timing in females. In males, such exposures have been linked to testicular dysgenesis syndrome,
comprising of hypospadias, cryptorchidism, decreased sperm counts, and testicular cancer.

Females can similarly be impacted by excess oestrogen signalling, as the early development of the
female urogenital tract occurs in the absence of any hormones [54] such that exposure to oestrogen at
this time is also ectopic, leading to the development of conditions associated with ovarian dysgenesis
syndrome [55]. The best characterised case of exogenous oestrogen signalling impacting female
reproductive development is the daughters of DES treated women. DES was prescribed to pregnant
women between 1938 and 1975 to prevent miscarriage or premature birth [56,57]. 5–10 million women
were prescribed DES in the U.S. alone [58], and the drug was also widely used throughout Europe,
Australia and the UK. Not only was DES ineffective in preventing miscarriage, but it caused an increased
incidence of reproductive tract cancers, infertility and recurrent miscarriage in the daughters of women
exposed to DES [59,60]. Thus, it is clear that exogenous oestrogen signalling is also detrimental to
female reproductive health.

Aberrant oestrogen signalling during critical periods of development and even in adulthood
can impact the function of the ovary. The age of onset of puberty in girls has decreased in the U.S.,
Denmark, India, and China [61–64] and is thought to similarly be linked to increasing oestrogenic EDC
exposure. Sex steroids play a crucial role in pubertal timing, and disruption of this timing—such as via
exposure to EDCs—can have long-term reproductive consequences [65].

Exposure to oestrogenic EDCs has also been linked to conditions caused by compromised ovarian
function and depletion of ovarian reserve (Figure 1), such as polycystic ovary syndrome (PCOS) [66] and
primary ovarian insufficiency (POI) [67,68]. PCOS affects between 15–20% of women of reproductive
age and is the most commonly occurring endocrine disorder in women [66,69]. PCOS is characterised
by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries, alongside an increased risk of
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diabetes and cardiovascular disease [69]. POI is less widespread, with a global prevalence estimated to
be 3.7%—a rate that has increased in recent years [70]—and is defined as cessation of menstruation
prior to the typical age of menopause, contributing not only to fertility difficulties, but also an increased
likelihood of cardiovascular disease, osteoporosis and depression [71,72]. Both PCOS and POI are
characterised by a loss of oestrogen signalling and hyperandrogenism. Indeed, continued oestrogen
signalling is essential for the maintenance of the ovary in mammals [73]; however, studies in rodents
and cell lines have suggested that aberrant oestrogen signalling either during development or in
adulthood can cause a reduction in the oestrogenic output of the ovary [67].

Numerous studies have demonstrated the ability of BPA and genistein to reduce the steroidogenic
output of the ovary and impact folliculogenesis, raising concern about the harm of these chemicals
on ovarian function [67,74]. High BPA blood levels are associated with PCOS in women [75] and
exposure to BPA during development leads to formation of PCOS-like phenotypes during adult life
in rats [76] and mice [77]. Similarly, exposure to either genistein or a mixture of oestrogenic and
anti-androgenic EDCs can cause a reduction in follicular reserve and POI-like phenotypes in rats [78,79].
It is hypothesised that the development of these phenotypes is due to reduced oestrogen output and
compromised ovarian function; indeed, follicles or granulosa cells cultured in the presence of BPA show
a decrease in oestrogen production [80,81] and exposure to genistein decreases expression of critical
steroidogenic pathways in human granulosa cells [82]. Overall, these results suggest a disruption to
the key pathways involved in maintaining oestrogenic output and therefore ovarian identity.

The impact of EDCs on reproductive health is concerning, particularly their ability to affect the
development of the gonad and urogenital tract during fetal life, contributing to the rise in prevalence
of DSDs. Their impact on reproductive health after birth and into adulthood is of further concern,
where exposure to EDCs has been linked to premature puberty, PCOS and POI in females, and reduced
sperm counts in men, together contributing to an overall decline in fertility. These issues primarily
stem from the ability of oestrogenic chemicals to target the testis and ovary. The gonad harbours and
nurtures the germ cells that will go on to form sperm and oocytes, and eventually the next generation.
Additionally, the gonad synthesises the majority of sex hormones in males and females, which are
essential for directing sexual differentiation and maintaining reproductive function. Examining the
effect of oestrogen on development and maintenance of gonad fate (ovary or testis) and the molecular
pathways that drive this process is critical to understanding how EDCs may target this system.

3. The Function of Oestrogen in the Mammalian Gonad

Oestrogen has a critical role in mediating ovarian differentiation in non-mammalian vertebrates,
regardless of the sex determining mechanism. An increase in oestrogen—through changes to
endogenous or exogenous oestrogen levels—can consistently promote male-to-female sex reversal,
demonstrating the plasticity of gonadal sex and ability of oestrogen to promote ovarian fate [83–86].
In contrast, the role of oestrogen in early gonadal development and its ability to promote differentiation
is less clear in mammals.

Exposure to exogenous oestrogen prior to gonad differentiation can cause sex reversal in two
marsupials, the opossum [87] and tammar wallaby [88], despite their clear genetic sex determination
system. This suggests that, similar to non-mammalian vertebrates, oestrogen can override the genetic
predisposition of the gonad to become a testis. At present, the effect of exogenous oestrogen on other
mammalian species is less clear, but there is a known role for the hormone in maintaining ovarian
fate. Oestrogen is also essential for ovarian differentiation in goats [89], sheep [90,91], and cows [92],
where aromatase promotes the synthesis of oestrogen from testosterone in the fetal ovary.

In mice, the presence of oestrogen is not essential to induce the bi-potential gonad to actively
differentiate into an ovary, but it is still necessary for the maintenance of somatic cells. Mice deficient
for Cyp19 (encodes aromatase) undergo normal early ovarian differentiation, illustrating that oestrogen
is not required for initial development [3]. However, shortly after birth, the germ cells of these mice are
lost and the gonad shows testis-like morphology, where the somatic cells change fate from granulosa
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(ovarian) to Sertoli (testis). Administration of oestrogen rescues this phenotype, demonstrating that
the hormone can trigger cell fate change and is necessary for ongoing maintenance and function of
granulosa cells [73]. Further demonstrating this requirement of oestrogen for ovarian maintenance,
mice lacking oestrogen receptor α (ERαKO) have normal ovarian development until adulthood,
when the ovary does not successfully complete folliculogenesis [93]. These mice still have some
oestrogen signalling as they express ERβ, but these findings demonstrate the requirement of ERα for
normal ovarian function.

In general, the role of oestrogen in early eutherian gonad development is downplayed given
the presence of a strong genetic sex determination (GSD) system and the fact that the process of sex
determination occurs in utero, where there could be exposure to maternal oestrogens. Given this, it has
been assumed that oestrogen would have no impact on gonad differentiation and that the developing
gonad would be resistant to the influence of any maternal oestrogens [94]. Despite this, ERs are widely
expressed in the indifferent gonad of all mammals [37–39], making them susceptible to exposure to
endocrine disruptors that can interact with ERs. Indeed, oestrogenic EDCs can cross the placenta
and increase the typical levels of oestrogen in the uterine environment [95], bypassing any resistance
provided by the placenta. Furthermore, the link between increasing oestrogenic EDCs and infertility
and DSDs suggests that the gonad is a target of exogenous oestrogen.

While the precise role for oestrogen in directing early ovarian differentiation in mammals appears
to be variable across species, it plays a highly conserved role in ovarian and granulosa cell maintenance.
To further understand the function of oestrogen in regulating somatic cell fate, it is essential to
understand the core pathways critical for mammalian gonad differentiation and examine where
oestrogen can potentially influence this system.

4. Molecular Control of Gonad Differentiation

Gonad development begins with the initial emergence of the bi-potential gonad, an indifferent
structure that can form either an ovary or testis [2,96]. At embryonic (E) day 10.5 in mice (equivalent to
the 6th week of gestation in humans), the bi-potential gonad emerges on the mesonephros, a process
under the control of Wt1, Sf1, Cbx2, Lhx9, and Emx2 [97]. Within the indifferent gonad are the supporting
somatic cells, which can form either a testis-specific (Sertoli) or ovary-specific (granulosa) cell.

4.1. Testis Development

Sertoli cells are the first cell type to differentiate in the male gonad and are considered the
orchestrators of subsequent testis development [98]. Following the formation of a testis, Sertoli cells
are involved in supporting steroidogenesis, spermatogenesis and maintenance of testis identity [99].
A minimum number of Sertoli cells is required for the development of a testis to continue [100],
and because of this essential threshold of Sertoli cell number, the recruitment of Sertoli cells is an
important process to ensure that testis development occurs correctly. Sertoli cell determination is
marked by the temporally controlled expression of the Y chromosome gene sex-determining region Y
(Sry) at E11.5 [101]. Sry is the molecular switch required for testis formation [102], and both the correct
timing [103] and level [104] of its expression are necessary for testis development to occur. Indeed,
the initial Sertoli cell recruitment and subsequent maintenance of the required Sertoli cell number is
supported by expression of key testis factors downstream of Sry.

Once levels of Sry reach a critical threshold at E11.5, SRY-box transcription factor 9 (Sox9)
transcription is initiated (Figure 2). Prior to this at E10.5, SOX9 is present in the cytoplasm of XX and XY
indifferent gonad somatic cells [105]. Upon expression of Sry in XY mice embryos, SOX9 translocates
to the nucleus; however, in the absence of Sry, the cytoplasmic pool of SOX9 dissipates [105]. SOX9
shows the same localisation pattern in humans [106] and this sex-specific regulation of SOX9 is the key
trigger for testis differentiation in both species. Indeed, ectopic expression of Sox9 in the indifferent XX
mouse gonad is able to trigger testis differentiation [5,6], and the absence of Sox9 in XY mice leads to
formation of an ovary [7,8]. Sox9 activity is sufficient to trigger all downstream testis development,
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even in the absence of Sry [107]. Furthermore, heterozygous mutations for SOX9 in humans can
lead to XY sex reversal [108,109]. Consequently, SOX9 is considered a critical testis-determining
gene and major emphasis has been placed on understanding its regulation and downstream role as a
transcription factor.
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Figure 2. Key genetic pathways involved in gonad differentiation in mouse. SRY-box transcription
factor 9 (SOX9) is present in the cytoplasm of the somatic cells of both XX and XY bi-potential gonads.
In XY mouse gonads, expression of sex-determining region Y (Sry) reaches a peak at embryonic day (E)
11.5 and triggers the nuclear translocation of SOX9, where it promotes expression of prostaglandin D
synthase (Ptgds), fibroblast growth factor 9 (Fgf9), anti-Müllerian hormone (Amh), and itself, together
contributing to the differentiation of a testis. In XX gonads, in the absence of Sry, SOX9 remains
cytoplasmic. R-spondin 1 (Rspo1) and Wnt family member 4 (Wnt4) are expressed specifically from
E12.5, and β-catenin is stabilised in the nucleus, while the cytoplasmic pool of SOX9 disappears.
The activity of these ovary-specific genes triggers expression of other genes forkhead box L2 (FoxL2),
follistatin (Fst), and bone morphogenetic protein 2 (Bmp2) to promote ovarian differentiation. SOX9
further promotes testis development in males by inhibiting β-catenin and FOXL2 to ensure ovarian
development is suppressed. Conversely, β-catenin and FOXL2 inhibit SOX9 to promote ovarian
differentiation. WNT4 and FGF9 also exhibit antagonism.

The necessity of SOX9 to direct testis development relies on its ability to initiate transcription of
downstream targets that further support testis formation and function. These downstream targets
include fibroblast growth factor 9 (FGF9), prostaglandin D synthase (PTGDS), and anti-Müllerian
hormone (AMH; Figure 2). FGF9 is a secreted signalling molecule, and, during embryonic mouse
development, Fgf9 shows a sex-specific pattern of expression [110] before becoming restricted to
XY gonads [111]. Fgf9 forms a feed-forward positive loop with Sox9 and suppresses the ovarian
gene Wnt4 [112] to promote testis formation. Fgf9 null mice exhibit XY sex reversal in some, but not
all, genetic backgrounds [113] and it has been hypothesised that this sex reversal is due to reduced
proliferation rate and differentiation of pre-Sertoli cells [111]. These results demonstrate the role for
FGF9 in recruiting Sertoli cells to the threshold required for formation of a testis, the failure of which
results in sex reversal in mice [100]. Interestingly, a mutation in FGFR2 (which encodes the FGF9
receptor) has been reported in an XY gonadal dysgenesis patient, suggesting that FGF9 signalling is
also important for human testis development [114].
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Similar to FGF9, Ptgds forms a feed-forward loop with SOX9 [115,116]. Ptgds produces PGD2, a
paracrine factor secreted by Sertoli cells that promotes their differentiation and maintenance. PGD2 has
also been implicated in the ability of XY somatic cells to recruit XX somatic cells to express Sox9 when
cultured together in vitro [115]. This demonstrates that, like FGF9, PGD2 is required for maintaining
the threshold of Sertoli cells required for testis development. Ptgds is expressed in a male-specific
manner in embryonic mouse gonads from E11.5 to E14.5 [116,117], and loss of Ptgds in XY mice leads
to reduced Sox9 transcription and delayed testis cord formation [118]. Interestingly, culture of XX
gonads in the presence of PGD2 can induce testicular cord formation and expression of testis-specific
genes [117], further illustrating it has a strong testis-promoting function.

Sox9 also initiates expression of Amh and works with steroidogenic factor 1 (Sf1) to maintain
production of the hormone in Sertoli cells [119,120]. AMH is responsible for the regression of the
Müllerian ducts, a structure that, when present, is a key characteristic of female development [121].
Transgenic female mice chronically expressing Amh develop abnormally, with complete absence of a
uterus or oviducts and disrupted ovarian function [122]. Amh is therefore critical for establishing normal
sexual differentiation and promoting male development. Together, the expression of SOX9, FGF9,
PTGDS, and AMH work to establish the specification and proliferation of Sertoli cells, contributing to
the initial differentiation of the testis and ultimately a functioning male reproductive system.

4.2. Ovarian Development

In XX gonads, ovary-specific genes are expressed following the disappearance of cytoplasmic
SOX9 [105]. This includes R-spondin 1 (Rspo1) and the Wnt/β-catenin pathway, which become
specific to granulosa cells at E12.5 [123,124]. RSPO1 has more recently been considered to be the
critical female-determining gene. The requirement for RSPO1 in ovarian determination was initially
discovered by linking human RSPO1 mutations to XX gonadal dysgenesis [124]. Similarly, Rspo1 null
mutant XX mice exhibit masculinisation of the gonad and some expression of Sox9 [10]. Rspo1 can
stabilise β-catenin (encoded by Ctnnb1) [125], leading to activation of the Wnt4/β-catenin pathway
that is essential to drive ovarian differentiation in early development [10] (Figure 2). β-catenin has
similar ovary-promoting effects and, when stabilised, can enter the nucleus and act on target genes
by increasing expression of Lef1 in a female-specific pattern [10]. Ectopic stabilisation of β-catenin in
XY gonads can cause male-to-female sex reversal in mice [4], demonstrating it can promote ovarian
differentiation in the presence of SOX9.

WNT/β-catenin signalling activates numerous downstream targets that are essential for ovarian
development; in particular, increased β-catenin activity can induce expression of FoxL2 [126]. FoxL2
is expressed in XX gonads from E12.5 and is necessary for the specification and maintenance of
granulosa cell fate [127]. Loss of FoxL2 has no impact on the early development of the ovary, suggesting
it is not the critical ovary-determining gene; however, its ablation in adult mouse ovaries leads
to transdifferentiation of granulosa cells to a Sertoli cell phenotype and upregulation of Sox9 [9],
demonstrating it has a strong antagonistic relationship with Sox9 and is required for maintaining
granulosa cell fate. Furthermore, overactivation of β-catenin in mice testes during development leads
to increased expression of FoxL2 and drives transformation of Sertoli cells to granulosa-like cells [128],
while ectopic expression of FoxL2 in embryonic mouse testes represses Sertoli cell differentiation and
causes partial male-to-female sex reversal [129].

FOXL2 appears to have a role in ovarian maintenance in humans, as mutations in the gene cause
premature ovarian insufficiency [130]. This role of FOXL2 in granulosa cell maintenance is similar
to that of oestrogen [73]. Interestingly, the absence of FOXL2 in goats causes XX sex reversal [131],
suggesting there exists a more critical role for the gene in ovarian determination in some mammals.
Oestrogen is also required for the early differentiation of the ovary in goats [89], further suggesting
a relationship between FOXL2 and oestrogen in mammals. FOXL2 is important for ERβ signalling
in mouse ovary [132], and it has been established that ERs have a close relationship with other
forkhead box transcription factors, as well [133,134]. In particular, ER transcriptional activity in breast
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cancer is dependent on its binding to forkhead box A1 (FOXA1) [135]. Thus, it is likely there exists
a similar interaction between ERs and FOXL2. Together, these ovarian genes establish the identity
of granulosa cells and their continued maintenance, working to suppress the male developmental
pathway, while promoting ovarian differentiation and function.

4.3. Antagonism between Pro-Testis and Pro-Ovarian Factors Drives Sex Determination

Numerous pro-ovary and pro-testis factors in the gonad determination pathway exhibit opposing
effects (Figure 2). This pathway antagonism has led to the establishment of a ‘push-and-pull’ model,
wherein the somatic cells of the gonad are plastic in nature and their fate is dependent on the level of
pro-ovary or pro-testis factors. Indeed, the ability of oestrogen to impact somatic cell fate relies on this
plasticity and takes advantage of the push and pull between gonad developmental pathways.

Wnt4 has an antagonistic relationship with the testis-specific gene Fgf9 and this negative feedback
is thought to be an integral mechanism in establishing either an ovary or testis [112]. However, loss of
Fgf9 does not always cause sex reversal [113] and overexpression of Wnt4; therefore, suppression of
Fgf9, in XY embryonic mouse gonads, affects the formation of testis vasculature and steroidogenesis but
ultimately does not cause sex reversal [136]. The absence of Wnt4 does not significantly change Sox9
expression, suggesting that, when present, Wnt4 is not suppressing the male pathway [10,112,123,137].
In contrast, loss of Rspo1 does lead to upregulation of Sox9, suggesting the expression of Rspo1 and
its downstream action on Ctnnb1 and Wnt4 is critical for suppression of the male pathway. Similarly,
FoxL2 ablation in adult ovaries allows for upregulation of Sox9 in the somatic cells [9], demonstrating
an antagonistic relationship between these factors.

β-catenin, which lies downstream of Rspo1, is suppressed by SRY in vitro in NTERA-2 clone
D1 (NT2/D1) cells, a surrogate human Sertoli cell line [138]. SOX9 can similarly inhibit β-catenin in
chondrocytes [139], but this has not been demonstrated in Sertoli cells. Conversely, β-catenin can
also suppress transcription of Sox9 in embryonic mouse gonads [4] and decrease the abundance of
both SOX9 and AMH in NT2/D1 cells and embryonic mouse gonads [140]. Overall, this antagonistic
relationship between SOX9 and β-catenin presents as a key regulator of gonad differentiation.

More recently, mitogen-activated protein kinase (MAPK) pathways have been revealed to have a
role in sex determination as mediators of the antagonistic relationship between SOX9 andβ-catenin [141].
MAPK cascades are three-tiered, involving initial activation of a MAP kinase kinase kinase (MAP3K) by
extracellular stimuli; activated MAP3Ks phosphorylate MAP kinase kinases (MAP2Ks), which in turn
activate MAP kinases (MAPKs). The three classical MAPK pathways are extracellular signal-regulated
protein kinases (ERK), c-Jun N-terminal kinases (JNK) and p38 MAP kinases. Two pathways, MAP3K4
and MAP3K1, have an interesting role in promoting or suppressing SOX9 or β-catenin, ultimately
impacting the fate of the gonad [141].

MAP3K4 is responsible for a cascade of signalling leading to the initial expression of Sry in mouse
gonads and mice deficient for Map3k4 exhibit male-to-female sex reversal as a result of a decrease
in Sry transcription [142]. Growth arrest and DNA damage-inducible protein γ (GADD45γ) is a
binding factor of MAP3K4 [143] and facilitates the regulation of Sry transcription by the subsequent
phosphorylation of p38 and GATA binding protein 4 (GATA4), allowing GATA4 and FOG2 to bind to
the Sry promoter to upregulate its transcription [144,145]. Thus, the correct activation of MAP3K4 is
required for the establishment of the testis pathway. In contrast, the loss of Map3k1 in the mouse has
little impact on testis development [146], suggesting it is not required for testis determination.

It is unknown what impact loss of MAP3K4 has on testis development in humans, as mutations
are likely embryonic lethal [141]; however, in human testis-derived cells, MAP3K4 can rescue the
suppression of SOX9 caused by gain-of-function mutations in MAP3K1 [147], demonstrating it can
promote the testis developmental pathway. The gain-of-function mutations in MAP3K1 that result in
suppression of SOX9 account for 13–20% of human gonadal dysgenesis cases [141]. These mutations
lead to increased phosphorylation of p38 and ERK1/2 and increased binding of Ras homolog family
member A (RHOA), Rho-associated coiled coil containing protein kinase (ROCK), FRAT regulator
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of Wnt signalling pathway 1 (FRAT1), and MAP3K4, as well as decreased binding of Rac family
small GTPase 1 (RAC1) to MAP3K1. Together, these changes cause stabilisation of β-catenin and
decreased expression of SOX9—thus, the activation of MAP3K1 can promote a shift to ovarian
development [147–149]. This model demonstrates the complex role of MAP3K signalling and related
factors in sex determination [141,147] (Figure 3).
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differentiation and potential non-genomic targets of oestrogen. Pro-testis factors are shown in blue
and pro-ovary factors in purple. (A) In testis development, MAP3K4 together with growth arrest and
DNA damage-inducible protein γ (GADD45γ) promotes expression of SRY, which in turn promotes
SOX9 and testis development. Together with SOX9, glycogen synthase kinase 3β (GSK3β) inhibits
β-catenin activity, blocking ovarian development. (B) In ovarian development, activation of MAP3K1
and MAP3K4 and increased binding of MAP3K1 to RHOA/ROCK promotes phosphorylation of p38
and ERK1/2. Activated ERK1/2 and FRAT1-mediated inhibition of GSK3β promotes stabilisation of
β-catenin and expression of ovarian genes FOXL2 and WNT4. Phosphorylation of β-catenin by AKT
serine/threonine kinase (AKT), protein kinase A (PKA), and p21 (RAC1) activated kinase 1 (PAK1)
promotes its activity and AKT activation reduces the activity of GSK3β. SOX9 is inhibited through the
activity of β-catenin, FOXL2 and RHOA. Potential non-genomic targets of exogenous oestrogen that
could promote granulosa cell fate are indicated by a black border. Adapted from Ostrer 2014 [141].

Research into the core pathways involved in mammalian gonad development has demonstrated
that there are distinct genetic pathways required for the determination of either an ovary or testis.
The expression and activity of these pathways is under the control of numerous factors, including
the MAP3K1 and MAP3K4 cascades. While in normal circumstances these factors work in concert to
reinforce the pre-existing gonad fate, extracellular changes, such as increased oestrogen signalling, can
interfere with their activity. The antagonism between testis and ovary factors further reinforces the
switch in somatic cell fate and altogether demonstrates that the fate of somatic cells in the gonad is
plastic and that they can be influenced to form either a Sertoli or granulosa cell.

5. Targets of Oestrogen in the Gonad

Oestrogen signalling has critical roles in both male and female reproductive development.
Oestrogen can promote a tilt in somatic cell fate from testis to ovary in many vertebrate species, even
in the presence of genetic sex determination mechanisms [150,151]. Mammalian gonad development
follows a robust genetic program and the initial determination of the ovary occurs in the absence of
oestrogen; however, oestrogen is essential for the maintenance of granulosa cell fate and can have
impacts on male reproduction when aberrant oestrogen signalling occurs, demonstrating the plasticity
of these somatic cells. Thus, it is likely oestrogen has a conserved role in mammals in directing somatic
cell fate away from a Sertoli cell and towards that of a granulosa cell.
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Oestrogens are steroid hormones that require the binding of intracellular ERs to exert their
widespread effects on cell function. Three types of ERs exist, the nuclear acting ERα (ESR1) and ERβ
(ESR2), and the membrane bound G protein coupled receptor (GPER). ERα is the primary ER and can
signal via numerous kinase pathways and transcriptional targets [152]. There are two distinct types
of oestrogen signalling: genomic and non-genomic. Genomic oestrogen signalling is considered the
classical pathway and involves either the direct binding of ligand-activated ERs to oestrogen response
elements (EREs) in target DNA sequences [152], or the binding to transcription factors to form a
complex that can then bind to DNA [153]. Non-genomic signalling involves ligand binding to plasma
membrane-bound ERs that can rapidly activate kinase signalling, such as the MAPK pathway [154].

5.1. Non-Genomic Targets of Oestrogen in the Gonad

The non-genomic action of oestrogen has been well studied and both ERα and GPER have been
implicated in the activation of numerous kinases [155]. There is a breadth of pathways that can be
controlled by non-genomic oestrogen signalling but given that activation of ERK1/2 is able to promote
ovarian fate by stabilising β-catenin [147], it presents as a potential target of oestrogen to suppress the
male developmental program in this system. ERK1/2 is present in Sertoli cells, where it has a role in
proliferation, among many other signalling pathways [156]. ERK1/2 can be activated by oestrogen in
a non-genomic manner in breast cancer, bone, and neural cells [157–160]. Brief oestrogen treatment
can also rapidly activate ERK1/2 in NT2/D1 cells to promote the cytoplasmic retention of SOX9 [161],
demonstrating oestrogen can mediate SOX9 on both a non-genomic and genomic level. These results
suggest oestrogen activates ERK1/2 in Sertoli cells to promote ovarian fate through stabilisation of
β-catenin and inhibition of SOX9 (Figure 3). ERK1/2 is highly conserved [162]—thus, activation
of ERK1/2 may be an ancestral mechanism through which oestrogen can direct somatic cell fate in
vertebrates. Indeed, in the tammar wallaby, exposure of the developing gonad to oestrogen leads to
increased expression of MAP3K1 [163], which lies upstream of ERK1/2 and is a critical regulator of the
gonad developmental programs. Mice lacking membrane-bound oestrogen receptors are protected
from the impacts of exogenous oestrogens, such as DES [164], demonstrating this rapid response
to oestrogen via membrane-bound ERs is likely the major way through which oestrogen impacts
gonad development.

Oestrogen can similarly regulate the ovarian factor β-catenin through non-genomic mechanisms.
In neurons [165], human colon cancer cells, and breast cancer cells [166], short term oestrogen treatment
leads to the direct association of ERαwithβ-catenin to promote the activation ofβ-catenin. Furthermore,
oestrogen treatment can dissociate β-catenin from the inhibitor glycogen synthase kinase 3β (GSK3β),
eventually leading to decreased activity of GSK3β through activation of AKT serine/threonine kinase
(AKT) signalling [167]. This suggests oestrogen can target GSK3β to reduce its inhibitory action on
β-catenin. AKT signalling can also lead to direct activation of β-catenin via phosphorylation at serine
(Ser)552 (Figure 3), increasing its transcriptional activity [168]. Oestrogen treatment rapidly activates
AKT in breast cancer cells [169] and neurons [170] through the transmembrane oestrogen receptor
GPER [171]—thus, it is possible AKT may also be activated in Sertoli cells exposed to oestrogen.

Protein kinase A (PKA) also promotes transcriptional activity of β-catenin via phosphorylation
at Ser552, as well as Ser675 [172]. PKA activity is dependent on the levels of cyclic adenosine
monophosphate (cAMP) [173] and can be induced following brief exposure to oestrogen in breast
cancer and uterine cells [174]. PKA further promotes the activity of ERα via phosphorylation [175,176],
suggesting it has a unique relationship in mediating ERα activity. p21 (RAC1) activated kinase 1 (PAK1)
can also phosphorylate β-catenin at Ser675 (Figure 3) in colon cancer cells [177] and can be activated
by oestrogen in breast cancer cells [178], while its transcription is also oestrogen responsive [179].

Altogether, the activation of ERK1/2, AKT, PKA, and PAK1 present as potential targets of
oestrogen to promote ovarian fate in Sertoli cells (Figure 3); however, it is difficult to predict how these
kinases may respond in a different cell type and what impacts their activation would have on other
aspects of the cell. The findings that oestrogen can rapidly activate ERK1/2 to suppress SOX9 [161]
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demonstrates how essential assessing the effects of oestrogen on non-genomic targets is, as this type of
signalling often establishes the changes required for genomic signalling to occur. Furthermore, these
signalling pathways are critical for spermatogenesis and have been linked to male infertility [180],
further supporting the impacts of exogenous oestrogen on non-genomic pathways and declining male
reproductive health.

5.2. Genomic Targets of Oestrogen in the Gonad

Oestrogen can directly inhibit transcription of SOX9 in the red-eared slider turtle (Trachemys
scripta) [181], chicken [182], and the broad-snouted caiman (Caiman latirostris) [183]. In mammals, the
best example of the ability of oestrogen to impact gonad somatic cell fate on a genomic level comes from
research in marsupials. In the tammar wallaby, oestrogen exposure of XY embryonic gonads for 5 days
does not decrease transcription of SOX9; however, it does lead to the cytoplasmic retention of SOX9
protein [11,12] (Figure 4). This suppression of SOX9 activity causes sex reversal and transdifferentiation
of Sertoli cells to granulosa-like cells. These granulosa-like cells exhibit upregulation of ovarian
markers FOXL2 and WNT4 and reduced expression of SRY and AMH [11,12] —thus, oestrogen is able
to tilt the balance from testis to ovarian fate in marsupial gonads.
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Figure 4. Model for the regulation of gonadal genes and SOX9 subcellular localisation by oestrogen in
Sertoli cells. (A) In a normal Sertoli cell SOX9 increases expression of itself and its downstream targets
AMH, FGF9, and PTGDS by translocating from the cytoplasm to the nucleus. PGD2 facilitates the
nuclear entry of SOX9, while FGF9 inhibits WNT4 and there is no expression of FOXL2. (B) Exogenous
oestrogen (E) blocks SOX9 nuclear entry, preventing activation of SOX9 downstream targets. Activated
oestrogen receptors (ERα) and FOXL2 repress SOX9 transcription and, together with β-catenin, promote
expression of WNT4 and FOXL2. WNT4 subsequently inhibits FGF9.

Exogenous oestrogen similarly affects SOX9 subcellular localisation in human testis-derived
NT2/D1 cells, leading to suppression of SOX9 target genes FGF9, PTGDS, and AMH and activation
of WNT4 and FOXL2 [11] (Figure 4). These results demonstrate that oestrogen can influence the
key gonadal factors involved in determining somatic cell fate of the human gonad. The cytoplasmic
retention of SOX9 by oestrogen presents as a mechanism through which oestrogenic EDCs can impact
Sertoli cells and testis development and function. In humans, the requirement for SOX9 nuclear
localisation to drive testis differentiation is well established, and mutations affecting SOX9 import
are associated with DSDs [184]. This mechanism may contribute to infertility in adult males with
elevated oestrogen levels [52]. These findings are important for understanding how disruption to
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ovarian steroidogenesis may impact granulosa cell fate and ovarian maintenance. A loss of oestrogen
signalling—such as in POI and PCOS—could lead to an increase in SOX9 activity and disruption of
granulosa cell fate.

There is further evidence to suggest oestrogen can impact the transcriptional profile of gonad
somatic cells in mice. In adult mouse ovaries, Sox9 transcription can be suppressed by the combined
action of activated ERα and FoxL2 on the SOX9 enhancer TESCO, and this is an important step in
maintaining granulosa cell fate [9]. FOXL2 can also directly activate Esr2 (ERβ) transcription to
suppress Sox9 transcription and promote granulosa cell fate in adult mouse ovaries [132].

The expression of some downstream targets of SOX9 are oestrogen responsive—FGF9 and its
receptor FGFR1 have oestrogen response elements [185,186] and their transcription can be directly
targeted by oestrogen, while AMH undergoes differential regulation in response to oestrogen depending
on cell type. In mature granulosa cells, ERα activation upregulates Amh [187] and its expression
is essential for folliculogenesis in mice and humans [188,189]. In contrast, exposure of male rats to
oestrogenic endocrine disruptors causes a decrease in Amh mRNA levels [190,191], alongside disruption
in testis function. This effect may be due to suppression of Sox9; however, these results demonstrate
Amh expression is a good indicator for disruptions to testis development. Another downstream target
of Sox9, Ptgds, can similarly be inhibited by increased oestrogen signalling in mouse Leydig cells [192]
and hypothalamus [193]. Together, these data demonstrate that oestrogen can target key testis pathway
genes, however, inhibition of SOX9 presents as the most detrimental to testis development given it is
the orchestrator for expression of the essential testis genes.

In contrast, there is less evidence to demonstrate that oestrogen can promote expression of
ovarian factors. As mentioned above, FoxL2 works in conjunction with oestrogen receptors to inhibit
Sox9 expression in the adult mouse and its expression is significantly increased following oestrogen
treatment in wallaby and NT2/D1 cells. FoxL2 KO mice show a decrease in expression of aromatase [194],
further suggesting a link between oestrogen signalling and FoxL2 expression. Long term oestrogen
treatment can increase Ctnnb1 transcription in mouse prostate [195] and uterus [196], and can reduce
the transcriptional activity of AXIN1 (a member of the β-catenin degradation complex) in breast cancer
cells, overall suggesting oestrogen can promote stabilisation of β-catenin [197]. Wnt4 is activated in
rat neurons following oestrogen exposure [198] but this has not been examined in gonads. There is
little evidence that exogenous oestrogen can activate RSPO1 or FST expression in humans and mouse
and these genes did not respond to oestrogen treatment in the tammar wallaby [11,12]. However, it
is possible β-catenin activation by oestrogen could lead to their upregulation in humans and mouse.
Overall, it is highly likely some of these genes are responsive to oestrogen, as their continued expression
is required to maintain granulosa cell fate and therefore to support the production of oestrogen.

6. Conclusions

Defining the mechanisms through which oestrogenic EDCs impact the gonads is essential for
understanding the aetiology of DSDs and how these chemicals can impact reproductive development.
The rapid decline in human reproductive health has been unequivocally linked to increasing exposure
to oestrogenic chemicals in our environment. Here, we have described the known pathways through
which gonadal fate decisions are made and the many ways these pathways can be impacted by exposure
to oestrogenic chemicals. It is now clear that exogenous oestrogen can target both non-genomic and
genomic pathways in the somatic cells of the gonad to affect cell fate decisions and their long-term
maintenance. In particular, oestrogen impacts the somatic cells through alterations to MAPK signalling
and the subcellular localisation of SOX9, leading to suppression of testis genes and activation of ovarian
genes. These effects ultimately disrupt both the development and function of the gonad. Clearly any
EDC that alters oestrogen signalling will profoundly impact gonad development and function.
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Abbreviations

DSDs Differences of sexual development
EDCs Endocrine disrupting chemicals
TDS Testicular dysgenesis syndrome
POI Premature ovarian insufficiency
PCOS Polycystic ovary syndrome
ER Oestrogen receptor
NT2/D1 NTERA-2 clone D1
SOX9 Sex-determining region Y box transcription factor 9
SRY Sex-determining region Y
AMH Anti-Mullerian hormone
FGF9 Fibroblast growth factor
PTGDS Prostaglandin D synthase
SF1 Steroidogenic factor 1
FOXL2 Forkhead box L2
RSPO1 R-spondin 1
WNT4 Wnt family member 4
FST Follistatin
BMP2 Bone morphogenetic protein 2
ERK1/2 Extracellular regulated kinases 1/2
MAP3K Mitogen-activated protein kinase kinase kinase
GATA4 GATA binding protein 4
RHOA Ras homolog family member A
ROCK Rho-associated coiled coil containing protein kinase
RAC1 Rac family small GTPase 1
GSK3β Glycogen synthase kinase 3β
FRAT1 FRAT regulator of Wnt signalling pathway 1
GADD45γ Growth arrest and DNA damage-inducible protein γ

PKA Protein kinase A
AKT AKT serine/threonine kinase
PAK1 p21 (RAC1) activated kinase 1
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