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a b s t r a c t

Background: Viruses cause many life threatening human diseases. Recently, COVID-19 pandemic has
challenged the health care systems worldwide. As a disease preventive approach and to bring relief to
the severity of the symptoms, a infusion termed as Bhabha Anti-Viral Infusion-23 (‘BhAVI-23’) was
conceptualized and formulated which comprised of 23 selected spices and herbals.
Objective: The present study was conducted to assess the in vitro antiviral potential of the formulation,
BhaAVI-23.
Material and methods: The in-vitro anti-viral potential of BhAVI-23 was assessed through inhibition of
HIV1 reverse transcriptase (RT) as well as through a novel P1 (virulent) bacteriphage based screening
assay system. Anti-diabetic potential was assessed by non-enzymatic glycosylation of haemoglobin and
the bioactive volatile components were detected through headspace gas chromatography followed by
molecular docking analysis.
Results: The infusion displayed prominent anti-viral activity as evident from significant (57%) inhibition
of the HIV1-RT as well as through reduction in the infectivity of P1 (virulent) bacteriophage. The infusion
also exerted profound protection (~64%) to non-enzymatic glycosylation of haemoglobin. Headspace gas
chromatography and mass spectrometric analysis confirmed the presence of at least 47 major com-
pounds. Docking analysis indicated possible interaction of a-pinene and eugenol with SARS-CoV spike
protein.
Conclusion: This ‘BhAVI-23’ infusion displayed prominent in-vitro anti-viral and anti-diabetic potential in
different model systems. These attributes have relevance as diabetic patients are more prone to COVID-
19 morbidity. ‘BhAVI-23’ opens the avenue for its potential inclusion as a supportive health care system
upon due regulatory approval during the current pandemic.
© 2021 The Authors. Published by Elsevier B.V. on behalf of Institute of Transdisciplinary Health Sciences
and Technology and World Ayurveda Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Viruses are known to be responsible for various human patho-
geneses and recently, the coronavirus breakout was notified as a
Public Health Emergency of International Concern and subse-
quently a pandemic by the WHO. COVID-19 pandemic, caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
challenged health care systems worldwide [1,2]. SARS-CoV-2 is an
enveloped coronavirus that possess single-stranded plus sense RNA
ary University, Bangalore.
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genome and its cellular attachment is mediated through interaction
of specific viral surface proteinwith cell surface ACE2 receptor [3,4].
Typical symptoms shown by the COVID-19 patients include
coughing, chest congestion, fever, lung damage as well as some
other associated systemic disorders [5].

Therefore a wide range of health preventive strategies are being
deployed and one of the main treatment modalities in the absence
of specific anti-COVID therapeutics is supportive care only. Under
such prevailing circumstances, ancient system of Indian comple-
mentary herbal medicine ‘Ayurveda’ has the potential to provide
relief to the patients through various mechanisms as well as
boosting the immune system [6,7]. Based upon the scientific &
medicinal information documented in ‘Charak Samhita’ and
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‘Sushruta Samhita’ many herbals could exert health benefiting ef-
fects including anti-viral, anti-pyretic, anti-inflammatory, anti-
haemorrhoid and anti-emetic properties [8]. Realizing the health
benefiting properties associated with herbal medicine, WHO has
indicated that traditional medicine could have important contri-
butions towards achieving health security to the global population
[9]. The Ministry of AYUSH, Government of India, has also released
an advisory to deploy the Ayurvedic, Homeopathic and Unani ways
of managing the COVID-19 pandemic and listed out a number of
herbs and other combinations that could be adopted for countering
the COVID-19 infection and subsequently suppression of associated
life threatening symptoms [10]. Many individuals are increasingly
turning to ayurvedic medicines and herbal products to augment
their immunity [11]. Also, as the COVID-19 severity has been re-
ported to be higher in people with diabetes, therefore inclusion of
anti-diabetic-herbals in the treatment regime has been duly
considered.

In these contexts, as an add-on supportive system and from
disease preventive and health benefiting point of view, a spice-herb
infusion named as ‘BhAVI-23’ (Bhabha Anti-Viral Infusion-23)
comprising of 23 ingredients has been conceptualized & formu-
lated. The basis of inclusion of these selected herbals & spices is
reported scientific evidences [12e36]. This formulation is proposed
to have broad-spectrum in-vitro antiviral attributes and anti-
diabetic activity, therefore a prospective counter-measure for the
betterment and symptomatic relief of patients suffering from
COVID-19.

2. Materials and methods

2.1. Preparation of ‘BhAVI-23’ infusion

Different spices and herbals (23 in nos.) were used to prepare
‘BhAVI-23’ mix. Many of these were picked from the centre’s
botanical garden and whole spices were procured from authentic
spice whole-seller in Mumbai, Maharashtra, India registered with
Food Safety & Standards Authority of India (FSSAI). Thoroughly
washed and solar dried ingredients were powdered and strained.
All the 23 ingredients were added in a proportion (total wt. 57.85 g)
as detailed in Table S1. For preparation of infusion, approximately 1
small tablespoon (~1 g) of the powder was suspended in ~200ml of
water. This suspensionwas further boiled for 5 min and strained to
obtain ready-to-be consumed hot beverage.

2.2. Assessment of the anti-viral potential

2.2.1. Anti-retroviral assay
2.2.1.1. HIV reverse transcriptase inhibition assay. The anti-
retroviral potential of ‘BhAVI-23’ extract was assessed through
the colorimetric reverse transcriptase (RT) inhibition assay kit
(Roche, Switzerland). This colorimetric assay utilizes the property
of reverse transcriptase enzyme to synthesize fresh DNA from the
template/primer hybrid incorporating digoxigenin and biotin
labeled nucleotides. As ameasure of the RTactivity, the detection as
well as quantification of the newly synthesized labeled DNA is
achieved through enzyme-linked immunosorbent assay (ELISA).
The surface of the microplate is precoated with streptavidin which
serves as a high affinity binding platform for the biotin-labeled
DNA. Subsequently, the bound DNA is subjected to antibody
treatment inwhich the specific antibody to digoxigenin conjugated
with peroxidase (anti-DIG-POD) gets bound to the digoxigenin
labeled DNA that is already affixed to streptavidin. For the detec-
tion, 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)
is added that serves as a chromogenic substrate for the POD which
oxidizes it leading to the formation of a colored reaction product
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(stable green radical) whose absorbance (at 405 nm) is quantified
in an ELISA reader.

Reactionmix consisted of 20 mL diluted HIV-1-RT (6 ng) towhich
20 ml of ‘BhAVI-23’ extract was added with varying concentrations.
The mixture was incubated for 5 min followed by addition of 20 ml
of reaction mixture containing dNTPs, template and primers in a
reaction buffer. The samples were incubated (1 h at 37 �C) at room
temperature. HIV-1-RT (6 ng, 20 mL) without any extract acted as a
positive control. Post incubation, whole reaction mix (60 mL) was
transferred into streptavidin coated well of micro-plate, and
mixture was further incubated (1 h, 37 �C) in dark. After the
removal of solution, wells were gently washed using washing
buffer. 200 mL working solution of anti-DIG-POD (digoxigenin-
peroxidase) was added per well followed by plate incubation
(37 �C, 1 h). After the incubation, the wells were washed with
washing buffer. Finally, to each well 200 mL of ABTS substrate so-
lutionwas added and the plate was incubated at room temperature
for 45 min. Quantification of the sample absorbance was done
employing a microplate reader at 405 nm.

2.2.2. P1 bacteriophage based qualitative screening assay
Anti-viral potential of the infusion was also evaluated using a

novel P1 (virulent) bacteriophage system. The P1 (virulent) bacte-
riophage is known to form plaques in host bacteria through host
cell lysis. This property was employed to assess infectivity lowering
potential of ‘BhAVI-23’ infusion against P1 virulent phage. Four
different experimental conditions were set: A) Escherichia coli; B)
E. coli þ P1 (vir) lysate; C) E. coli þ P1 (vir) lysate þ ‘BhAVI-
23’extract (1.75%); D) E. coli þ ‘BhAVI-23’extract. These cultures
were incubated (1 h, 37 �C) followed by pour plating using soft agar
on LB agar plates. These plates were then incubated at 37 �C for 24 h
for qualitative evaluation of the antiviral property of the ‘BhAVI-23’
extract.

2.3. Assay for anti-glycation property of infusion

Haemoglobin (Hb) undergoes non-enzymatic chemical linkage
with sugars including glucose leading to the formation of glycated
Hb and under hyperglycemic conditions the level of glycated Hb
significantly rises. Therefore, the anti-diabetic potential of the
‘BhAVI-23’ infusion was assessed through non-enzymatic glyco-
sylation assay of haemoglobin (Hb) [37]. The solutions of ampicillin
(0.02%), glucose (2%), and haemoglobin (0.06%) were prepared in
phosphate buffer (0.01 M, pH 7.4). Later, 1 ml each of these solu-
tions weremixed followed by addition of 1 mL of ‘BhAVI-23’ extract
at varying concentrations. The reaction mixture was incubated
(72 h in dark) at room temperature followed by spectrophotometric
measurement of haemoglobin glycosylation at 520 nm. Percentage
inhibition of glycosylation was calculated based upon the absor-
bance of the samples along with control (without any extract).

2.4. Headspace gas chromatography-mass spectrometric analysis
(HS-GCMS)

Headspace gas analysis was performed as per the method re-
ported earlier [38]. A 15 ml of herbal extract (0.55%) was prepared
(section 2.1) and taken in 40 ml SPME vial. In this extract 4.5 g of
NaCl was added. 2-octanol (82 mg/L) was added as an internal
standard. Samples were kept on a magnetic stirrer and equilibrated
(10 min, 40 �C). Extraction was performed at 40 �C for 10 min
employing a pre-conditioned (250 �C, 5min) 50/30 mm poly-
dimethylsiloxane carboxen/divinyl benzene solid phase micro
extraction fiber. Extracted volatiles were injected in GC/MS by
desorbing the fibre on the injection port kept at 250 �C for 2 min.
The analytical procedure was performed on GC/MS having GC
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capillary column Rxi-5 ms (l: 20 m, inner diameter: 0.18 mm, film
thickness: 0.18 mm). Helium gas served as a carrier gas. The injector
port was equipped with inlet liner (0.75 mm ID, Supelco)
compatible for solid phase micro-extraction analysis. With a split
ratio 5, the injections were done. Initial temperature setting of GC
was 40 �C (hold time 3.2 min) which was further raised to 200 �C
(rate of increase: 6.2 �C/min) and subsequently to 280 �C
(15 �C/min) which was further maintained for 7 min. The
massespectrometry parameters were: ionization voltage (70 eV),
electron multiplier voltage (1 kV), and m/z 35e500. The identifi-
cation of the detected peaks was performed by comparing the
Kovat retention indices based on a homologous series of n-alkanes
(C5eC24) with that of standards and also from the MS data
accessible in the mass spectral library (NIST/EPA/NIH, 2014
version). Internal standard was used for evaluating the peak areas
of the targeted volatile compounds.

2.5. Representative molecular docking study using a-pinene,
eugenol and SARS-CoV spike protein

A representative molecular docking study was performed using
Auto-dock Vina wizard. Ligands (a-pinene and eugenol) were
downloaded from ChemDB Chemoinformatics Portal. The SARS
CoV-2 spike protein structure file (PDB ID 6xr8) was accessed and
downloaded from the website of protein data bank. The protein
molecule was processed using AutoDock tool. Water molecules and
other associated ions were selectively eliminated whereas polar
hydrogens were added to the spike protein molecule. Processed file
was saved in *.pdbqt format. Region specific docking of a-pinene as
well as eugenol was performed with SARS-CoV-2 spike protein.
AutoDock Vina parameters for spike protein (PDB ID 6xr8) were:
center_x ¼ 198.0, center_y¼ 198.0, center_z¼ 191.9, size_x ¼ 28.0,
size_y ¼ 27.8, size_z ¼ 28.0. The interaction was viewed in PMV
viewer ver.1.5.6.

3. Results

3.1. Composition of herbal mixture ‘BhAVI-23’

‘BhAVI-23’ infusion was prepared using 23 different spice &
herbs based upon the reported scientific evidences as detailed in
Table S1 [39,40]. Their relative proportion was properly selected
based upon their pharmacological properties and recommended
dosage for an adult individual as shown in Tables S1 and S2
[12e36,39,40]. Ingredients were grouped in 4 different cate-
gories: major (4e6 g), medium (2e3 g), minor (1e1.5 g) and trace
ingredients (0.1e0.5 g). Besides, the major pharmacological bene-
fits of ‘BhAVI-23’ ingredients (based upon earlier scientific findings)
are summarized in Table S2.

3.2. ‘BhAVI-23’ infusion possesses broad spectrum anti-viral
property

3.2.1. Anti-retroviral potential
This assay was performed with major (A), medium (B), mi-

nor (C), trace (D) and total (T1: 1.4% and T2: 2.8%) components
of ‘BhAVI-23’ mix (Table 1). The extracts displayed prominent
RT inhibition and the extent of RT inhibition was found to be
30, 37, 36, 30, 47, 56%, respectively (Fig. 1 A, B). These obser-
vations also indicated about the possibility of synergism being
shown at the level of HIV1-RT inhibition by the components of
the ‘BhAVI-23’.

The retroviruses such as HIV, HTLV-1, HTLV-II are also impli-
cated in several life threatening human diseases and the retroviral
family member has a characteristic reverse transcriptase [41].
314
Involvement of this reverse transcriptase is a prerequisite in the
initial stages of propagation including proviral DNA synthesis and
thus many anti-retroviral therapeutic regimes target the reverse
transcriptase enzyme.[42, 43] Therefore assaying the extract for
the anti-reverse transcriptase activity provided evidence ascer-
taining its anti-retroviral property.

3.2.2. P1 (virulent) phage infectivity lowering potential
P1 virulent phage is a temperate bacteriophage that is known

to infect E. coli and some other bacteria [44]. A novel P1 virulent
bacteriophage based qualitative screening assay was employed to
further assess the antiviral potential of the ‘BhAVI-23’ infusion
and the observations are shown in Fig. 2. Almost complete
absence of growth of bacteria E. coli was observed when phage
and bacteria were co-incubated together indicative of complete
lysis of host bacteria (Fig. 2B). Interestingly, ‘BhAVI-23’ extract
inhibited the infectivity of P1 (vir) bacteriophage as manifested by
reduced plaque forming ability at the non-cytotoxic concentration
of 1.75% of the infusion resulting in almost comparable bacterial
growth (Fig. 2C). The negative control (E. coli co-incubated with
BhAVI-23 extract) is displayed in Fig. 2D. These observations
further corroborated the anti-retroviral activity as mentioned
above.

3.3. Anti-glycation potential of ‘BhAVI-23’ extract and its relevance

Anti-glycation property of the infusion is shown in Fig. 3. The
extract displayed significant anti-glycation property against
glucose mediated glycation of haemoglobin thus conferring anti-
diabetic property to ‘BhAVI-23’. Anti-glycation was found to be
22% and 64% at extract concentration of 250 and 1250 mg/ml,
respectively.

3.4. Head space gas analysis confirmed the presence of antiviral
components in ‘BhAVI-23’

Around 47 different compounds were detected and identified in
the ‘BhAVI-23’ infusion upon head space gas analysis (Table 1). The
concentration of eugenol was observed to be prominently higher as
compared to other compounds. Many of these compounds have
been reported for their potent anti-viral activities against wide
variety of viruses [45e55].

3.5. Molecular docking analysis

Compounds showing antiviral activity were further selected for
molecular docking analysis. Fig. 4 (A, B) shows binding pose of a-
pinene and eugenol with the spike protein of SARS-CoV-2 and the
predicted binding energy was found to be �6.4 & �6.3 kcal/mol,
respectively. Different proteins of SARS CoV-2 have been discovered
that could act as potentially important targets for the management
of COVID-19. Some of the key protein targets of SARS-CoV-2 are
main protease (Mpro), ADP-ribose-1-phosphatase (ADRP), endor-
ibonuclease (Nsp 15/NendoU), the binding domain of the spike
protein (SARS-CoV-2rS), RNA-dependent RNA polymerase (RdRp),
and hACE2 [56]. Docking study of both the ligands was also carried
out with main protease (Mpro) (PDB ID 6wqf), Endoribonuclease
(PDB ID 6x41) and RNA dependent RNA Polymerase (PDB ID 6m71).
However, the docking score values for a pinene with Mpro,
Endoribonuclease and RdRP were �1.3, �4.2 and �4.1 kcal/mol,
respectively while that of eugenol were �3.7, �3.8 and �3.2 kcal/
mol, respectively. In both the ligands, spike protein showed the
lowest binding energy (indicating highest affinity) with the spike
protein.



Table 1
Head space GCeMS analysis of the ‘BhAVI-23’ infusion and the identified compounds and their concentrations.

Compounds detected Rt RI cal RI actual Amount (mg/L)

1-Penten-3-ol 1.773 735 684 9.2 ± 2.32
3-Methyl butanal 1.905 740 652 4.93 ± 1
3-Methyl-1-butanol 2.411 758 736 0.65 ± 0.03
Dimethyl disulfide 2.493 761 746 1.4 ± 0.38
1-Pentanol 2.971 778 768 3.83 ± 1.02
2Z-Penten-1-ol 3.037 780 770 4.15 ± 0
Hexanal 3.609 800 800 9.79 ± 1.65
2-Hexenal 4.967 849 851 29.41 ± 7.51
3Z-Hexen-1-ol 5.105 854 856 22.15 ± 6.16
2 E-Hexen-1-ol 5.417 865 862 32.66 ± 11.6
1-Hexanol 5.492 868 868 34.28 ± 5.9
a-Pinene 7.199 929 937 2.4 ± 0.87
Benzaldehyde 7.967 956 962 2.23 ± 0.19
b-Pinene 8.418 972 979 4.12 ± 1.65
1-Octen-3-one 8.594 978 979 0.99 ± 0.04
1-Octen-3-ol 8.647 980 980 1.86 ± 0.24
6-Methyl-5-hepten-2-one 8.856 988 986 3.35 ± 0.31
b-Myrcene 8.933 991 991 3.58 ± 1.42
Eucalyptol 9.996 1029 1032 112.24 ± 3.43
Benzyl alcohol 10.138 1034 1036 1.03 ± 0.15
Benzeneacetaldehyde 10.34 1042 1045 7.45 ± 0.29
g-Terpinene 10.774 1058 1060 5.64 ± 2.3
Fenchone 11.548 1086 1096 22.37 ± 0.84
cis-b-Terpineol 11.849 1097 1144 2.3 ± 0.08
Linalool 11.926 1100 1099 63.59 ± 3.78
Benzenepropanal 13.498 1161 1162 32.02 ± 1.58
endo-Borneol 13.593 1165 1166 36.37 ± 1.95
Terpinen-4-ol 13.888 1177 1182 22.87 ± 0.63
a-Terpineol 14.24 1190 1185 70.97 ± 3.17
3-p-Menthen-7-al 14.309 1193 1196 7.45 ± 0.46
3-(1-Methylethyl)-phenol 15.214 1231 1228 2.59 ± 0.26
3-Phenylpropanol 15.262 1233 1232 1.94 ± 0.23
4-(1-Methylethyl)-benzaldehyde 15.515 1240 1239 384.09 ± 48.82
Thymoquinone 15.726 1252 1250 86.73 ± 10.66
E-Cinnamaldehyde 16.211 1272 1274 182.53 ± 12.9
2-Caren-10-al 16.522 1285 1289 123.63 ± 9.45
1,4-p-Menthadien-7-al 16.66 1291 1288 38.6 ± 3.74
2-Methyl-5-(1-methylethyl)-phenol 16.917 1302 1299 4.07 ± 0.27
3-phenyl-2E-propen-1-ol 17.041 1308 1313 1.43 ± 0.09
Eugenol 18.365 1367 1392 507.02 ± 80.26
Methyleugenol 19.329 1410 1402 222.61 ± 29.51
Coumarin 19.953 1440 1441 18.18 ± 1.56
Acetic acid cinnamyl ester 20.084 1446 1445 4.41 ± 0.36
Eugenol acetate 21.801 1529 1524 19.78 ± 2.24
Ar-turmerone 24.514 1668 1660 6.69 ± 0.63
Hexadecanal 27.203 1817 1817 1.46 ± 0.01
Dimethyl palmitamine 28.731 1905 1894 83.9 ± 0
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4. Discussion

Large scale drug and phytomedicine repurposing is being
currently investigated as it is plausible that anti-retroviral therapy
may also be effective against SARS coronavirus [57e60]. ‘BhAVI-23’
displayed prominent inhibition of HIV-1 RT activity as well as
infectivity of P1 (vir) phage thus ascertaining its anti-viral potential.
The reverse transcriptase assay based upon HIV-1 RT has been re-
ported earlier as potentially beneficial for the assessment of RT
activity from different retroviruses as well as screening tool for the
prospective RT inhibitors [61].

Besides, assessment of anti-glycation potential has significance
due to growing evidence strongly suggesting that the evaluation of
hemoglobin glycation is relatively more advantageous in fore-
casting the risk of developing diabetes [62]. ‘BhAVI-23’ has been
conceptualized to also confer additional potential benefits to peo-
ple suffering from diabetes because such people belong to high risk
categories and can have serious illness if they get infected to the
coronavirus. Herbals and spices are known for their prophylactic
anti-diabetic and immunomodulatory attributes [63,64]. Acute
hyperglycemia may be alarming because significantly glycosylated
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ACE2 receptor is conducive for cellular intrusion of the coronavirus
subsequently leading to a pronounced COVID-19 infection with
increased disease seriousness [65]. Hyperglycemia may escalate
viral proliferation, inhibit & weaken the anti-viral immune
response andmay also affect pulmonary function [66]. In a recently
conducted clinical study at the United States, COVID-19 patients
suffering from diabetes had a longer stay in hospital and promi-
nently higher mortality (28%) as compared to non-diabetic patients
(6.2%). Therefore, it was further recommended and advised that
inpatient hyperglycemia is effectively and safely treated by the
medical management [67].

Different compounds detected during head-space analysis have
been reported for their anti-viral activities. Tumerones detected
have been reported to have activity against H5N1 influenza virus,
whereas, coumarins have been shown to possess activity against
RNA viruses like HCV, HIV and influenza virus. Eugenol has been
found to display direct inhibitory activity against both intracellular
and extracellular viruses including Herpes Simplex virus [45].
Carvacrol has been reported to be active against HSV-1 by direct
inhibition of virus particle. This compound possessed anti-murine
norovirus activity too [46,47]. The a and b-pinene detected are



Fig. 1. Anti-viral activity based upon HIV-1 Reverse Transcriptase inhibition. * Reaction
mixture having RT without extract, # Reaction mixture without RT, a-gDifferent letters
across the columns indicate the mean values are significantly different, [level of sig-
nificance (p � 0.05) as analyzed by ANOVA].

Fig. 3. Anti-glycation property of ‘BhAVI-23’ extract. a-cDifferent letters across the col-
umns indicate the mean values are significantly different (p � 0.05) as analyzed by ANOVA.
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naturally found in black cumin and clove, respectively. The a-
pinene has been reported to display prominent antiviral activity
against IBV, SARS-CoV as well as HSV-1 [48]. The b-myrcene
detected possessed anti HSV-1 activity [48]. Besides, linalool which
was detected in the infusion has been reported earlier for its ac-
tivity against Influenza A virus [49]. Recently, antiviral activities of
borneol and isoborneol derivatives against Influenza A virus has
been reported [50]. Terpinen-4-ol found has been reported for its
significant activity against Influenza A virus [51]. Thymoquinones
and curcumin have been reported for their antiviral activity and
could boost immune response [52,53]. Curcumin has also been
reported for its potential health importance in severe pneumonia
[53]. Cinnamaldehydewas one of the major compounds detected in
‘BhAVI-23’ infusion and shown to inhibit adenovirus type 3 &
influenza A/PR/8 virus in earlier reports [54,55]. Selection of target
proteins of virus for docking study is an important step during
evaluation of compounds for antiviral activity. Different viral pro-
teins are responsible for crucial functions in viral entry, replication
and its assembly and spread to other host cells. Main protease
(Mpro) is required to cleave the polyprotein into different
nonstructural proteins required for viral activity. Spike protein is
required for recognition and high affinity binding with the func-
tional ACE-2 receptor of the host cell while endoribonuclease de-
grades polyuridine sequence of viral RNA to prevent detection of
virus by host immune cells [68]. RNA dependent RNA polymerase is
required to generate multiple copies of viral genome. Different
researchers have carried out in-silico docking analysis of number of
Fig. 2. Anti-viral activity based upo
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essential oil compounds for the SARS CoV-2 proteins mentioned
above [69,70,71]. These include the major compounds detected in
BhAVI-23 extract. b-myrcene showed highest docking score
(�98.7 kJ/mol) normalized for molecular weight with main prote-
ase. In case of endoribonuclease, endo-borneol showed highest
docking score (�91.8 kJ/mol), while for rest of the 4 proteins,
eugenol showed highest docking score [69]. Docking study exclu-
sively for eucalyptol with main protease has been reported earlier
[70]. They obtained full fitness as well as binding affinity values
of �2291.07 and �6.04 kcal/mol, respectively. They concluded that
eucalyptol showed significantly high binding affinity, however,
further validation is required to confirm the interaction of euca-
lyptol with main protease [70]. Screening of different natural de-
rivatives of coumarin for the selective inhibition of Mpro has also
been performed earlier and the DG values ranged from �6.80
to �8.57 kcal/mol [72]. Besides, in another docking study thymo-
quinones displayed binding affinity values for COVID-19 Mpro and
ACE-2 as �4.7 and �5.5 kcal/mol, respectively [72].

Representative docking result is depicted in Fig. 4 where a-
pinene and eugenol were used as a ligand for spike protein. a-
pinene was selected as this molecule has been shown to possess
anti-SARS CoV activity while eugenol was selected since it was the
most abundant molecule present in BhAVI extract. As seen from the
figure, the ligand is binding into the pocket formed by 3D assembly
of three spike protein polypeptides. However, the binding affinity
score reflects slightly weak affinity of a-pinene with the spike
protein assembly. Besides, eugenol also displayed significant
binding with the spike protein. Likewise, other ligands present in
n P1 (vir) bacteriophage assay.



Fig. 4. Representative simulation of lowest energy docked pose of (A) a-pinene and (B) eugenol with SARS-CoV-2 spike protein.
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the spice herbal infusion can have higher binding affinities with the
spike protein assembly, exerting synergism in inactivating this
protein.

In the absence of specific anti-COVID-19 therapeutics, the major
treatment regime is directed on targeting the symptoms [73].
Immunomodulatory activity to several compounds detected in the
317
‘BhAVI-23’ infusion such as butanal, 3-methylhexanal, 2-hexenal, b-
myrcene, gamma-terpinene, terpinen-4-ol and a-terpineol is also
reported [74]. Immunity is known to play a vital role in COVID-19
pathogenesis in early non-severe as well as during the severe
stage of the disease. Corona viruses are proficient in eluding im-
mune detection and weakening the immune responses [75,76].



S. Saxena, S. Kumar, S.N. Hajare et al. Journal of Ayurveda and Integrative Medicine 12 (2021) 312e319
Thus, the treatments targeting immune system could potentially
help COVID-19 affected patients.

In this context, traditional Indian herbs of prophylactic rele-
vance could serve as effective strategy to counter viruses like SARS-
CoV-2 and have potential to prevent disease deterioration into a
critical state [8,77]. Recently in silico and experimental observa-
tions affirmed therapeutic potency of Qingfei Paidu Decoction in
treating COVID-19 patients in China [78]. Many of the selected
herbs and spices comprising ‘BhAVI-23’ have been reported for
their prophylactic and therapeutic health benefits including im-
mune boosting property (Table S2).

5. Conclusion

‘BhAVI-23’ comprising of 23 natural ingredients displayed in-
vitro antiviral property against reverse transcriptase as well as
infectivity of P1 (vir) phage. This infusion also displayed in-vitro
anti-diabetic property as indicated by its anti-glycation activity.
These attributes ascertain the potential broad-spectrum antiviral
action of this ‘BhAVI-23’ mix besides having already reported
immunomodulatory functions of the spice-herbal components
comprising this infusion. GCeMS analysis confirmed the presence
of many compounds of therapeutic potential that may have a role in
conferring antiviral properties. The health benefiting effects
including antiviral activity could potentially mitigate the severity of
COVID-19 symptoms in the current pandemic. Further studies in
higher systems including animal models and/or trial study in hu-
man volunteers could be proposed to be pursued upon due regu-
latory approvals to corroborate the initial in-vitro findings and affix
an antiviral health claim to ‘BhAVI-23’.
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