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ABSTRACT Sardinia, Italy, has a high prevalence of residents who live more than
100 years. The reasons for longevity in this isolated region are currently unknown.
Gut microbiota may hold a clue. To explore the role gut microbiota may play in
healthy aging and longevity, we used metagenomic sequencing to determine the
compositional and functional differences in gut microbiota associated with popula-
tions of different ages in Sardinia. Our data revealed that the gut microbiota of both
young and elderly Sardinians shared similar taxonomic and functional profiles. A dif-
ferent pattern was found in centenarians. Within the centenarian group, the gut mi-
crobiota was correlated with the functional independence measurement of the host.
Centenarians had a higher diversity of core microbiota species and microbial genes
than those in the young and elderly. We found that the gut microbiota in Sardinian
centenarians displayed a rearranged taxonomic pattern compared with those of the
young and elderly, featured by depletion of Faecalibacterium prausnitzii and Eubacte-
rium rectale and enriched for Methanobrevibacter smithii and Bifidobacterium adoles-
centis. Moreover, functional analysis revealed that the microbiota in centenarians
had high capacity for central metabolism, especially glycolysis and fermentation to
short-chain fatty acids (SCFAs), although the gut microbiota in centenarians was low
in genes encoding enzymes involved in degradation of carbohydrates, including fi-
bers and galactose.

IMPORTANCE The gut microbiota has been proposed as a promising determinant
for human health. Centenarians as a model for extreme aging may help us under-
stand the correlation of gut microbiota with healthy aging and longevity. Here we
confirmed that centenarians had microbiota elements usually associated with bene-
fits to health. Our finding of a high capacity of glycolysis and related SCFA produc-
tion represented a healthy microbiome and environment that is regarded as benefi-
cial for host gut epithelium. The low abundance of genes encoding components of
pathways involved in carbohydrate degradation was also found in the gut microbi-
ota of Sardinian centenarians and is often associated with poor gut health. Overall,
our study here represents an expansion of previous research investigating the age-
related changes in gut microbiota. Furthermore, our study provides a new prospec-
tive for potential targets for gut microbiota intervention directed at limiting gut in-
flammation and pathology and enhancing a healthy gut barrier.
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Longevity is a complex biological phenotype determined by genetic, epigenetic, and
environmental factors such as diet, lifestyle, and even geographic location (1–4).

These factors have also been shown to affect the gut microbiota in humans (5–8). It has
been demonstrated that gut microbiota is tightly linked to human health and disease
(9). There is evidence showing that the gut microbiome contributes to the regulation
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of host life span in animal models, such as Caenorhabditis elegans, Nothobranchius
furzeri (turquoise killifish), Heterocephalus glaber (naked mole-rat) and Drosophila (10–
13). Moreover, a longitudinal study has also found association between the distinct
metabolomic signatures and longevity of humans (14). Thus, gut microbiota may also
modulate human longevity by affecting the host metabolism. Manipulating the gut
microbiota with diet intervention and calorie restriction (CR) has potential therapeutic
applications for pro-healthy aging intervention (4, 15).

Several groups have used centenarians as a model to study aging and gut micro-
biota (16–22), with most studies focusing on the compositional features of gut micro-
biota. Even though a few studies have examined the metabolic function of gut
microbiota in centenarians (18, 22, 23), metagenomic analysis of metabolic functions
has yet to be fully explored in diverse populations from various geographic regions. The
Mediterranean island of Sardinia is well-known for the unique isolated genomic back-
ground and the high prevalence of centenarians (2, 24, 25). The high prevalence of
centenarians, consistent lifestyle, and low immigration rates make Sardinia an ideal
geographic area for the study of longevity. However, little is known about how the
Sardinian environment and genetic factors influence the gut microbiota in Sardinian
centenarians (26–29). Surveying the gut microbiota in Sardinian centenarians may also
expand our understanding of longevity across global populations.

Here we performed a cross-sectional survey of the gut microbiota in the longevity-
prone population in Sardinia by metagenomic sequencing. In our study, we recruited
65 subjects, divided into three age groups: the young, elderly, and centenarians. We
obtained the taxonomic composition and functional annotation of the gut microbiota
in the different age groups. We also correlated health status with gut microbiota in
centenarians.

RESULTS
Characterization of gut microbiota compositional profiles in the three age

groups. To obtain the taxonomic compositional and functional profiles of gut micro-
biota in the Sardinian population, we recruited a cohort of three age groups: healthy
young (n � 19), healthy elderly (n � 25), and centenarians (n � 21). The clinical char-
acteristics are shown in Table 1 and Table S1 in the supplemental material. A total of
59 qualified stool samples were used to extract microbial DNA for DNA library con-
struction and shotgun metagenomic sequencing. On average, 5.8 Gb data (approxi-
mately 41.3 million high-quality clean reads) were generated per sample. Human
contamination was removed (on average, up to 14% of the total reads) before further
processing. The taxonomic compositional profile was generated using MetaPhlAn2 (30).
We verified our results using the IGC database (31). The workflow is shown in Fig. S1 in
the supplemental material.

The gut microbiota compositional profiles for the three age groups are shown in
Data Set S1 in the supplemental material. At the phylum level, the gut microbiota is
dominated by Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria, which is in
agreement with a previous study using a different cohort (Fig. S2A and B) (32). A lower

TABLE 1 Demographical and clinical characteristics in the three age groupsa

Parameter

Value for parameter, mean � SD (range), for the following age group:

Centenarians (n � 19) Elderly (n � 23) Young (n � 17)

Age (yr) 101.8 � 1.4 (99–107) 76.7 � 5.9 (68–88) 25.5 � 3.5 (21–33)
Male (%) 23.50 43.40 58.8
Weight (kg) 57.1 � 5.7 (43–73) 68.7 � 14.3 (42–103) 63.2 � 3.5 (44–95)
BMI (kg/m2) 23.5 � 2.1 (17.9–28.1) 25.9 � 4.1 (19.5–36.9) 22.8 � 3.7 (16.1–40.1)
MMSE (0,30) 15.8 � 6.7 (5–26) 26.6 � 3.0 (22–30) NA
MNA (0,30) 18.9 � 3.7 (8–26) 24.1 � 2.0 (18–28) 24.6 � 2.1 (20.5–28)
FIM (0,126) 77.5 � 21.1 (31–123) 123.7 � 1.9 (119–126) NA
aThe total number of subjects is 59 excluding individuals with unqualified stool samples (n � 6). BMI, body
mass index; MMSE, mini-mental state examination; MNA, mini-nutritional assessment; FIM, functional
independence measure; NA, not available.
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abundance of Firmicutes was found in the centenarian cohort compared with that in
the elderly cohort (Kruskal-Wallis followed by Dunn’s post-hoc multiple-comparison
test, �2 � 12.893, df � 2, P value � 0.0016; Fig. S2C). Proteobacteria was enriched in
centenarians compared to that in the young and elderly (Kruskal-Wallis followed by
Dunn’s post-hoc multiple-comparison test, �2 � 9.0686, df � 2, P value � 0.0107;
Fig. S2C). As the most abundant two phyla in the gut, the Firmicutes/Bacteroidetes ratio
(F/B ratio) is often used as an index for the structure of gut microbiota; we found that
the F/B ratio was significantly lower in the centenarians than in the elderly (Kruskal-
Wallis followed by Dunn’s post-hoc multiple-comparison test; Fig. S2D).

To explore the gut microbiota composition in detail, we determined the relative
abundance of the dominant genera in the gut microbiota for the three age groups
(Fig. 1A). We observed that the relative abundance of the dominant genus showed
considerable diversity among the three age groups. A lower relative abundance for
Faecalibacterium, Ruminococcus, Corprococcus, and Dorea was observed in the cente-
narians compared with the abundances found in the young and elderly (analysis of
variance [ANOVA] test, P value � 0.05; Fig. S3A) Methanobrevibacter, a dominant Ar-
chaea in the human gut ecosystem, as well as the subdominant genera Pyramidobacter
and Desulfovibrio, were enriched in the centenarians (ANOVA test, P value � 0.05).

To further investigate the similarity of the community structure (at the genus level)
of the gut microbiota for each individual among the three age groups, we used
principal-coordinate analysis (PCoA) based on the Bray-Curtis distance of the microbial
community at the genus level to visualize the distribution and clustering of the
subjects. We found that the three age groups clustered separately (Fig. 1B). The elderly
group cluster overlapped with the young group but showed a slight shift, while the
centenarian group had some centenarians with profiles similar to those of the young
and elderly, but the cluster shifted in a different direction from that of the elderly.
Analysis of similarities (ANOSIM) test using Bray-Curtis distance revealed that no
significant difference in the composition of gut microbiota at the genus level was
evident between the young and elderly (R value � �4.602e�05, P value � 0.464).
However, significant differences between centenarians and the young were observed
(R value � 0.1792, P value � 0.001); significant differences between the centenarians
and the elderly (R value � 0.1707, P value � 0.001) were also observed. Multiple
response permutation procedure (MRPP) analysis revealed that the delta of the young
was 0.65, while that of the elderly was 0.74 and that of the centenarians was 0.76,
showing that within-group distance is larger in the elderly and centenarian groups,
consistent with the size of the ellipses in the PCoA. MRPP also revealed significant
differences in the gut microbiota composition at the genus level among the three age
groups (P � 0.001, A � 0.03). We observed that the distribution of the individuals in the
PCoA was driven by dominant genera (see Fig. S3B to E in the supplemental material).
The genera significantly contributing to the ordination of the samples are shown in
Fig. 1B (EnvFit analysis by permutation test, P value � 0.01). Faecalibacterium, Bacte-
roides, Roseburia, Sutterella, and Parabacteroides are positively correlated and signifi-
cantly contribute to the cluster of the young group, while Eubacterium and Blautia are
positively correlated and significantly contribute to the cluster of the elderly. The
enrichment of Bifidobacterium, Methanobrevibacter, Pyramidobacter, Synergistes, and
Escherichia were detected and positively correlated with the cluster of centenarians.
Interestingly, the enrichment of Bifidobacterium and Methanobrevibacter observed in
Sardinian centenarians was also found in centenarians from Emilia Romagna, Italy (16)
(Fig. S3F). The heatmap of the relative abundance of the genera that significantly
correlate with the cluster of the age groups is displayed in Fig. 1C. Noticeably, eight
centenarians form a cluster in the hierarchical cluster with a high abundance of
Bifidobacterium, Methanobrevibacter, and Escherichia (Fig. 1C).

We next investigated the taxonomic composition at the species level and found the
� diversity of gut microbiota (evaluated by Shannon diversity index and species
richness) was not significantly different among age groups (see Fig. S4A and B in the
supplemental material, Kruskal-Wallis test, P � 0.05). “Core microbiota” is used to
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identify and describe the key microorganisms that are considered to be stable and
permanent within a community (33). Here the core microbiota is defined as microbes
that are present in at least 50% of the samples at the species level. In our data set, we
found that core microbiota in centenarians showed a higher species richness compared
with the young and elderly (Fig. 1D). The relative abundance of the centenarian-specific
core microbe distribution in all three age groups is shown in Fig. S4C in the supple-
mental material. We observed the enrichment of several species belonging to Bacte-
roides, Bifidobacterium, Clostridium, Erysipelotrichaceae, and Lactobacillus in centenari-
ans. The relative abundance of species with significant differences between the three
different age groups is shown in Fig. 1E (Kruskal-Wallis followed by Dunn’s post-hoc
multiple-comparison test, P � 0.05). We observed the low abundance of Faecalibacte-
rium prausnitzii, Eubacterium rectale, and Ruminococcus sp_5_1_39BFAA but a high
abundance of Bifidobacterium adolescentis and Methanobrevibacter smithii in the cen-
tenarian gut microbiota (Fig. 1E).

Potential functional annotations of gut microbiota in the three age groups. To
determine whether the metabolic potential of gut microbiota shows variation within
different age groups, metagenomic sequencing data were processed by the Humann2
pipeline. The relative abundance of gene families and gene pathways was obtained. We
detected 384,425 gene families assigned to 1,924 species. A total of 463 gene pathways
were rebuilt. We compared the mean relative abundance for each of the KEGG
orthology (KO) between different age groups (Fig. S5). We observed that the majority
of KOs present in gut microbiota were in low proportions (�0.02%) (Fig. S5). Further-
more, the young and elderly shared similar abundance patterns (Fig. S5B). Compared
with elderly and young, the centenarians have a lower abundance of most of the
dominant KOs (Fig. S5A and C). The Shannon diversity of KOs and richness of KOs
(defined as the number of KOs detected within each subject) was significantly higher
in the centenarian group than in the young and elderly groups, while in the young and
elderly groups, they were not significantly different (Fig. 2A and B, Kruskal-Wallis
followed by Dunn’s post-hoc multiple-comparison test).

Gut microbiota functional similarities were assessed among individuals by PCoA
based on the Bray-Curtis distance derived from the relative abundance of KOs, as
shown in Fig. 2C and by nonmetric multidimensional scaling (NMDS) based on the
Bray-Curtis distance derived from the relative abundance of gene pathways, as shown
in Fig. 2D. These analyses demonstrated that, consistent with the taxonomic profiles,
the interindividual differences within each age group are larger in the elderly and
centenarian groups (Fig. 1B). The elderly group shared similar functional profiles with
the young group but differed strikingly from the centenarian group (Fig. 2C and D). The
ANOSIM test, using Bray-Curtis distance on the relative abundance of KOs, also revealed
that no significant difference in the KO profiles between the young and elderly were
observed (R value � �0.001716, P value � 0.465). However, a significant difference
between the centenarians and the young (R value � 0.1406, P value � 0.003), and
between the centenarians and the elderly, was observed (R value � 0.1247, P value �

0.004).
Although nearly all the gene pathways we detected were shared by all the age

groups, the dominant pathways were conserved in all individuals (see Data Set S1 in the
supplemental material). For example, the gene pathways for nucleotide biosynthesis

FIG 1 Legend (Continued)
around the centroid of each age group are plotted in PCoA; the age groups are labeled C for the centenarian group, E for the elderly group, and
Y for the young group. The genera that significantly correlated with the ordination in PCoA are shown as arrows (permutation test, P � 0.01), with
the length of the arrow indicating the goodness of fit statistic, squared correlation coefficient. (C) Heatmap of the relative abundance of genera
that are significantly correlated with the separation of the samples in PCoA in the three age groups. The base 10 logarithm of relative abundance
was used as input, and complete linkage clustering was used. The distance matrix was created by the “Pearson” method. (D) Core microbiota
species distribution in the three age groups. The core microbiota is defined as the species shared by more than 50% of the individuals in each
age group. (E) Relative abundance of the species that showed significantly different distributions in the three age groups (Kruskal-Wallis followed
by Dunn’s post-hoc multiple-comparison test, P � 0.05). Values that are significantly different are indicated by a bar and asterisks as follows: *,
P � 0.05; **, P � 0.01.
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and cell wall biosynthesis were highly abundant in all age groups. However, 115
pathways of the 463 pathways had significant variation among the three age groups
(ANOVA test, P � 0.05). Regrouped into four main metabolic functional classes, the
relative abundance of the gene pathways in the three age groups is shown in Fig. 3 and
Fig. S6 in the supplemental material.

Gene pathways involved in central metabolism, including glycolysis, pentose phos-
phate pathways, and the tricarboxylic acid (TCA) cycle, as well as anaerobic respiration,
had a higher abundance in the elderly group compared with that of the young group,
and the abundance was even greater in the centenarian group than in the elderly
group (Fig. 3A, ANOVA test, P � 0.05). Additionally, in the gut microbiota in centenar-
ians, we detected a high abundance of KOs for the phosphotransferase system (PTS)
and the major facilitator superfamily (MFS) system transporters, which can facilitate the
transfer of carbohydrates into the cytoplasm of bacteria (see Fig. S6A in the supple-
mental material). Noticeably, several pathways that were related to the metabolism of
SCFAs were enriched in the centenarian group, for example, the pathways involved in
pyruvate fermentation to propionate I and 2�methylcitrate cycle I and II (propionate
degradation) (Fig. 3A). The anaerobic energy metabolism pathway which is involved in
fermentation to SCFAs (propanoate and acetate) was also higher in the centenarians
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compared to that in the young (Fig. 3A). The abundance of aerobic respiration
pathways was similar for the elderly and young groups but remarkably higher in the
centenarians (Fig. 3A).

Protein and amino acid metabolism-related pathways are shown in Fig. 3B (ANOVA
test, P � 0.05). As expected, gut microbes in the centenarians but not the healthy
elderly exhibited a lower abundance in most of the amino acid biosynthesis pathways
compared with that in the young group. For instance, L-lysine-, L-isoleucine-, and
L-methionine-related pathways are lower in centenarians. Additionally, certain path-
ways related to the aromatic compounds are enriched in the elderly compared with
those in the young, yet enriched to a greater extent in the centenarians. These
pathways include the L-phenylalanine metabolism-related pathways and the choris-
mate biosynthesis II pathway. Interestingly, we found that SCFA production via fer-
mentation of amino acids such as L-lysine fermentation to acetate and butanoate and
L-glutamate degradation VIII (to propanoate), as well as GABA shunt pathway and
4-aminobutanoate degradation V pathway (to butyrate), were also dramatically en-
riched in the centenarian group (Fig. 3B).

Our results also revealed that the relative abundance of the pathways related to
carbohydrate degradation was similar for the elderly and young groups but signifi-
cantly lower in the centenarians, with the exception of the starch degradation III
pathway which is utilized by Archaea (Fig. 3C). Interestingly, the galactose degradation-
related pathways were also remarkably low in the centenarians (Fig. 3C).

Gene pathways related to vitamin metabolism are shown in Fig. S7 in the supple-
mental material (ANOVA test, P � 0.05). We found the centenarian group displayed a
significant enrichment of menaquinone (vitamin K2) gene pathways compared with the
elderly group in gut microbiota. We further noticed that the menaquinone-related
pathway abundance also showed enrichment in the elderly group compared with that
in the young group. Moreover, the riboflavin (vitamin B2) synthesis pathway was also
highly enriched in the centenarians. The gene families specific for Archaea, such as
coenzyme M and F420, were detected as remarkably enriched in the centenarian group
as well (see Fig. S6B and C in the supplemental material). The gene pathway abundance
of thiamine synthesis (vitamin B1) was lower in the elderly and centenarian groups.
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FIG 3 Functional signatures of gut microbiota in the three age groups. Relative abundance of the gene pathways that are significantly different
in the three age groups (ANOVA, P � 0.05). The centenarian group compared with the elderly group (C versus E [C/E]), the centenarian group
compared with the young group (C versus Y [C/Y]), and the elderly group compared with the young group (E versus Y [E/Y]) are shown in each
panel. The length of the bar indicates the base 2 logarithm value of the relative abundance ratio for each age group; 0 represents equal abundance
in the two groups. Gene pathways are grouped in related pathways: central metabolism-related pathways (A), amino acid metabolism-related
pathways (B), and carbohydrate degradation-related pathways (C).
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Correlation between gut microbiota and health status. The demographic and
clinical values for 59 subjects within the three age groups are shown in Table 1. On
average, the entenarians in our cohort scored poorly for diverse health parameters,
including mini-mental state examination (MMSE), mini nutritional assessment (MNA),
and functional independence measure (FIM), compared with the elderly, whose scores
were similar to those of the young (see Table S2 in the supplemental material). Health
parameters may act as covariates and associate with the host gut microbiota compo-
sition. To explore the significance of health covariates, EnvFit analysis was used to
determine the correlation of the health parameters with gut microbiota in centenarians
(Fig. 4, permutation test, P value � 0.05; ordination was performed using PCoA based
on Bray-Curtis distance of relative abundance of species). We found that FIM covariates
were significantly associated with the species level of bacterial community profiles in
centenarians. The length of the FIM arrow indicated that the FIM score might explain
the greatest amount of variance between individuals in the PCoA. This further sug-
gested that centenarians with similar FIM scores tend to have similar gut microbiota
composition. We also observed that age was not significantly associated with FIM,
which further suggested that health in centenarians was not related to chronological
age. The MNA was positively related to FIM, emphasizing the potential importance of
diet for maintaining healthy aging.

DISCUSSION

The gut microbiota has been proposed as an important determinant of human
health (9, 34). Modulation of the gut microbiota is a rapidly emerging field of study and
holds promise for impacting longevity and healthy aging (35). Here we utilized met-
agenomic sequencing to address the compositional and functional features of the gut
microbiota in centenarians and the young and elderly in Sardinia, Italy. The island of
Sardinia is regarded as an ideal geographic location to study longevity due to its
isolated nature, a high incidence of centenarians, a relatively homogeneous population,
lifestyle, and the Mediterranean diet (2, 24, 25, 27). Our study here sought to identify
the gut microbiota community structures at the species level. Since taxonomic com-
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FIG 4 Gut microbiota in centenarians correlates with clinical parameters. PCoA based on the Bray-Curtis
distance derived from the relative abundance of species was plotted for the bacterial microbiota compo-
sition of centenarians at the species level. Each circle represents the value for an individual centenarian in
PCoA, with the FIM index for the centenarian indicated by the color. Clinical parameters, including FIM
(cognitive FIM [FIM_C] and motor FIM [FIM_M]), MMSE, MNA, BMI, age, and medication were used as factors
to show correlation with the ordination configuration by EnvFit analysis. “Medication” indicates the number
of drug types taken daily. The length of lines indicates the goodness of fit statistic, the squared correlation
coefficient. The permutation test was used to test the significance of the fitness; the number of permutation
was 999. Significance symbol: *, P � 0.05; **, P � 0.01.

Gut Microbiome of Sardinian Centenarians

July/August 2019 Volume 4 Issue 4 e00325-19 msystems.asm.org 9

https://msystems.asm.org


position alone does not necessarily provide a complete understanding of community
function for the gut microbiota, we conducted functional analysis of the gut microbiota
to explore the potential metabolic role of gut microbiota in centenarians. Our results
and analysis led us to several main findings and conclusions. We found that the gut
microbiota in Sardinian centenarians displayed a rearranged taxonomic pattern com-
pared with the gut microbiota of the young and elderly, featured by depletion of F.
prausnitzi and E. rectale, and enriched for M. smithii and B. adolescentis. Moreover, we
found that the gut microbiota in Sardinian centenarians have a high capacity for central
metabolism, especially glycolysis and short-chain fatty acid production, although we
found a poor capacity for degradation of carbohydrates. Even though we found
evidence of genes encoding components of several pathways that may provide health
benefits, there are indications that other microbiota features and function in centenar-
ians may contribute to inflammation and gut barrier problems.

The compositional features of the gut microbiota for centenarians have been
described previously using quantitative PCR (qPCR), microarray, and 16S rRNA sequenc-
ing as well as metagenomic sequencing (16, 19–23, 36). We have extended these earlier
studies by identifying the taxonomic composition at the species level and functional
composition at the pathway level using metagenomic sequencing and analysis. We
found that the taxonomic composition in gut microbiota in the young and elderly is not
statistically different. These findings are consistent with those of a study that indicates
the gut microbiota of healthy aged Chinese are similar to those of the healthy young
(37). Furthermore, we found that the gut microbiota composition in centenarians is
statistically different from the gut microbiota in the young and elderly in Sardinia.

A distinctive gut microbiota structure in centenarians has also been demonstrated
in previous studies from Guangxi, China; Emilia Romagna, Italy; and Manipur, India (16,
20, 22, 36). Among the observed gut microbiota features in centenarians found in these
studies and in our study, some features were noted to be unique to defined popula-
tions from specific geographic locations; for example, the enrichment of Methanobre-
vibacter and Bifidobacterium in centenarians detected in our cohort was also found in
the Emilia Romagna, Italy cohort (16). However, the enrichment of Methanobrevibacter
and Bifidobacterium was not found in the Sichuan and Guangxi cohorts in China or in
a national Japanese cohort and a Manipur, Indian cohort (19–22). Although Akkerman-
sia was enriched in the centenarians from Emilia Romagna, Italy, and Manipur, India (16,
22), it was found in low abundance in centenarians in our cohort and in the Guangxi,
China cohort (20). Overall, the previous studies on gut microbiota in centenarians reveal
that the gut microbiota in long-living peoples have diverse features, which may be a
consequence of various adaptations of the gut microbiota to aging in different geo-
graphical locations where different populations are under the influence of diverse
genetic, dietary, physiological, and environmental conditions. It must also be pointed
out that different methodologies for recruitment of subjects, collection and processing
the samples, and analysis of data may contribute to differences observed between
different centenarian populations. Nevertheless, we also observed several features that
appear to be more universal, such as the low abundance of Faecalibacterium in
centenarians (16, 20–22, 36), as well as the enrichment of Methanobrevibacter and
Desulfovibrio, which both belong to electron acceptor species. Methanobrevibacter and
Desulfovibrio were found enriched in our and other centenarian cohorts and enriched
in the long-living naked mole-rat animal model (12, 16, 21, 22). Furthermore, Escherichia
coli, which was reported to be enriched in centenarians from Emilia Romagna, Italy;
Guangxi, China; and Japan, was also enriched in our cohort (20, 21, 36). The shared
microbiota features and the impact on centenarian heath are not clear at this time.

Beyond taxonomic composition, our metagenomic data provided the opportunity
to functionally annotate the gut microbiota. We examined the age-related metabolic
functional variations in the gut microbiota from the young, elderly, and centenarians
and found that the gut microbiota is functionally similar between the young and elderly
but is different for centenarians. Biodiversity of the gut microbiota community is
frequently used to indicate the function and stability of the gut ecosystem (38, 39). The
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significantly higher � diversity of KOs in centenarians compared with the microbiota
from the young and elderly indicates functional diversity and plasticity in the cente-
narian gut microbiota. Our study not only highlighted the specific metabolic patterns
regarding carbohydrate metabolism and central metabolism of gut microbiota in
centenarians but also revealed the specific distribution of several metabolic pathways
that have a critical role in host health and aging.

In Sardinian centenarians, we found an enrichment of genes encoding components
of glycolysis-related pathways in the gut microbiota. The high abundance of sugar
membrane transporters in the centenarian gut microbiota indicates the potential for
increased microbe uptake of simple sugars in the gut lumen, providing the initial
substrate for glycolysis. Previous studies have indicated that Lactobacillus and Esche-
richia have high glycolysis capability (40), and in our study, the enrichment of gene
pathways related to glycolysis correlated with the enrichment of Lactobacillus and
Escherichia in centenarians. Previous studies have shown that M. smithii can cooperate
with the Bacteroides to enhance fermentation (41). The electron acceptors M. smithii
and Desulfovibrio were found to be abundant in centenarians by us as well as others
(16, 21, 22). The presence of these bacteria may aid in the elimination of fermentation
products that limit glycolysis. These previous studies and our findings sugges thatt
glycolysis may be enhanced in centenarian populations.

Glycolysis-derived pyruvate is a key metabolite for biosynthesis of SCFAs from
carbohydrate fermentation and bacterial cross-feeding (42). Pyruvate is the major
precursor of fermentation products for the synthesis of the three major SCFAs, acetate,
propionate, and butyrate (42). SCFA formation can also take place from organic acid
and amino acid metabolism (43). SCFAs have been shown to have important functions
in the human host; for example, they serve as energy substrates for colonocytes, and
the oxidation of SCFAs by colonocytes plays a critical role in maintaining luminal
oxygen levels (42, 44, 45). SCFAs also can protect the mucous layer and enhance the
secretion of mucus (46). SCFAs also can act as ligands for G-protein-coupled-receptors
(GPCRs), directly activating GPR43 and GPR41 to release peptide YY (PYY) and
glucagon-like peptide 1 (GLP-1), which in turn play important roles in the regulation of
food intake and insulin secretion (47). SCFAs also act as signaling molecules by
inhibiting histone deacetylases, which are related to anti-tumor and anti-inflammation
functions by regulating macrophages, dendritic cells, regulatory T cells (Tregs), and
B-cell IgA production as well as cytokine expression in T cells (47–52). Thus, SCFAs are
important for the maintenance of gut health and homeostasis. Enhanced glycolysis may
lead to increased production of SCFAs. For example, genes encoding components of
the pyruvate fermentation to propionate pathway are enriched in our centenarian
cohort. Moreover, we found the enrichment of pathways that produce SCFAs by protein
and amino acid fermentation in the gut microbiota of centenarians. Specifically, we
found significant enrichment of the 2-methylcitrate cycle pathway, the L-lysine fermen-
tation to acetate and butanoate pathway, and the L-glutamate degradation VIII path-
way in the gut microbiota in centenarians. In addition, pathways involved in butyrate
production, such as GABA shunt and 4-aminobutanoate degradation V were also
enriched in the gut microbiota in centenarians. Overall, the gut microbiota in cente-
narians appear to have the potential of enhancing SCFA production. It is noteworthy
that previous studies have indicated that the amount and relative abundance of SCFA
may be considered biomarkers of a healthy status (53, 54). Interestingly, previous
studies also have demonstrated higher levels of SCFAs in stool samples from cente-
narians than in stool samples from the elderly (4, 22). Thus, the enhanced capability of
SCFA production in centenarians suggests that the SCFAs may enhance the gut barrier
function and reduce inflammation with aging. However, the hypothesis of enhanced
SCFA production in Sardinian centenarians will be explored in the future through direct
measurement of SCFAs in fecal and blood samples.

We also observed several gut microbiota traits that may affect the health of
centenarians. The enrichment of reported probiotics such as Bifidobacterium was
detected in the centenarians. B. adolescentis and B. longum are the most abundant
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species belonging to Bifidobacterium. Noticeably, only B. adolescentis was highly en-
riched in the centenarians and young compared with the elderly in our cohort. B.
adolescentis has been shown to directly influence Th17 cell generation (55). These
interleukin 17 (IL-17)-producing T cells have a yin and yang effect on gut inflammation:
on one hand, in their absence or in the absence of IL-17 signaling, gut dysbiosis is
increased, but on the other hand, Th17 cells are associated with inflammatory bowel
disease (IBD) and can exacerbate arthritis in mice (55, 56). The role B. adolescentis plays
in the Th17-inflammation axis and mucosal immunity in centenarians is unknown. The
significant enrichment of B. adolescentis in centenarians suggests a possible association
between gut microbiota and inflammatory status in the gut of centenarians. Interest-
ingly, a previous study has shown the high levels of proinflammatory cytokines IL-6 and
IL-8 in centenarians (36).

M. smithii was reported to correlate with the consumption of milk products and
perform specialized functions beneficial to the host (57, 58). Previous studies have
shown that M. smithii can decrease the level of trimethylamine (TMA) which has been
shown to correlate with clot-related events such as heart attacks and strokes (41,
59–61). Interestingly, coenzyme M- and F420-related gene families were significantly
enriched in the centenarian group in our study; these enzymes are critical for decreas-
ing TMA via methanogenesis (62). We also observed the enrichment of genes encoding
components of the menaquinol biosynthesis and flavin biosynthesis pathways in
centenarians. Menaquinol is important for bone and heart health (63–65), whereas
riboflavin, an essential nutrient that cannot be synthesized by mammals, participates in
a diversity of redox reactions central to human metabolism (66).

We found that the gut microbiota of centenarians have lower abundance of genes
encoding components involved in the degradation of complex carbohydrates, which
correlates with the significantly lower abundance of F. prausnitzii, R. sp_5_1_39BFAA,
and E. rectale in the gut compared with the young and elderly. These three species are
capable of utilizing complex carbohydrates in the gut (67). Our pathway analysis
specifically showed a lower abundance of genes encoding components of pathways
involved in degradation of dietary fiber such as starch, pectin, and cellulose. The
fermentation of fibers in the gut starts with the breakdown of polysaccharides into
simple carbohydrates that are used to produce pyruvate by glycolysis (68). Dietary fiber
has been found to be critical for gut function (42, 67, 69). The long-term effect of low
dietary fiber intake results in decreased microbiota diversity, decreased SCFA produc-
tion, and gut barrier disruption (70–72). The poor capacity for fiber degradation in the
centenarian gut microbiota suggests that the dietary fiber-deprived gut microbiota in
an extreme-aging population may contribute to the risk of inflammation and gut
barrier disruption (36, 73). Moreover, we found that the centenarian gut microbiota also
has lower gene pathway abundance involved in the degradation of another carbohy-
drate, galactose. The decrease in galactose metabolism may contribute to the high
incidence of cataracts frequently reported in centenarians (74–77). The impact of poor
carbohydrate degradation capability on the health of centenarians is not clear at this
time; however, future dietary intervention studies targeting nondigestible fibers may
help better define health outcomes and diet in Sardinian centenarians.

Overall, our findings based on metagenomic data and previous studies support a
working model (Fig. 5) where the centenarian gut microbiota is enhanced in genes
encoding components involved in glycolysis and SCFA production, although the
microbiota is deficient in carbohydrate degradation genes. The high abundance of B.
adolescentis, M. smithii, Escherichia, and Lactobacillus along with the lower abundance
of F. prausnitzii, R. sp_5_1_39BFAA, and E. rectale support this working model in
taxonomic composition. In agreement with previous studies which underscored SCFAs
as important gut microbiota metabolites in centenarians (20, 22, 23, 36), we hypothe-
size that increased SCFA production via glycolysis and related pathways as well as
amino acid fermentation in the centenarian gut microbiota could be a pivotal beneficial
factor for healthy aging and contribute to longevity.

How and when centenarians acquire their specific gut microbiota are still unknown.
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There are several factors that may contribute to the observed variations between
centenarians and the young and elderly, such as host physiological decline, dietary
changes, decline of immune function, increased inflammation, and genetics. Exercise,
medication, lifestyle, and health status are all likely important factors as well. Diet is a
pivotal factor that regulates the gut microbiota (5, 54, 78). In centenarians, diet could
differ substantially from the diet of the young and elderly due to physiological changes.
Reduced gastrointestinal tract function and a reduced ability to masticate certain foods
may alter food preference and eating habits. A reduced ability to taste and smell may
also alter food preferences (79, 80). Although our study lacks detailed dietary informa-
tion, the Mini Nutritional Assessment (MNA) of centenarians showed a risk for malnu-
trition similar to what has been found in previous studies (81, 82). It is possible that a
low capacity for carbohydrate degradation in centenarians reflects an adaptive conse-
quence of gut microbiota under the influence of a long-term low-fiber diet. Inflamma-
tion related to aging (83), which can cause gut luminal oxygen levels to rise (84), may
promote aerobic respiration in the gut. We observed aerobic respiration pathway
enrichment in centenarians. Health status also acts as a covariate of the gut microbiota
in centenarians. Previous research suggests that health status, including frailty and
inflammatory status of the elderly, closely correlates with the composition of gut
microbiota and diet (54, 85, 86), as the gut microbiota structures were similar in
individuals with similar health status.

Our study analyzed the gut microbiota composition at the species level and
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FIG 5 The working model of gut microbiota in Sardinia centenarian. The schematic diagram showing the compositional and functional features in the gut
microbiota in Sardinian centenarians that had a predicted longevity association. Observed high abundance (red) or low abundance (blue) of compositional
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metabolic function at the community level. Resolution at the strain level must be
conducted to assess the contribution of the gut microbiota to metabolic function (87).
Furthermore, surveying the gut microbiota by metagenomic sequencing of fecal
samples had a limitation: we were unable to separate the viable microbes from the
nonliving microbes. For example, the anaerobes that have different abundances in the
colony and fecal material may be due to oxygen exposure during defecation and
sample processing. Metatranscriptomics and metaproteomics can detect gut microbi-
ota at the gene and protein expression levels (88). Such multi-omics approaches will be
integrated into further studies. Last, if we want to demonstrate the causative role the
strains play in longevity, we should perform follow-up mechanistic studies with differ-
ent environmental and dietary conditions in defined animal models.

In summary, the taxonomic and functional profiles we observed in the gut micro-
biota in Sardinian centenarians revealed the complex and adaptable nature of the gut
ecosystem. The gut microbiota in Sardinian centenarians display the potential health-
promoting signatures that are involved in the high capability in glycolysis and SCFA
production, which could boost longevity, and also show the aging-related “inflamma-
tion” trails that may relate to low capability in complex carbohydrate degradation
which could be maladaptive to the extreme aging. Our study here represents a useful
and important expansion of previous research investigating the gut microbiota in
centenarians, highlighting the possible features of gut microbiota that could identify
important health-related function in Sardinian centenarians, providing new prospective
targets for gut microbiota and host physiology research in the future.

MATERIALS AND METHODS
Subject recruitment and clinical information collection. We recruited 65 subjects in Sardinia, Italy,

as part of the AKEntAnnos (AKEA) project that is studying the extreme longevity in Sardinia (24). Ethical
approval was provided by the Institutional Local Ethics Committee, Azienda Sanitaria Locale n.1 of
Sassari, Italy. The donors were volunteers recruited from the longevity AKEA project, and participants
gave written consent. Subjects were divided into three age groups: young, elderly, and centenarian.
Exclusion criteria for the young group and the elderly group included the following: (i)history of chronic
medical conditions (diabetes, hypertension) and (ii) use of antimicrobial medication (antibiotic or
antifungal treatments) 1 year before sampling. Clinical history, medical history, and anthropometric
measurements were collected based on the self-report (for elderly) and health care numbers (for
centenarians). The clinical and nutritional data were collected as described in the AKEA study (24). MNA
to assess malnutrition, MMSE to evaluate cognitive status, and FIM to assess disability and healthy
parameter records were also recorded.

Sample collection and DNA extraction. Fecal samples were collected by the participants at home.
Participants were provided with a stool specimen collection tube. After the study participant passed
stools, the participant used a spoon to collect about 1 g stool sample by scraping off the outer layer of
solid feces and collecting the central part into the tube. Samples were immediately frozen at home at
�20°C and collected by laboratory personnel within 6 weeks. Long-term storage of samples was in
�80°C freezers located at the University of Sassari. Stool metagenomic DNA was extracted according to
the manual instructions for the QIAamp DNA Stool Mini kit (Qiagen) with some modifications. Briefly,
200 mg of stool was suspended in 1.4 ml of ASL buffer and 0.4 g of 5-mm zirconia beads (Sigma) was
added. Then each sample was subjected to a bead beating step using Biosan for a maximum of
3,000 rpm for 30 min. Samples were heated at 95°C for 5 min and then centrifuged for 5 min at
13,000 rpm to pellet stool particles. Next, 1.2-ml supernatants were collected, and the InhibitEX tablet
was added, followed by incubation at room temperature (RT) for 1 min and centrifugation at 13,000 rpm
for 3 min; then 15 �l proteinase K and 200 �l AL buffer was added to 200 �l supernatant and incubated
at 70°C for 10 min. Two hundred microliters of absolute ethanol was then added to the mixture, vortexed,
and loaded on QIAamp Mini spin columns. The columns were washed with AW1 and AW2 buffer per the
QIAamp DNA Stool Mini kit instructions. The DNA was eluted with 200 �l TE buffer. Finally, the DNA
concentration was determined by using NanoDrop ND-1000 (NanoDrop Technologies).

Shotgun metagenomic sequencing. Illumina libraries were prepared with 100 ng of input DNA,
using KAPA Hyper Prep kit (Kapa Biosystems) following the manufacturer’s instructions. Libraries were
quality checked by KAPA Library Quantification kit (Kapa Biosystems) and 2100 Bioanalyzer (Agilent). The
qualified Illumina libraries were then transported on dry ice to BGI-Shenzhen for paired-end meta-
genomic sequencing which was performed on an Illumina HiSeq X10 PE150 platform (with an average
insert size of 350 bp). The sequence reads were first filtered by the in-house pipeline at BGI-Shenzhen.
A total of 6.2 � 109 clean reads (Q20 percentage 95%) were generated for 59 samples.

Bioinformatics and statistical analysis. (i) Bioinformatics for shotgun metagenomic sequenc-
ing. Clean reads were mapped against the human genome (hg19) with BWA (version 0.7.12) to remove
human contamination (89). The filtered, clean reads were used as input for further analysis. The profiles
of microbiota composition were predicted using MetaPhlan2.0, and gene family profiles and pathway
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profiles were predicted using HUMANN2 with default parameters (30, 90). The gene family profile was
normalized by reads per kilobase, annotated to the UniProt Reference Cluster (UniRef90). Further
pathway mapping and regrouping were performed using the MetaCyc metabolic pathway database. The
gene family profile was regrouped to the orthologous groups using the KEGG database. Gene pathways
were calculated from the constituent gene family abundance for each individual. We also used the
integrated catalog of reference genes in the human gut microbiome (IGC) as a reference for mapping our
clean reads; the IGC gene catalog is a published, high-quality reference catalog generated from
thousands of subjects around the world (31). BWA (version 0.7.12) was used for the mapping of the clean
reads to the IGC gene catalog. Samtools (version 0.1.19) was used to determine the matching results (31).
On average, 74% of sequencing reads successfully mapped to the IGC database, with 2.5 � 107 properly
paired reads for each subject. The annotation results were compared with HUMANN and IGC methods
to validate data analysis.

(ii) Statistical analysis. All statistical analyses were performed using R software (version 3.4.2).
Multivariate analyses of community diversity, including PCoAs and NMDS were performed using ade4
and vegan (version 2.5-1) and visualized using ggplot2 and ggpubr. The Shannon diversity index and
species richness were calculated using the same package. The Bray-Curtis distance matrix was used as a
similarity index. Hierarchical clustering method in heatmap is complete, and the distance matrix is
created by Pearson correlation. ANOVA followed by the Tukey-Kramer multiple-comparison test or
Kruskal-Wallis test followed by Dunn’s post-hoc multiple-comparison test were used to determine
whether significant differences existed between multiple groups (91). Welch’s two-sided t test was used
for the analysis of variances of two groups. Similarities among groups were detected by MRPP and
ANOSIM methods using 999 permutations to test the significance. The MRPP statistic delta is simply the
overall weighted mean of within-group means of the pairwise dissimilarities among each age group. The
effect size and significance of covariate (referred to genus and healthy parameters, respectively, in Fig. 1
and 4) were determined by the envfit function in vegan. Ordination was performed using PCoAs based
on Bray-Curtis dissimilarity. The significance value was determined based on 999 permutations.

Data availability. All data are available in ENA under study accession number PRJEB25514.
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